2.电磁感应中能量问题

合集下载

物理 电磁感应中的能量问题 基础篇

物理 电磁感应中的能量问题   基础篇

物理总复习:电磁感应中的能量问题【考纲要求】理解安培力做功在电磁感应现象中能量转化方面所起的作用。

【考点梳理】考点、电磁感应中的能量问题要点诠释:电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。

分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。

电能求解的主要思路:(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。

(2)利用能量守恒求解:机械能的减少量等于产生的电能。

(3)利用电路特征求解:通过电路中所产生的电流来计算。

【典型例题】类型一、根据能量守恒定律判断有关问题例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将()A.往复摆动B.很快停在竖直方向平衡而不再摆动C.经过很长时间摆动后最后停下D.线圈中产生的热量小于线圈机械能的减少量【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。

【答案】B【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。

根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。

【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。

上述线圈所出现的现象叫做电磁阻尼。

用能量转化和守恒定律解决此类问题往往十分简便。

含答案电磁感应中的能量问题分析

含答案电磁感应中的能量问题分析

电磁感应中的能量问题分析一、基础知识一、进程分析(1)电磁感应现象中产生感应电流的进程,实质上是能量的转化进程.(2)电磁感应进程中产生的感应电流在磁场中必然受到安培力的作用,因此,要维持感应电流的存在,必需有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的进程,或通过电阻发烧的进程,是电能转化为其他形式能的进程.安培力做了多少功,就有多少电能转化为其他形式的能.二、求解思路(1)假设回路中电流恒定,能够利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)假设电流转变,那么:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:假设只有电能与机械能的转化,那么机械能的减少量等于产生的电能.3、电磁感应中能量转化问题的分析技术a、电磁感应进程往往涉及多种能量的转化(1)如图中金属棒ab沿导轨由静止下滑时,重力势能减少,一部份用来克服安培力做功,转化为感应电流的电能,最终在R上转化为焦耳热,另一部份转化为金属棒的动能.(2)假设导轨足够长,棒最终达到稳固状态做匀速运动,以后重力势能的减小那么完全用来克服安培力做功,转化为感应电流的电能.b、安培力做功和电能转变的特定对应关系(1)“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.(2)安培力做功的进程,是电能转化为其他形式的能的进程,安培力做多少功就有多少电能转化为其他形式的能.c、解决此类问题的步骤(1)用法拉第电磁感应定律和楞次定律(包括右手定那么)确信感应电动势的大小和方向.(2)画出等效电路图,写出回路中电阻消耗的电功率的表达式.(3)分析导体机械能的转变,用能量守恒关系取得机械功率的改变与回路中电功率的改变所知足的方程,联立求解.二、练习一、如下图,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有必然值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终维持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h 时开始做匀速运动,在此进程中( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLh R +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量 答案 BD解析 金属棒由静止释放后,当a =0时,速度最大,即mg -BL BL v m R +r=0,解得v m =mg (R +r )B 2L 2,A 项错误.此进程通过R 的电荷量q =I Δt =BLh (R +r )Δt ·Δt =BLh R +r ,B 项正确.导体棒克服安培力做的功等于整个电路产生的热量,C 项错误.由动能定理知对导体棒有ΔE k =W 重+W 安,D 项正确.二、如下图,倾角为θ=30°、足够长的滑腻平行金属导轨MN 、PQ 相距L 1=0.4 m ,B 1=5 T 的匀强磁场垂直导轨平面向上.一质量m =1.6 kg 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,其电阻r =1 Ω.金属导轨上端连接右边电路,R 1=1 Ω,R 2=1.5 Ω.R 2两头通过细导线连接质量M =0.6 kg 的正方形金属框cdef ,正方形边长L 2=0.2 m ,每条边电阻r 0为1 Ω,金属框处在一方向垂直纸面向里、B 2=3 T 的匀强磁场中.现将金属棒由静止释放,不计其他电阻及滑轮摩擦,g 取10 m/s 2.(1)假设将电键S 断开,求棒下滑进程中的最大速度.(2)假设电键S 闭合,每根细导线能经受的最大拉力为3.6 N ,求细导线恰好被拉断时棒的速度.(3)假设电键S 闭合后,从棒释放到细导线被拉断的进程中,棒上产生的电热为2 J ,求此进程中棒下滑的高度(结果保留一名有效数字).解析 (1)棒下滑进程中,沿导轨的合力为0时,速度最大,mg sin θ-F 安=0F 安=B 1IL 1I =E r +R 1+R 2E =B 1L 1v max代入数据解得:v max =7 m/s(2)闭合S后,设细导线刚断开时,通过金属框ef边电流为I′,那么通过cd边的电流为3I′那么:2F T -Mg -B 2I ′L 2-3B 2I ′L 2=0解得I ′=0.5 A通过R 2的电流I 2=3I ′r 0R 2I 2=1 A电路总电流I 1=I 2+4I ′=3 A金属框接入电路总电阻R 框=34Ω R 2与R 框并联电阻为R ′,R ′=R 框R 2R 框+R 2=12Ω 设现在棒的速度为v 1,那么有I 1=B 1L 1v 1r +R 1+R ′解得v 1=3.75 m/s(3)当棒下滑高度为h 时,棒上产生的热量为Q ab ,R 1上产生的热量为Q 1,R 2与R 框上产生的总热量为Q ′,依照能量转化与守恒定律有mgh =12m v 21+Q ab +Q 1+Q ′ Q ab =2 JQ 1=Q ab =2 JQ ′=Q ab 2=1 J 解得h ≈1 m答案 (1)7 m/s (2)3.75 m/s (3)1 m3、如下图电路,两根滑腻金属导轨平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用.金属棒沿导轨匀速下滑,那么它在下滑高度h 的进程中,以下说法正确的选项是( )A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D.金属棒克服恒力F做的功等于电阻R上产生的焦耳热答案AC解析 依照动能定理,合力做的功等于动能的增量,故A 对;重力做的功等于重力势能的减少,重力做的功等于克服F 所做的功与产生的电能之和,而克服安培力做的功等于电阻R 上产生的焦耳热,因此B 、D 错,C 对.4、(2020·上海单科·32)如下图,电阻可忽略的滑腻平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的匀强磁场垂直轨道平面向上.阻值r =0.5 Ω、质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此进程中金属棒产生的焦耳热Q r =0.1 J .(取g =10 m/s 2)求:(1)金属棒在此进程中克服安培力做的功W 安;(2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同窗解答如下:由动能定理,W G -W 安=12m v 2m,….由此所得结果是不是正确?假设正确,说明理由并完本钱小题;假设不正确,给出正确的解答.答案 (1)0.4 J (2)3.2 m/s 2 (3)观点析解析 (1)下滑进程中安培力做的功即为电阻上产生的焦耳热,由于R =3r ,因此Q R =3Q r =0.3 J因此W 安=Q =Q R +Q r =0.4 J(2)金属棒下滑时受重力和安培力F 安=BIL =B 2L 2R +rv 由牛顿第二定律得mg sin 30°-B 2L 2R +rv =ma 因此a =g sin 30°-B 2L 2m (R +r )v =[10×12-0.82×0.752×20.2×(1.5+0.5)] m/s 2=3.2 m/s 2 (3)此解法正确.金属棒下滑时受重力和安培力作用,其运动知足mg sin 30°-B 2L 2R +rv =ma 上式说明,加速度随速度增大而减小,棒做加速度减小的加速运动.不管最终是不是达到匀速,当棒抵达斜面底端时速度必然为最大.由动能定理能够取得棒的最大速度,因此上述解法正确.mgs sin 30°-Q =12m v 2m 因此v m =2gs sin 30°-2Q m = 2×10×1.15×12-2×0.40.2m/s ≈2.74 m/s. 五、如下图,两平行滑腻的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直方向的磁场中,整个磁场由假设干个宽度皆为d 的条形匀强磁场区域1、2、3、4……组成,磁感应强度B 1、B 2的方向相反,大小相等,即B 1=B 2=B .导轨左端MP 间接一电阻R ,质量为m 、电阻为r 的细导体棒ab 垂直放置在导轨上,与导轨接触良好,不计导轨的电阻.现对棒ab 施加水平向右的拉力,使其从区域1磁场左侧界位置开始以速度v 0向右做匀速直线运动并穿越n 个磁场区域.(1)求棒ab 穿越区域1磁场的进程中电阻R 产生的焦耳热Q ;(2)求棒ab 穿越n 个磁场区域的进程中拉力对棒ab 所做的功W ;(3)规定棒中从a 到b 的电流方向为正,画出上述进程中通过棒ab 的电流I 随时刻t 转变的图象;(4)求棒ab 穿越n 个磁场区域的进程中通过电阻R 的净电荷量q .答案 (1)B 2L 2v 0Rd (R +r )2 (2)nB 2L 2v 0d R +r(3)观点析图 (4)BLd R +r或0 解析 (1)棒产生的感应电动势E =BL v 0通过棒的感应电流I =E R +r电阻R 产生的焦耳热Q =(E R +r)2R ·d v 0=B 2L 2v 0Rd (R +r )2 (2)拉力对棒ab 所做的功W =E 2R +r ·d v 0·n =nB 2L 2v 0d R +r(3)I -t 图象如下图(4)若n 为奇数,通过电阻R 的净电荷量q =ΔΦ1R +r =BLd R +r若n为偶数,通过电阻R的净电荷量q=ΔΦ2=0R+r注:(2)问中功W也可用功的概念式求解;(4)问中的电荷量也可用(3)问中的图象面积求出.。

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题

法拉第电磁感应定律1.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即tk E ∆∆Φ=,在国际单位制中k =1,所以有tE ∆∆Φ=。

对于n 匝线圈有tnE∆∆Φ=。

(平均值)将均匀电阻丝做成的边长为l 的正方形线圈abcd 从匀强磁场中向右匀速拉出过程,仅ab 边上有感应电动势E =Blv ,ab 边相当于电源,另3边相当于外电路。

ab 边两端的电压为3Blv /4,另3边每边两端的电压均为Blv /4。

在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推导出感应电动势大小的表达式是:E=BLv sin α(α是B 与v 之间的夹角)。

(瞬时值)【例题分析】例1. 如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。

求:将线圈以向右的速度v 匀速拉出磁场的过程中,⑴拉力的大小F ;⑵拉力的功率P ;⑶拉力做的功W ;⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。

解:这是一道基本练习题,要注意计算中所用的边长是L 1还是L 2 ,还应该思考一下这些物理量与速度v 之间有什么关系。

⑴v Rv L B F BIL F RE I v BL E ∝=∴===22222,,,⑵22222v Rv L B Fv P ∝==⑶v RvL L B FL W ∝==12221⑷v W Q ∝=⑸Rt RE t I q ∆Φ==⋅=与v 无关特别要注意电热Q 和电荷q 的区别,其中Rq∆Φ=与速度无关!例2.固定于水平面上的金属框cdef,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长l 的正方形,棒电阻r ,其余电阻不计,开始时磁感应强度为B .(1)若以t =0时起,磁感应强度均匀增加,每秒增加量k ,同时保持棒静止,求棒中I 感. (2)在上述情况中,棒始终保持静止,当t =t 1时需加垂直于棒水平外力? (3)若从t =0时起,磁感应强度逐渐减小,当棒以恒定速度v 向右匀速运动,可使棒中不产生I 感,则磁感应强度怎样随时间变化?vd解析:(1)E =tl B ∆⋅∆2=kl 2I =rE =rkl 2逆时针方向(2)F 外=BIl =(B+kt )rkl 2·l 向右(3)无I 感,故ΔΦ=0 B 0l 2=Bl (l+v t ) 所以B =vtl l B +0【电磁感应综合问题分析】(1)受力分析:导体受力运动产生感应电动势→感应电流→导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→…动态变化过程结束时,加速度为零,导体达到稳定状态.(2)运动分析:一般在动态变化过程中,导体做加速度不断减小的变加速运动,动态变化过程结束后,导体做匀速运动.(3)能量分析;在动态变化过程中,其他形式的能转化为导体的动能和回路的电能;动态变化过程结束后,导体的动能不变,其他形式的能转化为回路的电能.【例题分析】例1、如图所示,水平放置的平行金属导轨左边接有电阻R ,轨道所在处有竖直向下的匀强磁场.金属棒ab 横跨导轨,它在外力作用下向右匀速运动,当速度由v 变成2v 时,(除R 外其余电阻不计,导轨光滑)那么()A .原来作用在ab 上的外力应装置加到4倍B .感应电动势将增中为原来的2倍C .感应电流的功率将增为原来的4倍D .外力的功率将曾为原来的2倍【解析】棒匀速运动,外力安F F =,当速度由v 变成2v 时,由Rv L B F 22=安知,安F 安变原来的2倍,外力变为原来的2倍,选项A 错误.电动势E =BLv ,变为原来的2倍,选项B 正确.感应电流的功率:Rv L B v F P 222=∙=安,变为原来的4倍,选项C 正确.外力的功率等于感应电流的功率,也变为原来的4倍.选项D 错误.答案:BC例2、如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l ,导轨上面横放着两根导体棒ab 和cd ,构成矩形回路.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B ,设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0(见图).若两导体棒在运动中始终不接触,求:在运动中产生的焦耳热最多是多少?【解析】从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= 根据能量守恒,整个过程中产生的总热量 2022041)2(2121mv vm mv Q =-=例3、放在绝缘水平面上的两条平行导轨MN 和PQ 之间宽度为L ,置于磁感强度为B 的匀强磁场中,B 的方向垂直于导轨平面.导轨左端接有阻值为R 的电阻.其它部分电阻不计,导轨右端接有一电容为C 的电容器,长为2L 的金属棒放在导轨上与导轨垂直且接触良好,其a 端放在导轨PQ 上.现将金属棒以a 端为轴以角速度ω沿导轨平面顺时针转过90°角,如下图所示.求这个过程中的通过电阻R 的总电量是多少?(设导轨长度比2L 长得多)【解析】导体棒在转动θ=60°的过程中因切割磁感线产生感应电动势,一部分与电阻R 组成闭合回路,另一部分与电容器组成电路而给电容器充电.在该过程中棒中平均感应电动势t ∆∆Φ=ε,则平均电流强度tRI ∆∆Φ=,通过电阻R 的电量RBL RS B Rt I q 2321=∆=∆Φ=∆∙=.电容器放电是从金属棒脱离MN 开始,放电电压取金属棒在ac 位置时的瞬时值ωωε222)2(21BL L B ==因此电容器放电时带电量C BL C q ωε222==,放电时全部通过电阻R ,故整个过程中通过R 的总电量C BL RBL q q q ω2221223+=+=【例4】如图所示,倾角037=θ、电阻不计、间距L=0.3m 、长度足够的平行导轨处,加有磁感应强度为B =1T ,方向垂直于导轨平面(图中未画出)的匀强磁场,导轨两端各接一个阻值Ω=20R 电阻。

易错点25 电磁感应中的动力学和能量问题 (原卷版)-备战2023年高考物理考试易错题

易错点25 电磁感应中的动力学和能量问题 (原卷版)-备战2023年高考物理考试易错题

易错点25 电磁感应中的动力学和能量问题 例题1. (多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( )

A.甲和乙都加速运动 B.甲和乙都减速运动 C.甲加速运动,乙减速运动 D.甲减速运动,乙加速运动 例题2. 如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,间距为L=1 m,质量为m的金属杆ab垂直放置在轨道上且与轨道接触良好,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.P、M间接有阻值为R1的定值电阻,Q、N间接电阻箱R.现从静止释放ab,改变电阻箱的阻值R,测得最

大速度为vm,得到1vm与1R的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g取10 m/s2,则( )

A.金属杆中感应电流方向为a指向b B.金属杆所受的安培力沿轨道向下 C.定值电阻的阻值为1 Ω D.金属杆的质量为1 kg 1.导体的两种运动状态 (1)导体的平衡状态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件列式分析. (2)导体的非平衡状态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 2.用动力学观点解答电磁感应问题的一般步骤

3.导体常见运动情况的动态分析 v ↓ E=Blv ↓

I=ER+r

↓ F安=BIl ↓ F合

若F合=0 匀速直线运动 若F合≠0 ↓ F合=ma

a、v同向 v增大,若a恒定,拉力F增大 v增大,F安增大,F合减小,a减小,做加速度减小的加速运动,减小到a=0,匀速直线运动

电磁感应中的能量及动量问题课件

电磁感应中的能量及动量问题课件

答案与解析
答案1
感应电动势E = BLv,其中B是磁场强度,L是导线在磁场中的有效长度,v是导线在磁场中的速 度。
解析1
根据法拉第电磁感应定律,感应电动势E与磁通量变化率成正比,即E = ΔΦ/Δt。当导线在均匀 磁场中运动时,磁通量Φ = BLx,其中x是导线在磁场中的位置。由于导线以速度v向右运动,磁
通量随时间变化,即ΔΦ/Δt = BLv。因此,感应电动势E = BLv。
答案2
感应电动势E = 2ωBS,其中B是磁场强度,S是线圈在磁场中的面积,ω是线圈旋转的角速度。
答案与解析
解析2
当矩形线圈在均匀磁场中旋转时,线圈中的磁通量随时间变化,产生感应电动势。线圈 在磁场中的面积S和线圈的匝数N决定了感应电动势的大小。因此,感应电动势E = N × 2ωBS。
械能向电能的转换。
变压器
总结词
变压器是利用电磁感应原理实现电压变 换的关键设备,广泛应用于输配电和工 业自动化等领域。
VS
详细描述
变压器由初级线圈、次级线圈和铁芯组成 。当交流电通过初级线圈时,产生变化的 磁场,该磁场在次级线圈中产生感应电动 势。通过调整初级和次级线圈的匝数比, 可以实现电压的升高或降低,满足不同用 电设备和输电线路的需求。
军事应用
电磁炮作为一种新型武器系统,具有高精度、高速度和高破 坏力的特点,在军事领域具有广泛的应用前景。
04
电磁感应的实际应用
交流发电机
总结词
交流发电机利用电磁感应原理,将机械能转换为电能,为现代电力系统提供源源不断的 电力。
详细描述
交流发电机由转子(磁场)和定子(线圈)组成,当转子旋转时,磁场与线圈之间发生 相对运动,从而在线圈中产生感应电动势。通过外部电路闭合,电流得以输出,实现机

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题一、感应电流在磁场中所受的安培力1.安培力的大小:F=BIL= ⑴.由F= 知,v 变化时,F 变化,物体所受合外力变化,物体的加速度变化,因此可用牛顿运动定律进行动态分析.⑵.在求某时刻速度时,可先根据受力情况确定该时刻的安培力,然后用上述公式进行求解.2.安培力的方向判断(1)右手定则和左手定则相结合,先用右手定则确定感应电流方向,再用 左手定则判断感应电流所受安培力的方向.(2)用楞次定律判断,感应电流所受安培力的方向一定和导体切割磁感线运动的方向垂直。

热点一 对导体的受力分析及运动分析从运动和力的关系着手,运用牛顿第二定律.基本方法是:受力分析→运动分析(确定运动过程和最终的稳定状态)→由牛顿第二定律列方程求解.运动的动态结构:这样周而复始的循环,循环结束时加速度等于零,导体达到平衡状态.在分析过程中要抓住a=0时速度v 达到最大这一关键.特别提示1.对电学对象要画好必要的等效电路图.2.对力学对象要画好必要的受力分析图和过程示意图二、电磁感应的能量转化1.电磁感应现象的实质是其他形式的能和电能之间的转化.2.感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能.3.电流做功产生的热量用焦耳定律计算,公式为Q=I 2Rt热点二 电路中的能量转化分析从能量的观点着手,运用动能定理或能量守恒定律.基本方法是:受力分析→弄清哪些力做功,做正功还是负功→明确有哪些形式的能参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.特别提醒在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情况,因为安培力做的功是电能和其他形式的能之间相互转化的“桥梁”.简单表示如下: 安培力做正功 电能 其他形式能.安培力做副功 其它形式能 电能如何求解电磁感应中的力学问题,一直是高中物理教学的一个难点,也是近几年来高R L B R E BL v22=⋅R L B 22考的热点。

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1.所用知识及规律(3)牛顿第二定律及功能关系2.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.(2)导体的非平衡状态——加速度不为零.3.两大研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为感应电流产生安培力),而感应电流I和导体棒的速度v则是联系这两大对象的纽带例1:如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab 边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef和gh的距离s=11.4 m,(取g=10 m/s2),求:(1)线框进入磁场前重物的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh处所用的时间t;(4)ab边运动到gh处的速度大小及在线框由静止开始运动到gh处的整个过程中产生的焦耳热.反思总结分析电磁感应中动力学问题的基本思路(顺序):即学即练1:如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab可沿导轨自由滑动,导轨一端连接一个定值电阻R,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F恒定,经时间t1后速度为v,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率P恒定,棒由静止经时间t2后速度为v,加速度为a2,最终也以速度2v做匀速运动,则( ).A.t2=t1 B.t1>t2C.a2=2a1 D.a2=5a1即学即练2:如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存有匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨道间距为L =2 m,重力加速度g取10 m/s2,轨道充足长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.二、电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q 的三种方法例2、如图所示,充足长的光滑平行金属导轨MN 、PQ 竖直放置,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,重力加速度g 取10 m/s2.试求:(1)当t =0.7 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 在开始运动的0.7 s 内,电阻R 上产生的焦耳热;(3)从开始运动到t =0.4 s 的时间内,通过金属棒ab 的电荷量.即时训练3:如图,充足长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( ).A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v Rsin θ即时训练4:某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强时间t (s) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 下滑距离s (m) 0 0.1 0.3 0.7 1.4 2.1 2.8 3.5度大小均为B,方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小Em;(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.。

电磁感应中的能量问题[1].A级

电磁感应中的能量问题[1].A级

电磁感应中的能量问题框架知识点1 法拉第电磁感应定律的能量问题1.电磁感应过程往往涉及多种能量的转化电磁感应过程总是伴随着能量的转化.回路中产生感应电流的过程要克服安培力做功,这是机械能及其他形式的能量转化为电能的过程;感应电流通过电阻或用电器,再将电能转化为内能或其他形式的能量.如图中金属棒ab沿导轨由静止下滑时,重力势能减少,一部分用来克服安培力做功,转化为感应电流的电能,最终在R上转化为焦耳热,另一部分转化为金属棒的动能,若导轨足够长,棒最终达到稳定状态匀速运动时,重力势能的减小则完全用来克服安培力做功,转化为感应电流的电能.因此,从功和能的观点入手,分析清楚电磁感应过程中能量转化的关系,是解决电磁感应过程中能量问题的重要途径之一.2.安培力的功和电能变化的特定对应关系“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.同理,安培力做功的过程,是电能转化为其他形式能的过程,安培力做多少功就有多少电能转化为其他形式的能.3.解决此类问题的步骤(1)用法拉第电磁感应定律和楞次定律(包括右手定则)确定感应电动势的大小和方向(2)画出等效电路图,写出回路中电阻消耗的电功率的表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程,联立求解.例题【例1】 如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直.求:将线圈以向右的速度v 匀速拉出磁场的过程中,(1)拉力F 大小;(2)拉力的功率P ;(3)拉力做的功W ;(4)线圈中产生的电热Q ;(5)通过线圈某一截面的电荷量q .【例2】 如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3s 时间拉出,外力所做的功为1W ,通过导线截面的电量为q ;第二次用0.9s 时间拉出,外力所做的功为2W ,通过导线截面的电量为2q ,则()A .1212,W W q q <<B .1212,W W q q <=C .1212,W W q q >=D .1212,W W q q >>【例3】 如图所示,用粗细相同的铜丝做成边长分别为L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,不考虑线框的动能,若外力对环做的功分别为Wa 、Wb ,则W a ∶W b 为 ( ) A .1∶4 B .1∶2 C .1∶1D .不能确定【例4】 粗细均匀的电阻丝围成的正方形线框,原先整个置于有界匀强磁场内,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框沿四个不同方向匀速平移出磁场,如图,线框移出磁场的整个过程中()A .四种情况下流过ab 边的电流的方向都相同B .①图中流过线框的电量与v 的大小无关C .②图中线框的电功率与v 的大小成正比D .③图中磁场力对线框做的功与2v 成正比【例5】 如图所示,由粗细均匀、同种金属导线构成的长方形线框abcd 放在光滑的水平桌面上,线框边长分别为L 和2L ,其中ab 段的电阻为R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、电磁感应中的动力学问题1.安培力的大小⎭⎪⎬⎪⎫安培力公式:F A =BIl 感应电动势:E =Bl v 感应电流:I =E R ⇒F A =B 2l 2v R 2.安培力的方向(1)用左手定则判断:先用右手定则判断感应电流的方向,再用左手定则判定安培力的方向。

(2)用楞次定律判断:安培力的方向一定与导体切割磁感线的运动方向相反。

3.安培力参与下物体的运动导体棒(或线框)在安培力和其他力的作用下,可以做加速运动、减速运动、匀速运动、静止或做其他类型的运动,可应用动能定理、牛顿运动定律等规律解题。

4.题型简述感应电流在磁场中受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决这类问题需要综合应用电磁感应规律(法拉第电磁感应定律、楞次定律)及力学中的有关规律(共点力的平衡条件、牛顿运动定律、动能定理等).5.两种状态及处理方法7.动态分析的基本思路解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度最大值或最小值的条件.具体思路如下:导体受外力运动――→E =Bl v感应电动势――→E I R r+=感应电流――→F =BIl 导体受安培力→合力变化――→F 合=ma 加速度变化→速度变化→临界状态8.常见模型:“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变①单杆水平式(导轨光滑)匀强磁场与导轨垂直,磁感应强度为B ,棒ab 长为L ,质量为m ,初速度为零,拉力恒为F ,水平导轨光滑,除电阻R 外,其他电阻不计设运动过程中某时刻棒的速度为v ,加速度为a =F m -B 2L 2v mR ,a 、v 同向,随v 的增加,a 减小,当a =0时,v 最大,v m =FR B 2L 2 I =BLv R 恒定②单杆倾斜式(导轨光滑)匀强磁场与导轨垂直,磁感应强度为B ,导轨间距L ,导体棒质量m ,电阻R ,导轨光滑,电阻不计 ab 棒释放后下滑,此时a =g sin α,速度v ↑E =BLv ↑I =E R ↑F =BIL ↑a ↓,当安培力F =mg sin α时,a =0,v 最大,v m =mgR sin αB 2L 2③双杆切割式(导轨光滑)导体棒NM 受安培力的作用做加速度减小的减速运动,导体棒QP 受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动,在此过程中系统动量守恒,棒NM 动能的减少量=棒QP 动能的增加量+焦耳热④含“源”水平光滑导轨(v 0=0)S 闭合,ab 杆受安培力F=r BLE ,此时a=mr BLE ,速度v ↑E =BLv ↑I =E R ↓F =BIL ↓a ↓,当E 感=E 时,v 最大,且v m =BL E 例1.如图11所示,竖直平面内有足够长的平行金属导轨,间距为0.2 m ,金属导体ab 可在导轨上无摩擦地上下滑动,ab 的电阻为0.4 Ω,导轨电阻不计,导体ab 的质量为0.2 g ,垂直纸面向里的匀强磁场的磁感应强度为0.2 T ,且磁场区域足够大,当导体ab 自由下落0.4 s 时,突然闭合开关S ,则:(g 取10 m/s 2)图11(1)试说出开关S 闭合后,导体ab 的运动情况;(2)导体ab 匀速下落的速度是多少?二、电磁感应中的能量问题1.题型简述电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功来实现的.安培力做功的过程,是电能转化为其他形式的能的过程;外力克服安培力做功的过程,则是其他形式的能转化为电能的过程.①实质电磁感应现象的能量转化,实质是其他形式的能和电能之间的转化。

能量的转化②感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为其他形式的能。

③电磁感应现象中能量的三种计算方法(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。

(2)利用能量守恒定律求解:机械能的减少量等于电能的增加量。

(3)利用电路特征来求解:通过电路中所产生的电能来计算。

④.焦耳热的计算(1)电流恒定时,根据焦耳定律求解,即Q =I 2Rt .(2)感应电流变化,可用以下方法分析:①利用动能定理,求出克服安培力做的功W 安,即Q =W 安.②利用能量守恒定律,焦耳热等于其他形式能量的减少量.即损E Q ∆=例2.如图6所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行于MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行于MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则 ( )A.Q 1>Q 2,q 1=q 2B.Q 1>Q 2,q 1>q 2C.Q 1=Q 2,q 1=q 2D.Q 1=Q 2,q 1>q 21.如图所示,质量为m的金属圆环用不可伸长的细线悬挂起来,金属圆环有一半处于水平且与环面垂直的匀强磁场中,从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于线的拉力大小,下列说法中正确的是(重力加速度为g)()A.大于环重力mg,并逐渐减小B.始终等于环重力mgC.小于环重力mg,并保持恒定D.大于环重力mg,并保持恒定2.如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R.金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是()A.ab中的感应电流方向由b到aB.ab中的感应电流逐渐减小C.ab所受的安培力保持不变D.ab所受的静摩擦力逐渐减小3.如图所示,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v-t图象中,能正确描述上述过程的是()4.如图9甲所示,一个匝数n=100的圆形导体线圈,面积S1=0.4 m2,电阻r=1 Ω.在线圈中存在面积S2=0.3 m2的垂直线圈平面向外的匀强磁场区域,磁感应强度B随时间t变化的关系如图乙所示.有一个R=2 Ω的电阻,将其两端a、b分别与图甲中的圆形线圈相连接,b 端接地,则下列说法正确的是()A.圆形线圈中产生的感应电动势E=6 VB.在0~4 s时间内通过电阻R的电荷量q=6 CC.设b端电势为零,则a端的电势φa=3 VD.在0~4 s时间内电阻R上产生的焦耳热Q=18 J5.(多选)如图所示,在方向垂直纸面向里、磁感应强度为B 的匀强磁场区域中有一个由均匀导线制成的单匝矩形线框abcd ,线框以恒定的速度v 沿垂直磁场方向向右运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =L ,cd =2L .线框导线的总电阻为R .则在线框离开磁场的过程中,下列说法中正确的是( )A.ad 间的电压为BL v 3B.流过线框横截面的电荷量为2BL 2RC.线框所受安培力的合力为2B 2L 2v RD.线框中的电流在ad 边产生的热量为2B 2L 3v 3R6.如图所示,足够长的平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场(图中未画出),磁感应强度为0.8 T.将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)( )A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W7.(多选)(2018·吉安市高二下学期期末)如图10所示,光滑斜面PMNQ 的倾角为θ=30°,斜面上放置一矩形导体线框abcd ,其中ab 边长L 1=0.5 m ,bc 边长为L 2,导体线框质量m =1 kg 、电阻R =0.4 Ω,有界匀强磁场的磁感应强度为B =2 T ,方向垂直于斜面向上,ef 为磁场的边界,且ef ∥MN .导体线框在沿斜面向上且与斜面平行的恒力F =10 N 作用下从静止开始运动,其ab 边始终保持与底边MN 平行.已知导体线框刚进入磁场时做匀速运动,且进入过程中通过导体线框某一横截面的电荷量q =0.5 C ,取g =10 m/s 2,则下列说法正确的是( )A.导体线框进入磁场时的速度为2 m/sB.导体线框bc 边长为L 2=0.1 mC.导体线框开始运动时ab 边到磁场边界ef 的距离为0.4 mD.导体线框进入磁场的过程中产生的热量为1 J8.(2018·四川省双流中学高二月考)如图12所示,两根等高的四分之一光滑圆弧轨道,半径为r、间距为L,图中Oa水平,Oc竖直,在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开始下滑,到达轨道底端cd时受到轨道的支持力为2mg.整个过程中金属棒与轨道接触良好,轨道电阻不计,重力加速度为g.求:(1)金属棒到达轨道底端cd时的速度大小和通过电阻R的电流;(2)金属棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量.9.(14分)(2018·池州市高二年级下学期期末)如图所示,平行长直光滑固定的金属导轨MN、PQ平面与水平面的夹角θ=30°,导轨间距为L=0.5 m,上端接有R=3 Ω的电阻,在导轨中间加一垂直轨道平面向下的匀强磁场,磁场区域为OO′O1′O1,磁感应强度大小为B=2 T,磁场区域宽度为d=0.4 m,放在导轨上的一金属杆ab质量为m=0.08 kg、电阻为r=2 Ω,从距磁场上边缘d0处由静止释放,金属杆进入磁场上边缘的速度v=2 m/s.导轨的电阻可忽略不计,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触,重力加速度大小为g=10 m/s2,求:(1)金属杆距磁场上边缘的距离d0;(2)通过磁场区域的过程中通过金属杆的电荷量q;(3)金属杆通过磁场区域的过程中电阻R上产生的焦耳热Q R.10.(2018·怀化市高二上期末考试)如图8甲所示,足够长、电阻不计的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:(1)判断金属棒两端a、b的电势高低;(2)磁感应强度B的大小;(3)在金属棒ab开始运动的1.5 s内,电阻R上产生的热量.11.(2020·广东台山模拟)如图所示,两根正对的平行金属直轨道MN、M′N′位于同一水平面上,两轨道之间的距离l=0.50 m.轨道的MM′端接一阻值为R=0.50 Ω的定值电阻,直轨道的右端处于竖直向下、磁感应强度大小为B=0.60 T的匀强磁场中,磁场区域右边界为NN′、宽度d=0.80 m;水平轨道的最右端与两条位于竖直面内的半圆形光滑金属轨道NP、N′P′平滑连接,两半圆形轨道的半径均为R0=0.50 m.现有一导体杆ab静止在距磁场的左边界s=2.0 m处,其质量m=0.20 kg、电阻r=0.10 Ω.ab杆在与杆垂直的、大小为2.0 N的水平恒力F的作用下开始运动,当运动至磁场的左边界时撤去F,杆穿过磁场区域后,沿半圆形轨道运动,结果恰好能通过半圆形轨道的最高位置PP′.已知杆始终与轨道垂直,杆与直轨道之间的动摩擦因数μ=0.10,轨道电阻忽略不计,取g=10 m/s2.求:(1)导体杆刚进入磁场时,通过导体杆的电流的大小和方向;(2)在导体杆穿过磁场的过程中,通过电阻R的电荷量;(3)在导体杆穿过磁场的过程中,整个电路产生的焦耳热.。

相关文档
最新文档