采油工程第02章自喷与气举采油.pptx
采油机械课件—自喷采油和气举采油

h
13
**井口安全截断系统
项目简介
h
14
石油、天然气的采气、集输是天然气开采过程中的一个重要环节。由于 天然气中含有水分、硫化氢、二氧化碳等成分,在采气到集输过程中,只要 有一个环节引起故障或失控,均可酿成重大事故。
在天然气采气及集输过程中,除采气工艺参数的自动控制外,设备及井 口在生产过程中出现意外的自动保护系统也是采气集输中的一个重要环节。
图 采气井口装置
釆气树和采油树结构相似,但 考虑到天然气的特点,对采气树要 求更为严格:
1)所有部件均采用法兰连接; 2)套管闸阀和总闸阀均成对配 置,其中一个为备用; 3)节流器采用针形阀,而不是 固定孔径的油嘴; 4)全部部件均经抗硫化氢处理。
h
10-压力表缓冲器 9-截止阀
8-四通 7-节流器(针阀) 6-法兰接头 4-闸阀,5-上法兰
井筒内只下油管柱,简称光油管,管鞋一般下至产层中部。油气是沿油 管被升举到井口,所以该管柱常被称为自喷管柱。
油管是采油工业专用的高压无缝钢管,分平式和外加厚两种。自喷管柱 常用2 1/2in平式,外径为73mm,内径为62mm。
h
11
3、四种流动过程
原油从油层流到计量站,一般要经过四种 流动过程: (1)原油沿油层流入井底; (2)从井底沿井筒流到井口; (3)通过油嘴; (4)沿地面管道流至计量站。
器,用来回收和下入柱塞。
h
时间周期控制器 气动薄膜阀
至分离器 补充气管线
图 柱塞气举装置
30
3、气举井下装置
1)井下注气管柱 分单管注气管柱和多管注气管柱。 A、单管注气管柱
开式管柱:底部敞开,没有 封隔器和单流阀,用于不能 使用封隔器的井中。
采油工程课件-第二章

J qo (Pr Pwf )
J 2koha
oBolnX
1s 2
J 2koha
oBolnX
3 4
s
2.1 油井流入动态 2.1.1单相液体渗流时的流入动态
采油指数J的获得: ◆ 油藏参数计算 ◆ 试井资料:测得3~5个稳定工作制度下的产量及其流 压,便可绘制该井的实测IPR曲线
近年来, 越来越多的稳定试井资料证实, 注水保持压力开 发的油田,当井底流压低于饱和压力以后, 由于井底附近油 层渗流条件发生了变化, 指示曲线向压力轴偏转, 产量出现 最大点, 此时就不能用达西公式和Vogel 方程来计算油井的 产量。因此, 需找到一种非数值的方法进行油井的流入动态 研究。
2.1 油井流入动态
流压(MPa) 11.15 产量(m3/d) 17.4
10.26 34.1
9.74 45.6
9.15 56.8
2.1 油井流入动态 2.1.1单相液体渗流时的流入动态
(1)绘制IPR曲线
流压
14 12 10
8 6 4 2 0
0
20
40
60
80
产量
2.1 油井流入动态
2.1.1单相液体渗流时的流入动态
qo J(Pr Pwf)
采油(液)指数
J qo (Pr Pwf )
J 2koha
oBolnX
1s 2
J 2koha
oBolnX
3s 4
2.1 油井流入动态 2.1.1单相液体渗流时的流入动态
采油(液)指数: 单位生产压差下的油井产油(液)量,反映油
IPR研究方法
采油工程自喷及气举采油

采油工程自喷及气举采油1. 简介采油工程是指利用各种工程措施将地下的石油资源开采到地面并加以处理的技术与工程。
自喷和气举采油是采油工程中常用的两种方法。
本文将对自喷和气举采油的原理、应用以及优缺点等进行介绍和分析。
2. 自喷采油自喷采油是指利用地下原有的能量将石油推到井口的采油方法。
其原理是通过人工注入压缩空气或其他气体到油层中,产生气体压力使石油从油井中自行流出。
2.1 原理自喷采油的原理基于气体流体动力学。
当气体注入到油层中时,由于压力差,气体会形成气体圈,在注气点周围的石油被压力推动,从油井中流出。
这种方法不仅可以提高石油的产量,还可以减少地面处理设备的使用。
自喷采油广泛应用于含水高、油藏压力低的油田。
通过注气增加油井的压力,提高油井产量。
自喷采油技术广泛应用于陆上和海上油田,尤其在海底油田中更有明显优势,可以减少地表设备的使用和对海洋环境的影响。
2.3 优缺点自喷采油的优点包括:提高产量、节约能源、减少设备成本、减少环境污染等。
缺点包括:需人工控制注气量、注气管道易发生堵塞、对油藏压力依赖较大等。
3. 气举采油气举采油是指通过注入压缩气体到油井中,利用气体的浮力将石油推至井口的采油方法。
与自喷采油不同的是,气举采油是通过气体的浮力来推动石油的上升。
3.1 原理气举采油的原理基于气体浮力和液体静压力之间的平衡。
在油井中注入压缩气体后,气体在井筒中产生浮力,将石油推向井口。
这种方法适用于油层厚度小、黏度大、含水率低的油田。
气举采油广泛应用于粘度高的胶状油藏和凝析油田。
通过注入压缩气体,可以减少石油的粘度,使其更容易被推至井口。
气举采油在油田开发中有着广泛的应用前景。
3.3 优缺点气举采油的优点包括:节约能源、提高产量、减少油井堵塞风险等。
缺点包括:对气体的流量和压力有较高要求、井下设备投资较大、油井产量下降后需要额外措施等。
4. 结论自喷和气举采油是采油工程中的两种常用技术。
自喷采油通过注气增加油藏压力,将石油推至井口;气举采油则通过注入压缩气体,利用浮力将石油推至井口。
自喷与气举采油

第二章自喷与气举采油第一节自喷井生产系统分析一、教学目的了解自喷井的生产系统,掌握节点分析的方法,能用节点分析对自喷井生产系统进行分析。
二、教学重点、难点教学重点:1、自喷井的节点分析;2、自喷井节点分析方法的应用。
教学难点:1、自喷井节点分析的步骤;2、带油嘴的自喷井节点分析。
三、教法说明课堂讲授并辅助以多媒体课件展示相关的图形。
四、教学内容本节主要介绍两个方面的问题:1.自喷井生产系统的组成.2.自喷井节点分析.(一)自喷井生产系统的组成采自喷采油法(利用油层自身能量将原油油举升到地面的采油方式)方法人工举升法(人工给井筒流体增加能量将井底原油举升至地面的采油方式)油井生产的 油层到井底的流动—地层渗流三个基本流 井底到井口的流动—井筒多相管流动过程 井口到分离器—地面水平或倾斜管流图2-1 完整的自喷井生产系统的压力损失示意图l p ∆—油藏中的压力损失,wfs r l p p p -=∆r p —平均油藏压力;wfs p —井底油层面上的压力;2p ∆—穿过井壁(射孔孔眼、污染区)的压力损失,wf wfs p p p -=∆2;wf p —井底流动压力;3p ∆—穿过井下节流器的压力损失,DR UR p p p -=∆3;UR p 、DR p —井下节流器的上、下游压力;4p ∆—穿过井下安全阀的压力损失,DSV USV p p p -=∆4;USV p 、DSV p —井下安全阀的上、下游压力;5p ∆—穿过地面油嘴的压力损失,DSC wh p p p -=∆5;wh p —井口油管压力;DSC p —地面油嘴下游压力(井口回压);6p ∆—地面出油管线的压力损失,sep DSC p p p -=∆6;7p ∆—油管中的压力损失,包括3p ∆和4p ∆,wh wf p p p -=∆7;8p ∆—地面管线总压力损失,包括5p ∆和6p ∆,sep wh p p p -=∆8自喷井流动的全过程:(Pe )向井流(P wf )→垂直管流动P wh →嘴流P B →地面管线流动P sep不论在哪种流动中,都存在能量供给及能量消耗的过程,只有了解能量供给与消耗的关系,才能控制不利因素,最大限度地利用有利因素,因此研究好这四种流动过程,并加以协调,这才是管好油井生产的基础。
采油工程PPT课件

1、自喷井生成过程中,原油流至地面分离器一般要经过四个流 动过程:
计量站
井口装置
Байду номын сангаас
油层
自喷井
5.2.2、人工举升采油: 气举采油 有杆泵采油 无杆泵采油
人工举升(机械采油)
有杆泵(杆柱传递能量)
常规深井泵(抽油机抽油)
地面驱动螺杆泵
电泵(电缆传递能量)
无杆泵
不同点:实现其导流性的方式不同
目标均是为了产生有足够长度和导流能力的裂缝,减少油气水渗流阻力。
水力压裂:裂缝内的支撑剂阻止停泵后裂缝闭合; 酸压:一般不适用支撑剂,而是依靠酸液对裂缝壁面的不均 匀溶蚀产生一定的导流能力。
5.3.3酸化压裂
5.4提高采收率技术: 5.4.1概述、基本概念 5.4.2化学驱油法 5.4.3混相驱油法 5.4.3热力采油法 5.4.5微生物采油法
三大矛盾—
层与层之间由于渗透率差异达几百上千倍,注水后,各层受效时间、地层压力、产油速度、含水率都不一样。
层间矛盾
三大矛盾—
平面矛盾
一口注水井要对应两口以上的油井注水,由于沉积相的影响,各油井受效情况差异很大。
三、分层注水、分层调剖和分层增注
三大矛盾—
层内矛盾
在同一油层内,由于油层的非均匀质存在,影响该层的注水采收率。
油层
采油工程部分
水井
油井
油藏工程部分
人工补充能量
人工举升采油
液气
集输油气
脱水处理
污水
原油
回注或排放液
采油工程是根据油气和储层特性建立适宜的流动通道并优选举升方法,经济有效地将深埋于地下油气从油气藏中开采到地面所实施的一系列工程和工艺技术的总称。包括油藏、钻井、采油和采油地面工程等。
采油工程 §1自喷与气举

§1.自喷和气举采油油井完成之后,投入生产,用什么方法进行采油,是依据油层能量的大小和合理的经济效果决定的。
所谓采油方法,通常是指将流到井底的原油采到地面上所采用的方法。
按其能量供给的方式分为两大类:自喷采油法:依靠油层自身的能量使原油喷到地面的方法。
机械采油法:依靠人工供给的能量使原油流到地面的方法。
因地层能量低而采用的注水采油和气举采油,从广义上讲也属于机械采油法,这是因为它们的能量是依靠人工供给的。
但从原油自地层流到井底再流到地面的过程来看,它们又类似自喷采油。
因此,我们注水采油和气举采油放在第一章中讲述。
自喷采油具有设备简单、管理方便、也最经济的优点。
任何油井的生产都可以分三个基本流动过程:(1). 油层渗流——从油层到井底的流动;(2). 垂直管流——从井底到井口的流动;(3) 水平或倾斜管流——从井口到分离器的流动。
对自喷井来说,原油流到井口后还有通过油咀的流动——咀流。
因此自喷井生产要经过四个流动过程,即自喷采油、垂直管流、咀流和水平或倾斜管流。
第一个流动过程——地层(油层)渗流属“地下地质”和“渗流力学”范畴,第三个流动——水平或倾斜管流属“油气集输”范畴,此处从略。
图1.1-1 典型的油井流入动态曲线§1.1油井流入动态油井流入动态是指油井产量与井底流压的关系,它反映了油藏向油井供油的能力。
表示产量与流压关系的曲线称为流入动态曲线(Inflow Performance Relationship curve),简称IPR曲线,也称指示曲线(Index Curve)一. 单相液流的流入动态根据达西定律,油井的流动方程为:)(wf r o P P J q -= (1.1-1)J 称为采油指数。
它是一个反映油层性质、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。
其数值等于单位压差下的油井产量。
因而可用J 的数值来评价和分析油井的生产能力。
一般都是用系统试井资料来求得采油指数,只要测得3~5个稳定工作制度下的产量及其流压,便可绘制该井的IPR 曲线。
采油工程课件——自喷和气举采油2.3自喷井的生产管理与分析

交点:油井产 量及相应的井 口油压。
油压与产量的关系曲线 17
无油嘴系统的节点分析方法
给定的已知条件:分离器压力;出油管线直径及长度;油藏深度;油 管直径;气油比;含水;油、气密度;油藏压力;饱和压力(低于油层 压力)及单相流时的采油指数PI。
井底为求解点
生产系统将从井底(节点6)分成两部 分: 油藏中的流动; 从油管入口到分离器的管流系统。
管鞋压力与产量关系曲线
16
油藏油管两个子系统的节点分析
井口为求解点
设定一组产量, 通过IPR曲线A可计算 出一组井底流压,然 后通过井筒多相流计 算可得一组井口油压 曲线B。
Pa-Pb是在油管 中消耗的压力
使用:计算出任意 产量下的井口油压 的大小,并用于预 测油井能否自喷。
IPR曲线 节点(井口)流入曲线: 油压与产量的关系曲线
井筒内气液两相流基本概念
井筒多相流理论:
研究各种举升方式油井生产规律理论基础
研究特点:流动复杂性、无严格数学解 研究途径:基本流动方程
实验资料相关因次分析 近似关系
1
井筒气液两相流动的特性
气液两相流动与单相液流的比较
比较项目 能量来源
能量损失 流动型态 能量关系
单相液流 井底流压
重力损失 摩擦损失 基本不变
⑤雾流
气体的体积流量增加到足够大时,油管中内 流动的气流芯子将变得很粗,沿管壁流动的油环 变得很薄,绝大部分油以小油滴分散在气流中。
特点:气体是连续相,液体是分散相;
气体以很高的速度携带液滴喷出井口; 气、液之间的相对运动速度很小; 气相是整个流动的控制因素。
6
流态小结:
雾流
第二章气举采油原理.ppt

图2-28 气举井(无凡尔)的启动过程 a—停产时
②如不考虑液体被挤入地层,环空 中的液体将全部进入油管,油管内
液面上升。随着压缩机压力的不断
提高,当环形空间内的液面将最终 达到管鞋(注气点)处,此时的井 口注入压力为启动压力。 启动压力 : 当环形空间内的 液面达到管鞋时的井口注入 压力。
四、气举设计
设计内容:气举方式和气举装置类型;气举点深度、气液
比和产量;阀位置、类型、尺寸及装配要求等
(一)气举装置类型
开式装置 仅限于连续气举,下井的油管柱不带封隔器,使气 体从油套环空注入,产液自油管举出,油、套管是 连通的。
半闭式装置 封隔器封隔油套环空,其余均与开式装置相同。 闭式装置 封隔器封隔油套环空,在油管柱上安装了一个固定 阀,其作用是防止气体压力通过油管作用于地层。
图2-41 凡尔深度计算示意图
气举阀实质:一种用于井下的压力调节器
阀打开条件:
pu ( Ab Ap ) pd Ap F
阀关闭条件:
F pu ( Ab Ap ) pd Ap
pu pd F pd Ab
图2-30 压力调节器结构示意图
气举凡尔的分类
①按安装方式分为:绳索投入式、固定式。 ②按使凡尔保持打开或关闭的加压元件分为:封包
图2-37 定注气压力,定井口压力 下确定注气点深度及气液比
图2-38 定注气压力,定井口压力下的 协调产量
图2-40 定注气量,定井口油压下的 协调产量( 1-IPR曲线;2-计算的产 量~井底流压曲线(油管工作曲线)
(四)定井口压力和限定注气量的条件下确定注气点深度和产量
已知:井口压力、注气量 计算步骤 1) 假定一组产量,根据提供的注气量和地层生产气液比计算出每 个产量所对应的总气液比TGLR; 2) 根据地面注入压力pso计算环形空间气柱压力分布线B,用注入 压力减⊿p作B线的平行线,即为注气点深度线。 计算:注气点深度和产量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
律不同
节点( node ):油气井生产过程中的某个位置。
普通节点:两段不同流动过程的衔接点,不产生与流量有 关的压降。
函数节点:节流装置两端压降与流量有关,称为函数节点
解节点(solution node):系统中间的某个节点,将 系统分为流入和流出两部分。
节点系统分析对象:整个油井生产系统
pB- psep 多相管流计算方法
节点系统分析实质:协调理论在采油应用方面的发展
需要解决的问题:预测在某些节点压力确定条件下 油井的产量以及其它节点的压力。
通常节点1分离器压力psep 、节点8油藏平均压力 pr为定 值,不是产量的函数,故任何求解问题必须从节点1或节 点8开始。
求解点:为使问题获得解决的节点 求解点的选择:主要取决于所要研究解决的问题
油井连续稳定自喷条件:
四个流动系统相互衔接又相 互协调起来。
协 质量守恒 各子系统质量流量相等
调
条
各子系统压力相衔接,前
件
能量守恒 系统的残余压力可作为后 序系统的动力
二、自喷井节点分析
20世纪80年代以来,为进行油井生产系统设计及生产动
态预测,广泛使用了节点系统分析的方法
节点系统分析法:应用系统工程原理,把整个油 井生产系统分成若干子系统,研究各子系统间的 相互关系及其对整个系统工作的影响,为系统优 化运行及参数调控提供依据。
人工给井 筒流体增 加能量将 井底原油 举升至地 面的采油 方式。
无杆泵
气举(Gas Lift) 电潜泵(Electrical Submersible Pumping 水力活塞泵(Hydraulic Pumping) 射流泵(Jet Pumping)
垂直管流动
自喷井条件分析
1.单相液体垂直管流: Pwh Pb
在整个生产系统中,原油依靠油层所提供的 压能克服重力及流动阻力自行流动,不需人为补 充能量,因此自喷采油是最简单、最方便、最经 济的采油方法。
自喷井生产系统的基本流动过程 (1)地层中的渗流:10-50% (2)井筒中的流动:30-80% (3)嘴流:5-30% (4)地面管线流动:5-10%
穿过井下 安全阀的 压力损失
入口到分离器的管流系统。
选取了中间节点(井底)为求解点, 求解时,要从两端(井底和分离器) 开始,设定一组流量,对这两部 分分别计算至求解点上的压力 (井底流压)与流量的关系曲线。
2-6 简单管流系统
节点(井底)流入 曲线:油藏中流动 的IPR曲线;
图2-7 求解点在井底的解
节点(井底)流 出曲线:以分离 器压力为起点通 过水平或倾斜管 流计算得井口油 压,再通过井筒 多相流计算得油 管入口压力与流 量的关系曲线。
Q1
图2-5 油压与产量的关系曲线
(二)从油藏到分离器无油嘴系统的节点分析方法
给定的已知条件:油藏深度;油藏压力;单相流时的采油指数 油管直径;分离器压力;出油管线直径及长度;气油比;含水; 饱和压力以及油气水密度。
1)井底为求解点
整个生产系统将从井底分成两部
分:
(1) 油藏中的流动;(2) 从油管
常用节点
分离器压力:psep 井口回压: ph 井口油压: pt 井底流压: pwf 油藏平均压力: pr
自喷 井生 产系 统
油藏渗流子系统 井筒流动子系统 油嘴流动子系统 地面管流子系统
图2-2 自喷井生产系统节点位置 pr- pwf IPR曲线 pwf- pt 多相管流计算方法 pt- ph 嘴流特性曲线
自喷条件: Pwf l gH Pwh
稳定自喷条件:
Pwf
Pwh l gH f
H D
v2 2
l
dP / dH cons tan t
垂直管流动
自喷井条件分析
2.气液混合物垂直管流:
P (1)必要条件: wf m gH Pwh
稳定自喷条件:
Pwf
Pwh
m gH
fm
H D
vm 2 2
m
第一节 自喷井生产系统分析来自1)井底为求解点 当油压为已知时, 可以井底为求解 点。
节点(井底)流入曲线:IPR曲线
节点(井底)流出曲线: 由井口油压所计算的井 底流压与产量的关系曲 线。
交点:该系统在
所给条件下可获 得的油井产量及
相应的井底流压。
图2-4 管鞋压力与产量关系曲线
2)井口为求解点
设定一组产量,通过 IPR曲线A可计算出一 组井底流压,然后通 过井筒多相流计算可 得一组井口油压曲线。
第二章 自喷与气举采油
主要内容 一、自喷井生产系统分析 二、气举采油原理及油井举升系
统设计方法
有杆泵
采油方法
自喷采油法(Flowing Production)
利用油层自身能量将原油举升到地面的采油方式。 游梁式深井泵采油(Beam-pumping)
螺杆泵采油(Screw Pumping)
人工举升法
求解问题方法:针对求解点,绘制该节点的流入曲线
和流出曲线,求得其交汇点,得到对应的产量。
压力
25
20
协调点
15
节点流出曲线
10
节点流入曲线
5
0
0
10
20
30
40
50
60
70
产量
协调曲线示意图
(一)油藏与油管两个子系统的节点分析
给定已知条件:油藏深度;油藏压力;单相流时的采油指数; 油管直径;以及饱和压力;气油比;含水;油气水密度。
Pa-Pb是在油管 中消耗的压力
曲线B的形状:油管的上下压 差(Pa-Pb)并不总是随着产量的 增加而加大。产量低时,管内 流速低,滑脱损失大;产量高 时,摩擦损失大,这两种因素 均可造成管内压力损耗大。
IPR曲线 节点(井口)流入曲线: 油压与产量的关系曲线
使用:计算出任意 产量下的井口油压 的大小,并用于预 测油井能否自喷。
一、自喷井生产系统组成
油井生产的 三个基本流
动过程
油层到井底的流动—地层渗流 井底到井口的流动—井筒多相管流 井口到分离器—地面水平或倾斜管流
自喷井生产 的四个基本
流动过程
地层渗流 井筒多相管流 地面水平或倾斜管流 嘴流
利用油层本身的能量使地层原油喷到地面的方 法称为自喷采油法。
自喷采油原理:主要依靠溶解在原油中的气体 随压力的降低分离出来而发生的膨胀。
地面管线总压力损失,包括 P5 和P6
油管总压 力损失, 包括 P3 和 P4
穿过井下 节流器的 压力损失
穿过地面 油嘴的压
力损失
地面出油管线 的压力损失
穿过井壁 (射孔孔眼、 污染区)的 压力损失
油藏中的压力损失 图2-1 完整的自喷井生产系统的压力损失示意图
油井稳定生产时,整个流动系 统必须满足混合物的质量和能 量守恒原理。