自喷与气举采油技术共19页
气举采油方法资料

气举动态曲线
产 液 量
P GLR
给定注气量
极限注气量 注气量
流入动态曲线
不同气液比下的产量和流 压关系曲线
Q
气举井管理
◆施工管理 --重点工序要求旁站监督,严把作业施工质量; ◆投产管理 --保证油井投产安全,顺利卸荷,严格控制投
产程序和卸荷速度;
◆生产管理 ----生产资料录取 气举井故障排除 生产工况分析诊断, 注气量调配、清蜡等
连续气举的卸荷过程
2、间歇气举
间歇气举主要分为常规间歇、柱塞间歇、球塞间歇等几类,其主要原理为: 地面间歇注气,实现油井间歇生产。
特点:
1、降低液体滑脱损失,减少注气量; 2、适应低产井、高含水井气举(产量<20m3/d) 。
四、气举采油采用什么样的 管柱结构?
出油 出油 进气 进气 进气
连续气举
需要经过油 1 产液量 >20 m3/d的井应采用连续气举。 田开发经济 技术论证 设计注气压力与油井地质特征和地面增压
2
装置的能力相匹配。
二、基础数据及来源
1 油井数据:
a) c) e) g) i) j) l) m) 油层中部深度,m ; b) 油层静压,MPa ; 静液面深度,m ; d) 地层水密度,kg/m3 ; 原油密度,kg/m3 ; f) 油井含水率,% ; 生产油压,MPa ; h) 产液指数,m3/(MPa· d) 压井液压力梯度,MPa/m ; 井口温度,℃ ; k) 井底温度,℃ ; 地层气液比,m3/m3 ; 设计日产液量,m3/d 。
② 气举节点系统分析优选参数
流入:地层+注入气 流出:油管 用于分析油管尺
QGI
qL qL pwf
寸、出油管线、注气
自喷井采油技术..60页PPT

xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
气举采油

pi 1 p max pt (i 1)
pi 1 10 1 g
四、 连续气举设计
1. 气举井内的压力及其分布(如图11-31所示 )
1)套管内的气柱静压力近似直线分布,即
p g ( x) p c 0 (1
gsc gTsc x
p sc Tav Z av
)
(11-35)
带有封隔器的管柱称为半闭式管柱,它既可用于 连续气举,也可用于间歇气举。这种管柱虽然克服了开 式管柱的某些缺点,但对于间歇气举仍不能防止大量注 入气进入油管后,通过油管对地层的作用。
(3) 闭式管柱
闭式管柱,是在半闭式管柱的油管底部加单流阀, 以防止注气压力通过油管作用在油层上。闭式管柱只适 用于间歇气举。此外,还有一些特殊的气举装置,如用 于间歇气举的各种箱式(腔式)及柱塞气举装置等。
L1 g ≥ p e
≥ h' 1 g
式中 p e ——气举时的启动压力,Pa;
1 ——井内液体密度,kg/m3;
L——油管长度,m
三、 气举阀及其下入深度
在压缩机的额定工作压力有限的情况下,为实现气举就 需降低启动压力。最常用的是在油管柱上装设气举阀。
1. 气举阀工作简况
p wf p wh G Duf H gi G Ddf ( H 0 L)
5)平衡点套压与注气点油管内压力之差Δp是为了保证 注入气通过工作阀进入油管并排出注气点以上的井内 液体。
2. 限定井口油压和注气量条件下注气点深度和 产量的确定
连续气举设计的内容是很丰富的,这里仅以限定井口 油压和注气量条件下确定注气点深度和产量为例,来 说明气举设计方法及其与节点系统分析的联系。在有 些情况下并不规定产量,而是希望在可提供的注气压 力和注气量下,尽量获得最大可能的产量,其确定注 气点深度及产量的步骤如下所述(图11-32)。
气举采油

当p油(Ab-Av)+p套Ab>
pbAb
凡尔打开注气 当p油(Ab-Av)+p套Ab<
13
pbAb
14
15
问:如何计算凡尔的开启压力和关闭的压力?
2.工作条件下凡尔的开启压力pop
凡尔开启压力——指凡尔将要开启瞬间凡尔处的套 管压力。 试图打开凡尔的力 F0=p0p(Ab-Av)+ptAb 保持凡尔关闭的力 Fc=pbAb 压力平衡: pop(Ab-AV)+ptAv=pb Ab
(2-106)
TEF── 油管效率系数(可根据气举阀的结构查表)。
17
3.工作条件下凡尔关闭压力
凡尔关闭压力 pvc——指凡尔即将关闭瞬间凡尔处 的套管压力。 压力平衡: pvc(Ab-AV)+ pvc Av=pb Ab
pvc =pb
(2-107)
* 由上式可看出,凡尔关闭压力仅与封包内的压力 有关,与油管压力无关。
10
讨论: *当静液面接近井口, h* ≈ L(液体不被挤入油层)
′ pe = pe max = 9.8 Ld r
*若油层渗透性好,环形空间被挤压的液体全
部Hale Waihona Puke 油层吸收′ pe′ = pe min = 9.8h d r
*
′ pe 式中:
── 最大启动压力,kPa; L ── 油管长度,m; ′ pe′ ── 最小的启动压力,kPa。
11
′ ′ pe′ ≤ pe ≤ pe
pe 越大, pe 与工作压力的差值较大。
问:如何减少pe与po的差值?
三、气举阀(气举凡尔) 气举阀相当于在油管上开设的一个智能孔眼。 1、 气举阀的结构及工作原理
自喷采油

(1). 油层渗流——从油层到井底的流动; (2). 垂直管流——从井底到井口的流动; (3)嘴流——通过油嘴的流动 (4) 水平(斜)管流—从井口到分离器的流动。 自喷采油的动力是什么? 原油依靠油层所提供的压能(压力) 自喷采油设备简单、管理方便、经济效益好
井底压力 油层压力
能量:井口油压 消耗:油嘴节流损失 压力损失:5%~30%
完井方式
完井方式:
是指油层与井底的连通方式、井底结构及完井工艺。
完井方式选择的要求:
(1)保持最佳的连通条件,油层所受的损害最小;
(2)应具有尽可能大的渗流面积,入井的阻力最小; (3)有效地封隔油、气、水层,防止窜槽及层间干扰; (4)有效防止油层出砂和井壁坍塌,确保油井长期生产; (5)应具备便于人工举升和井下作业等条件; (6)施工工艺简便,成本低。
间歇气举
常规有杆泵 利用抽油杆传递能量
地面驱动螺杆泵 电动潜油离心泵
自喷井井场流程
作用: (1)控制和调节油井产量 (2)录取油井的动态资料,如:油、套压,计量油气产量、井口取样等 ( 3)对油井产物和井口设备进行加热保温。
井场流程
井口装置
一、井口装置
井口装置
套管头 油管头 采气树
作用: 悬挂油管,密封油套管环形空间,通过油管或油套管环形空间进行 采气、压井、洗井、酸化、加注防腐剂等作业,控制气井的开关, 调节压力和流量。
2.流动型态的变化 ① 纯液流 当井筒压力大于饱和压力时,天然 气溶解在原油中,产液呈单相液流。V
小,Pf较小。
2.流动型态的变化
②泡流
井筒压力稍低于饱和压力时,溶解气开始从 油中分离出来,气体都以小气泡分散在液相中。 滑脱现象: 混合流体井筒流动过程中,由于流体间的密 度差异,引起的小密度流体流速大于大密度流体
气举采油

气举采油当油层能量不足以维持油井自喷时,为使油井继续出油,人为地将天然气压入井底,使原油喷出地面,这种采油方法称为气举采油法。
一、气举采油原理1、气举采油原理气举采油原理:依靠从地面注入井内的高压气体与油层产出流体在井筒中的混合,利用气体的膨胀使井筒中的混合液密度降低,从而将井筒内流体举出。
2、气举方式(1)气举按注气方式可分为连续气举和间歇气举。
连续气举就是从油套环空(或油管)将高压气体连续地注入井内,排出井筒中的液体。
连续气举适用于供液能力较好、产量较高的油井。
间歇气举就是向油套环空内周期性地注入气体,气体迅速进入油管内形成气塞,推动停注期间在井筒内聚集的油层流体段塞升至地面,从而排出井中液体的一种举升方式。
间歇气举主要用于井底流压低,采液指数小,产量低的油井。
(2)气举方式根据压缩气体进入的通道分为环形空间进气系统和中心进气方式系统环形空间进气是指压缩气体从环形空间注入,原油从油管中举出;中心进气方式与环形空间进气方式相反3、井下管柱按下入井中的管子数量,气举可分为单管气举和多管气举。
(1)开式管柱。
它只适用于连续气举和无法下入封隔器的油井。
(2)半闭式管柱。
它既可用于连续气举,也可用于间歇气举。
(3)闭式管柱。
闭式管柱只适用于间歇气举。
二、气举启动压力1、气举启动过程开动压风机向油、套管环形空间注入压缩气体,环形空间内液面被挤压向下,油管内液面上升,在此过程中压风机的压力不断升高。
当环形空间内的液面下降到管鞋时,如图2—39(b)所示,压风机达到最大的压力,此压力称为气举井的启动压力随压缩气进入油管,使油管内原油混气,因而使油管内混合物的密度急剧减小,液面不断升高直至喷出地面,如图2—39(c)所示。
油管鞋压力急剧降低,此时,井底压力及压风机压力亦迅速下降。
当井底压力低于油层压力时,液体则从油层流入井底。
由于油层出油使油管内混气液体的密度稍有增加,因而使压风机的压力又有所上升,直到油层的油和环形空间的气体以不变的比例进入油管后压力趋于稳定,此时压风机的压力称为工作压力。
气举采油

中心管进气时, 中心管进气时,被举升的液体在环形空间 的流速较低,其中的砂易沉淀、蜡易积聚, 的流速较低,其中的砂易沉淀、蜡易积聚,故 常用环形空间进气的举升方式。 常用环形空间进气的举升方式。 2. 井下管柱 井下管柱 按下入井中的管子数气举可分为单管气举 和多管气举。 和多管气举。 多管气举可同时进行多层开采, 多管气举可同时进行多层开采,但其结构 复杂、钢材消耗量多,一般很少采用。 复杂、钢材消耗量多,一般很少采用。 简单而又常用的单管气举管柱有开式、 简单而又常用的单管气举管柱有开式、半 闭式和闭式三种。 闭式和闭式三种。
(1) 第一个阀的下入深度H gv 第一个阀的下入深度 I 1) 井中液面在井口附近,在注气过程中途即溢出井 口时,可由下式计算阀Ⅰ的下入深度 H I = p max − 20 gv ρ1 g 减20 m是为了在第一个阀内外建立0.2 MPa的压差,以保证气体进入阀Ⅰ。 2) 井中液面较深,中途未溢出井口时,可由下式计 2 算阀Ⅰ的下入深度: p max d ti 式中 H sl ——气举前井
气点深度线C的交点,即为各个产量所对应的注气 点 a 、a 、 3 …和注气深度 H gi1 、 gi 2 、 gi 3 …。 H a H
1 2
4) 从每个产量对应的注气点压力和深度开始,利用多 相管流压力梯度公式根据地层生产气液比向下计算每 个产量对应的注气点以下的压力分布线 A1 、 、 … A2 A3 及井底流压 p wf 1 、 wf 2 、 p wf 3 …。 p 5) 在IPR曲线(图11-33)上,根据上述计算结果绘出产量 与计算流压的关系曲线(油管工作曲线),它与IPR曲线 的交点所对应的压力和产量,即为该井在给定注气量 和井口油管压力下的最大产量q和相应的井底流动压力, 亦即协调产量和流压。根据给定气量和协调产量q可计 算出相应的注入气液比,进而计算出总气液比。
气举、电泵采油技术

保护器的种类很多,从原理上可以分为连通式保护器、沉
淀式保护器和胶囊式保护器等三种。
一、电潜泵系统概述
、油气分离器
气体分离器,又叫油气分离器,简称 分离器,位于潜油泵的下端,是泵的入 口。其作用是将油井生产流体中的自由 气分离出来,以减少气体对泵的排量、 扬程和效率等特性参数的影响,和避免 气蚀发生。 按不同的工作原理,可将其分为沉 降式(重力式)和旋转式(离心式)两 种。 沉降分离器:GLR<10%,效率<37% 旋转式分离器:GLR<30%,效率>90%
一、电潜泵系统概述
、潜油泵
潜油泵为多级离心泵,包括固定和转动两大部分。 固定部分由导轮、泵壳和轴承外套组成;转动部分包括 叶轮、轴、键、摩擦垫、轴承和卡簧。电潜泵分节,节
中分级,每级就是一个离心泵。潜油泵按叶轮是否固定
分为浮动式、半浮动式和固定式三种。
一、电潜泵系统概述
、保护器
保护器又叫潜油电机保护器,是电潜泵所特有的。其位于
一、电潜泵系统概述
、井下安全阀
井下安全阀是井中流体非正常流动的控制装 置,安全阀下入井中后,通过地面加压,压力经 液控管线传至两个密封盘根之间的传压孔到活塞 上,推动活塞向下移动,并压缩弹簧,将活瓣打 开,如果保持控制管线压力,安全阀处于打开位 置,释放控制管线压力,靠弹簧张力向上推动活 塞上移,阀处于关闭状态。
一、电潜泵系统概述 、封隔器
封隔器是用于井下套管或裸眼里封隔油、气、水层的专用工具。
通过外力作用,使胶筒长度缩短和直径变大密封油、套环形空间,分
隔封隔器上下的油、气、水层,从而实现油、水井的分层测试、分层 采油、分层注水、分层改造和封堵水层。
分类:根据封隔器封隔件的工作原理不同,将封隔器分为自封式、