已知集合A

合集下载

集合习题大全

集合习题大全

集合练习题例1.已知集合M={y|y=x 2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1} 例2. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=∅B .P QC .P=QD .PQ 例3.已知集合A={x|x 2-3x +2=0},B={x|x 2-a x +a -1=0},且A∪B=A,则a 的值为______.例4.设集合A={a |a =3n +2,n∈Z},集合B={b|b=3k -1,k∈Z},则集合A 、B 的关系是________.例5若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有( )A . C A ⊆B .AC ⊆ C .C A ≠D . A =∅ 例6.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A . 1B .3C .4D . 8例7. 记关于x 的不等式01x a x -<+的解集为P ,不等式11x -≤的解集为Q . (1)若3a =,求P ;(2)若Q P ⊆,求正数a 的取值范围.例8. 已知A={x|x 2-3x +2=0},B={x|a x -2=0}且A∪B=A,则实数a 组成的集合C 是________.例9.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是 .例10. 已知集合A={x|x 2+(m +2)x +1=0,x∈R},若A∩R +=∅,则实数m 的取值范围是_________.例11.已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x ≤2p -1}.若B A ,则实数p 的取值范围是________.例12.设全集U={x|0<x<10,x∈N *},若A∩B={3},A∩C U B={1,5,7},C U A∩C U B={9},则集合A 、B 是________.例13.集合A={x|x 2+5x -6≤0},B={x|x 2+3x>0},求A ∪B 和A ∩B . 例14.设A={x|-2<x<-1,或x>1},B={x|x 2+a x +b≤0},已知A∪B={x|x>-2},A∩B={x|1<x≤3},求a 、b 的值.一.选择题:1.设M={x|x 2+x+2=0},a =lg(lg10),则{a }与M 的关系是( ) A 、{a }=M B 、M ≠⊆{a } C 、{a }≠⊇M D 、M ⊇{a }2.已知全集U =R ,A={x|x-a |<2},B={x|x-1|≥3},且A ∩B=∅,则a 的取值范围是( )A 、 [0,2]B 、(-2,2)C 、(0,2]D 、(0,2) 3.已知集合M={x|x=a 2-3a +2,a ∈R},N={x|x=b 2-b ,b ∈R},则M ,N 的关系是( )A 、 M ≠⊆NB 、M ≠⊇NC 、M=ND 、不确定4.设集合A={x|x ∈Z 且-10≤x ≤-1},B={x|x ∈Z ,且|x|≤5},则A ∪B 中的元素个数是( )A 、11B 、10C 、16D 、155.集合M={1,2,3,4,5}的子集是( )A 、15B 、16C 、31D 、32 6 集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =42k ππ+,k ∈Z },则( ) A M =N B M N C M N D M ∩N =∅ 7 已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则( ) A -3≤m ≤4 B -3<m <4 C 2<m <4 D 2<m ≤48.集合M={}220,x x x a x R +-=∈,且M ∅⊂≠.则实数a 的取值范围是( ) A. a ≤-1 B. a ≤1 C. a ≥-1 D.a ≥19.满足{a ,b }U M={a ,b ,c ,d }的所有集合M 的个数是( )A. 7B. 6C. 5D. 410.设集合P={3,4,5}.Q={4,5,6,7}.令P*Q=(){},,a b a p b Q ∈∈,则P*Q 中元素的个数是 ( )A. 3B. 7C. 10D. 1211.集合A ={y ∈R |y =lg x ,x >1},B ={-2,-1,1,2},则下列结论中正确的是( )A .A ∩B ={-2,-1} B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-2,-1}12.已知M={y|y=x 2},N={y|x 2+y 2=2},则M ∩N 等于( )A.{(1,1),(-1,1)}B.{1}C.[0,1]D.[0,2]13.设集合M={x|x-m<0},N={y|y=a x -1,a>0且a ≠1,x ∈R },若M ∩N=∅,则m 的范围是( )A.m ≥-1B.m>-1C.m ≤-1D.m<-1二.填空题:14.已知M={Z 24m |m ∈-},N={x|}N 23x ∈+,则M ∩N=__________. 15.非空集合p 满足下列两个条件:(1)p ≠⊆{1,2,3,4,5},(2)若元素a ∈p ,则6-a ∈p ,则集合p 个数是__________.16.设A={1,2},B={x |x ⊆A }若用列举法表示,则集合B 是 .17.含有三个实数的集合可表示为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20072008a b+= . 18.下列各式:①2 006⊆{x|x ≤2 007};②2 007∈{x|x ≤2 007};③{2 007}{x|x ≤2 007};④∅∈{x|x<2 007},其中正确的是____________.19.设全集U={x|0<x<6,x ∈N },A={x|x 2-5x+q=0},B={x|x 2+px+12=0},(A)∪B={1,3,4,5},则集合A=_____________B=_______________.20.已知集合A={-1,2},B={x|mx+1=0},若A ∩B=B ,则所有实数m 的值组成的集合是_______.三.解答题:21.设集合A={(x ,y)|y=a x+1},B={(x ,y)|y=|x|},若A ∩B 是单元素集合,求a 取值范围.22.设A={x|x 2+px+q=0}≠∅,M={1,3,5,7,9},N={1,4,7,10},若A ∩M=∅,A ∩N=A ,求p 、q 的值.23.已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},且A ∩B=B ,求实数m 范围.24.已知全集U =R ,且{}{}22120,450A x x x B x x x =--≤=-->,求()()U U C A C B .25.已知集合{}{}22230,0A x x x B x x ax b =-->=++≤, 且{},34A B R A B x x =<≤ ,求a ,b 的值.26.设函数f(x)=log 2(2x-3)的定义域为集合M ,函数g(x)=)1)(3(--x x 的定义域为集合N.(1)求集合M 、N ;(2)求集合M ∩N ,M ∪N ,(N )∩M.27.已知集合A={x|x 2-6x+8<0},B={x|(x-a)(x-3a)<0}.(1)若A B,求a 的取值范围;(2)若A ∩B=∅,求a 的取值范围;(3)若A ∩B={x|3<x<4},求a 的取值范围.。

2022-2022年高一必修一第1章 1.1.2 集合的基本关系数学题带答案和解析(人教A版)

2022-2022年高一必修一第1章 1.1.2  集合的基本关系数学题带答案和解析(人教A版)

2022-2022年高一必修一第1章1.1.2 集合的基本关系数学题带答案和解析(人教A版)填空题已知集合M={x|2m<x<m+1},且M=∅,则实数m的取值范围是____.【答案】m≥1【解析】∵M=∅,∴2m≥m+1,∴m≥1.故答案为m≥1解答题判断下列集合间的关系:(1)A={x|x-3>2},B={x|2x-5≥0};(2)A={x∈Z|-1≤xB(2) B A.【解析】试题分析:(1)利用一元一次不等式的解法分别求出集合A和集合B,由此能得到集合A是集合B的真子集.(2)A={x∈Z|-1≤x},∴利用数轴判断A、B的关系.如图所示,A B.(2)∵A={x∈Z|-1≤xA.选择题如果集合A={x|x≤},a=,那么()A. a∉AB. {a}AC. {a}∈AD. a⊆A【答案】B【解析】a=,∴a∈A,A错误.由元素与集合之间的关系及集合与集合之间的关系可知,C、D错,B正确.故选B点睛:本题考查了元素与集合,集合与集合的关系,元素与集合之间用属于∈,不属于∉的符号;集合与集合之间用包含于⊆,真包含,不包含相等=,的符号表示.解答题已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P ={x|x=+,p∈Z},试确定M,N,P之间的关系.【答案】M P=N.【解析】试题分析:M={x|x=m+,m∈Z}={x|x=,m ∈Z}={x|x=,m∈Z}M表示3的偶数倍加1除以6的数;N ={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},N表示3的整数倍加1除以6的数;P={x|x=+,p∈Z}={x|x=,p∈Z},P表示3的整数倍加1除以6的数即可得出结论.试题解析:∵M={x|x=m+,m∈Z}={x|x=,m∈Z}={x|x=,m∈Z},N={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},P={x|x=+,p∈Z}={x|x=,p∈Z},比较3×2m+1,3(n-1)+1与3p+1可知,3(n-1)+1与3p+1表示的数完全相同,∴N=P,3×2m+1只相当于3p+1中当p为偶数时的情形,∴M P=N.综上可知M P=N.解答题设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,求实数a、b的值.【答案】a=-1,b=1, a=b=1, a=0,b=-1【解析】试题分析:集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1},分情况进行讨论即可.试题解析:∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1}.当B={-1}时,Δ=4a2-4b=0且1+2a+b=0,解得a=-1,b=1.当B={1}时,Δ=4a2-4b=0且1-2a+b=0,解得a=b=1.当B={-1,1}时,有(-1)+1=2a,(-1)×1=b,解得a=0,b=-1.综上:a=-1,b=1;或a=b=1;或a=0,b=-1选择题集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的子集个数为()A. 7B. 12C. 32D. 64【答案】D【解析】集合P*Q的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P*Q的子集个数为26=64.故选D选择题若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A 有()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.故选D选择题设A={x|-1a},若A B,则a的取值范围是()A. {a|a≥3}B. {a|a≤-1}C. {a|a>3}D. {a|aB,画出数轴如图可求得a≤-1,注意端点能取否得-1是正确求解的关键.故选B填空题集合⊆{(x,y)|y=3x+b},则b=____.【答案】2【解析】得,代入y=3x+b得b=2.故答案为2选择题已知集合M={(x,y)|x+y0}和P={(x,y)|xM B. M P C. M=P D. M P【答案】C【解析】∴M=P.故选C填空题已知集合A={1,2,m3},B={1,m},B⊆A,则m=____.【答案】0或2或-1【解析】由B⊆A得m∈A,所以m=m3或m=2,所以m=2或m=-1或m=1或m=0,又由集合中元素的互异性知m≠1.所以m =0或2或-1.故答案为0或2或-1填空题已知集合{2x,x+y}={7,4},则整数x=___,y=____.【答案】25【解析】由集合相等的定义可知或解得或,又x,y∈Z.故x=2,y=5.故答案为2,5选择题已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x 是等腰直角三角形},D={x|x是等边三角形},则()A. A⊆BB. C⊆BC. D⊆CD. A⊆D【答案】B【解析】∵等腰直角三角形必是等腰三角形,∴C⊆B.故选B选择题下列命题中,正确的有()①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A. ①②B. ②③C. ②④D. ③④【答案】C【解析】空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.选择题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则a的值不可能是()A. 0B. 1C. 2D. 3【答案】D【解析】试题分析:由B={x|ax﹣2=0},且B⊆A,故讨论B的可能性,从而求a.解:∵B={x|ax﹣2=0},且B⊆A,∴若B=∅,即a=0时,成立;若B={1},则a=2,成立;若B={2},则a=1,成立;故a的值有0,1,2;故不可能是3;故选D.选择题若{1,2}={x|x2+bx+c=0},则()A. b=-3,c=2B. b=3,c=-2C. b=-2,c=3D. b=2,c=-3【答案】A【解析】由条件知,1,2是方程x2+bx+c=0的两根,由韦达定理得b=-3,c=2.故选A选择题集合A={(x,y)|y=x}和B=,则下列结论中正确的是()A. 1∈AB. B⊆AC. (1,1)⊆BD. ∅∈A【答案】B【解析】B=={(1,1)},而A={(x,y)|y=x},B 中的元素在A中,所以B⊆A故选B.选择题下列四个集合中,是空集的是()A. {0}B. {x|x>8,且x<5}C. {x∈N|x2-1=0}D. {x|x>4}【答案】B【解析】选项A、C、D都含有元素.而选项B无元素,故选B.填空题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则实数a的所有可能值构成的集合为____.【答案】{0,1,2}【解析】∵B⊆A,∴B=∅,{1}或{2}.当B=∅时,a=0;当B={1}时,a=2,当B={2}时,a=1.∴a∈{0,1,2}.故答案为{0,1,2}11。

兰州大学高等数学1答案2022

兰州大学高等数学1答案2022

兰州大学高等数学1答案2022.1、21.已知集合A={x|-2m},B={x|m+1≤x≤2m-1}≠?,若A∩B=B,则实数m的取值范围为___. [单选题] *A 2≤x≤3(正确答案)B 2<x≤3C 2≤x<3D 2<x<32、12.如图,将一块三角形纸片剪去一部分后,发现剩余阴影部分的纸片周长要比原三角形纸片的周长大,能正确解释这一现象的数学知识是()[单选题] *A.直线没有端点,向两端无限延伸B.两点之间,线段最短(正确答案)C.经过一点有无数条直线D.两点确定一条直线3、函数f(x)=-2x+5在(-∞,+∞)上是()[单选题] *A、增函数B、增函数(正确答案)C、不增不减D、既增又减4、20.已知集合A={x|x2(x的平方)-2 023x+2 022<0},B={x|x<a},若A?B,则实数a的取值范围是___. [单选题] *A a≥2022(正确答案)B a>2022C a<2022D a≥15、14.命题“?x∈R,?n∈N*,使得n≥x2(x平方)”的否定形式是()[单选题] * A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?x∈N*,使得n<x2C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2(正确答案)6、-120°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限7、若(m-3)+(4-2m)i为实数,那么实数m的值为()[单选题] *A、3B、4(正确答案)C、-2D、-38、7.已知集合A={-13,12},B={x|ax+1=0},且B?A,则实数a的值不可能为( ) [单选题] *A.-3(正确答案)B.-1/12C.0D.1/139、14.不等式|3-x|<2 的解集为()[单选题] *A. x>5或x<1B.1<x<5(正确答案)C. -5<x<-1D.x>110、4.(2020·天津,1,5分)设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩(?UB)=( ) [单选题] *A.{-3,3}B.{0,2}C.{-1,1}(正确答案)D.{-3,-2,-1,1,3}11、如果四条不共点的直线两两相交,那么这四条直线()[单选题] *A、必定在同一平面内B、必定在同一平面内C可能在同一平面内,也可能不在同一平面内(正确答案)D、无法判断12、2.当m=-2时,代数式-2m-5的值是多少()[单选题] *A.-7B.7C.-1(正确答案)D.113、下列各式计算正确的是( ) [单选题] *A. (x3)3=x?B. a?·a?=a2?C. [(-x)3]3=(-x)?(正确答案)D. -(a2)?=a1?14、260°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限15、x? ?1·()=x? ?1,括号内应填的代数式是( ) [单选题] *A. x? ?1B. x? ?1C. x2(正确答案)D. x16、12.下列说法正确的是()[单选题] *A.一个数前面加上“–”号这个数就是负数B.非负数就是正数C.0既不是正数,也不是负数(正确答案)D.正数和负数统称为有理数17、下列运算正确的是()[单选题] *A. a2+a2=a?B. a?﹣a3=a2C. a2?a2=2a2D. (a?)2=a1?(正确答案)18、34、根据下列已知条件, 能画出唯一的△ABC的是() [单选题] *A、∠C=90°,AB=8,BC=10B、AB=4,BC=3,∠A=30°C、AB=3,BC=4,CA=8D、∠A=60°,∠B=45°,AB=6(正确答案)19、23、在直角坐标平面内有点A,B,C,D,那么四边形ABCD的面积等于()[单选题]A. 1B. 2C. 4(正确答案)D. 2.520、38、如图,点C、D分别在BO、AO上,AC、BD相交于点E,若CO=DO,则再添加一个条件,仍不能证明△AOC≌△BOD的是()[单选题] *A.∠A=∠BB.AC=BD(正确答案)C.∠ADE=∠BCED.AD=BC21、39.若(x﹣3)(2x+1)=2x2+ax﹣3,则a的值为()[单选题] * A.﹣7B.﹣5(正确答案)C.5D.722、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B、33C、16D、423、8. 估计√13?的值在() [单选题] *A、1和2之间B、2和3之间C、3和4之间(正确答案)D、4和5之间24、10.下列四个数中,属于负数的是().[单选题] *A-3(正确答案)B 3C πD 025、14.数﹣在数轴上的位置可以是()[单选题] *A.点A与点B之间(正确答案)B.点B与点O之间C.点O与点D之间D.点D与点E之间26、38.如果m2+m=5,那么代数式m(m﹣2)+(m+2)2的值为()[单选题] * A.14(正确答案)B.9C.﹣1D.﹣627、4.一个数是25,另一个数比25的相反数大- 7,则这两个数的和为[单选题] *A.7B. - 7(正确答案)C.57D. - 5728、46.若a+b=7,ab=10,则a2+b2的值为()[单选题] *A.17B.29(正确答案)C.25D.4929、11、在第二、四象限内两条坐标轴夹角平分线上的点,它们的横坐标与纵坐标是()[单选题] *A.相等B.互为相反数(正确答案)C.零D.以上结论都不对30、-230°是第()象限角?[单选题] *第一象限第二象限(正确答案)第三象限第四象限。

第1课时 交集、并集

第1课时  交集、并集
集合A与B的并集用Venn图表示如下:
A
B
A
B
【要点归纳】 (1)对并集概念的理解: “x∈A或x∈B”包含三种情况:“x∈A, 但x ∉ B”;“x∈B,但x ∉ A”;“x∈A, 且x∈B”.Venn图表示如图:
(2)根据集合元素的互异性,在求集合的并集时, 同时属于A和B的公共元素,在并集中只列举一次. (3)由并集的定义可知,对于任意两个集合A,B,有:
例4
已知Q={x|x是有理数},Z={x|x是整数},
求Q∪Z. 解:Q∪Z ={x|x是有理数} ∪{x|x是整数} ={x|x是有理数}=Q. 【一题多解】
本题也可以直接应用并集的性质给出;因为 Z Q,
所以Q∪Z=Q.
【变式训练】
求满足{1,2}∪B={1,2,3}的所有集合B.
解:满足{1,2}∪B={1,2,3}的集合B一定含有
A∩B = x x ∈ A且x ∈ B
集合语言
A与B的交集可用下图中的阴影部分表示:
A
A B
B
图形语言
【要点归纳】
对交集概念的理解必须注意 (1) 如图,并不是任何两个集合都有公共元素,当集合A 与B没有公共元素时,不能说A与B没有交集,而是 A∩B= . 例如:A={2,3,4,5},B={1,6,7,8},则A∩B= .
探究2
如何用集合语言表示平面内的两条直线
相交、平行或重合? 解答:平面内的两条直线有三种位置关系: 相交、平行、重合.
所以,直线l1、l2相交于一点P时,
直线l1l 、 l2 平行时, l1 ∩ l2 = l 1∩ 2 ={ 点P} ;

直线l1、l2重合时,l1∩l2=l1 =l2.

高考数学第一题集合

高考数学第一题集合

高考数学第一题集合题目:高考数学第一题集合正文:一、集合的基础概念集合是数学中的一种基本概念,它是由若干确定的元素组成的总体。

在高考数学中,我们常常会遇到关于集合的问题。

下面,就让我们一起来了解一些关于集合的基础知识。

1.1 集合的定义与表示法集合是由若干确定的元素组成的总体,我们通常用大写字母A、B等来表示集合。

而集合中的元素则用小写字母a、b等表示。

例如,我们可以表示一个集合A={1, 2, 3, 4},其中元素1、2、3、4都属于集合A。

1.2 集合的性质集合有一些基本性质,包括空集、全集、子集、真子集等。

空集是不包含任何元素的集合,用符号∅表示;全集则是指某一给定范围内的元素构成的集合,用符号U表示;而子集是指一个集合中的所有元素都是另一个集合的元素,用符号⊆表示。

如果一个集合是另一个集合的子集,并且两个集合不相等,则称这个子集为真子集。

1.3 常见的集合运算在高考数学中,我们会遇到一些常见的集合运算,包括并、交、差、补等。

集合的并是指包含两个或更多个集合中的所有元素的新集合,用符号∪表示;集合的交则是指两个或更多个集合中共有的元素构成的新集合,用符号∩表示;而集合的差是指从一个集合中减去另一个集合的所有元素所构成的新集合,用符号−表示;集合的补是指给定集合中不属于另一个集合的元素所构成的新集合,用符号'表示。

二、高考数学集合题的解题方法在高考数学中,集合题是一种常见的考点。

下面,我们来了解一些常用的解题方法。

2.1 集合图示法集合图示法是一种直观的解题方法,它通过用图形的方式表示集合,帮助我们更清晰地理解和解题。

例如,我们可以通过用圆形来表示集合,用交叉部分表示集合的交,用圆周上未填充的部分表示集合的差等。

2.2 元素法元素法是一种逐个检查集合元素的解题方法。

通过逐个检查集合元素是否符合给定条件,我们可以确定一个集合的内容。

例如,当解决集合的并、交、差等问题时,我们可以逐个检查集合中的元素,再通过运算规则得出结果。

2017年全国统一高考数学 理科 新课标1 (解析版)

2017年全国统一高考数学 理科 新课标1 (解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x <1},B={x|3x <1},则( ) A .A ∩B={x|x <0} B .A ∪B=R C .A ∪B={x|x >1} D .A ∩B=?2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 44.(5分)(2017?新课标Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2C .4D .85.(5分)(2017?新课标Ⅰ)函数f (x )在(﹣∞,+∞)单调递减,且为奇函数.若f (1)=﹣1,则满足﹣1≤f (x ﹣2)≤1的x 的取值范围是( ) A .[﹣2,2]B .[﹣1,1]C .[0,4]D .[1,3]6.(5分)(2017?新课标Ⅰ)(1+)(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .357.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.168.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)(2017?新课标Ⅰ)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)(2017?新课标Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)(2017?新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程](2017?新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为,22.(10分)(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.(2017?新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=?【考点】1E:交集及其运算.【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .【考点】CF :几何概型.【专题】35 :转化思想;4O :定义法;5I :概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2, 则黑色部分的面积S=,则对应概率P==,故选:B .【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4【考点】2K :命题的真假判断与应用;A1:虚数单位i 、复数;A5:复数的运算. 【专题】2A :探究型;5L :简易逻辑;5N :数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案. 【解答】解:若复数z 满足∈R ,则z ∈R ,故命题p 1为真命题;p 2:复数z=i满足z2=﹣1∈R,则z?R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)(2017?新课标Ⅰ)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1 B.2 C.4 D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)(2017?新课标Ⅰ)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【考点】3P:抽象函数及其应用.【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x ﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(2017?新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35 :转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【考点】L!:由三视图求面积、体积.【专题】11 :计算题;31 :数形结合;44 :数形结合法;5Q :立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S=×2×(2+4)=6,梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11 :计算题;38 :对应思想;49 :综合法;5K :算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11 :计算题;35 :转化思想;57 :三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【考点】K8:抛物线的性质.【专题】11 :计算题;34 :方程思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0), 则直线l 2的方程为y=x ﹣1, 联立方程组,则y 2﹣4y ﹣4=0,∴y 1+y 2=4,y 1y 2=﹣4,∴|DE|=?|y 1﹣y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A .【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)(2017?新课标Ⅰ)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35 :转化思想;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 【考点】8E :数列的求和.【专题】35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n }的通项公式及前n 项和,可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n 项和S n =2n+1﹣2﹣n ,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n 消去即可,分别即可求得N 的值. 【解答】解:设该数列为{an },设b n =+…+=2n+1﹣1,(n ∈N +),则=a i ,由题意可设数列{a n }的前N 项和为S N ,数列{b n }的前n 项和为T n ,则T n =21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n ﹣2, 可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14, A 项,由=435,440=435+5,可知S 440=T 29+b 5=230﹣29﹣2+25﹣1=230,故A 项符合题意. B 项,仿上可知=325,可知S 330=T 25+b 5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2.【考点】9P:平面向量数量积的坐标表示、模、夹角.【专题】31 :数形结合;4O:定义法;5A :平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4?+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5 .【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【考点】KC:双曲线的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则=3,BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABCV==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11 :计算题;33 :函数思想;4R:转化法;56 :三角函数的求值;58 :解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=?===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】MJ:二面角的平面角及求法;LY:平面与平面垂直.【专题】15 :综合题;31 :数形结合;41 :向量法;5G :空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,∴AB⊥平面PAD,又AB?平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B (),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD?平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos <>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x为抽取的第i个零件的尺寸,i=1,2, (16)i用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11 :计算题;35 :转化思想;4A :数学模型法;5I :概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ⅱ)由=9.97,s ≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个 零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02, 因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008, 因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题. 20.(12分)(2017?新课标Ⅰ)已知椭圆C :+=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.【考点】KI :圆锥曲线的综合;K3:椭圆的标准方程.【专题】14 :证明题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,求出a 2=4,b 2=1,由此能求出椭圆C 的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l :y=kx+t ,(t ≠1),联立,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l 过定点(2,﹣1). 【解答】解:(1)根据椭圆的对称性,P 3(﹣1,),P 4(1,)两点必在椭圆C上,又P 4的横坐标为1,∴椭圆必不过P 1(1,1), ∴P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,得:,解得a 2=4,b 2=1,∴椭圆C 的方程为=1.证明:(2)①当斜率不存在时,设l :x=m ,A (m ,y A ),B (m ,﹣y A ), ∵直线P 2A 与直线P 2B 的斜率的和为﹣1, ∴===﹣1,解得m=2,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设l :y=kx+t ,(t ≠1),A (x 1,y 1),B (x 2,y 2), 联立,整理,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,,x 1x 2=,则==。

关于集合的练习题及答案解析

关于集合的练习题及答案解析

关于集合的练习题及答案解析1.若集合M={a,b,c}中元素是△ABC的三边长,则△ABC 一定不是A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形2.定义集合运算:A*B={ z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为 A.0 B. C. D.63.已知集合A={2,3,4},B={2,4,6,8},C={| x∈A,y∈B,且logxy∈N+},则C中元素的个数是A.9B.8C. D.44.满足{-1,0} M?{-1,0,1,2,3}的集合M的个数是A.4个 B.个 C.7个D.8个5.已知集合A={-1,1},B{x|ax+1=0},若B?A,则实数a的所有可能取值的集合为A.{-1} B.{1} C.{-1,1}D.{-1,0,1}6.已知全集U={1,2,3,4,5,6},集合A={1,2,5},?UB ={4,5,6},则集合A∩B=A.{1,2} B.{5} C.{1,2,3} D.{3,4,6}7.设全集U={1,3,5,6,8},A={1,6},B={5,6,8},则∩B=A.{6}B.{5,8}C.{6,8} D.{3,5,6,8}2-x8.若A={x∈Z|2≤1},则A∩的元素个数为A.0 B.1 C.2D.319.设U=R, M={x|x2-x≤0},函数f的定义域为N,则M∩ x-1A.[0,1)B. C.[0,1] D.{1}10.设U=R,集合A={y|y=x-1,x≥1},B={x∈Z|x2-4≤0},则下列结论正确的是A.A∩B={-2,-1} B.∪B=C.A∪B=[0,+∞)D.∩B={-2,-1}11.非空集合G关于运算?满足:①对于任意a、b∈G,都有a?b∈G;②存在e∈G,使得对一切a∈G,都有a?e=e?a=a,则称G关于运算?为融洽集,现有下列集合运算: G={非负整数},?为整数的加法;G={偶数},?为整数的乘法;G={平面向量},?为平面向量的加法;G={二次三项式},?为多项式的加法;其中G关于运算?的融洽集有________.12.设集合A={1,2,a},B={1,a2-a},若A?B,则实数a的值为________.13.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.214.已知集合A={ x|x-5x+6=0},B={ x|mx+1=0},且A∪B=A,求实数m的值组成的集合.x-a15.记关于x的不等式若a=3,求P;若Q?P,求正数a的取值范围.116.已知由实数组成的集合A满足:若x∈AA. 1-x 设A中含有3个元素,且2∈A,求A;A能否是仅含一个元素的单元素集,试说明理由.1.解析:根据集合中元素的互异性知a≠b≠c,故选D.2.解析:依题意得A*B={ z|z=xy,x∈A,y∈B}={0,2,4},因此集合A*B 的所有元素之和为6,故选D. 3.解析:C={| x∈A,y∈B,且logxy∈N+}={,,,},故选D.4.解析:依题意知集合M除含有元素-1,0之外,必须还含有1,2,3中的一个,或多个.因3而问题转化为求含有3个元素的集合所含的非空子集的个数问题,故有2-1=7个.故选C.5.D.A7.解析:由于U={1,3,5,6,8},A={1,6} ∴?UA={3,5,8},∴∩B={5,8}.答案:B12-x8.解析:A={x∈Z|2≤1}={x|x>2或0 ∴ A∩={0,1},其中的元素个数为2,选C.9.C10.D11.12.解析:∵A?B,∴a2-a=2或a2-a=a.若a2-a=2,得a=2或a=-1,根据集合A中元素的互异性,知:a≠2,∴a=-1.若a2-a=a,得a=0或a=2,经检验知,只有a=0符合要求.综上所述,a=-1或a=0.答案:-1或013.解析:∵3∈B,∴a+2=3,∴a=1.答案:1214.解析:∵A={ x|x-5x+6=0}={2,3},A∪B =A,∴B?A.①m=0时,B=?,B?A;1②m≠0时,由mx+1=0,得x. m111∵B?A,∴-A,∴-2=3, mmm11?11?得m=-或-.所以符合题意的m的集合为?0,-23.3??x-315.解析:由Q={x||x-1|≤1 }={x|0≤x≤}.由a>0,得P={x|-12,即a的取值范围是.116.解析:∵2∈A,∴A,即-1∈A, 1-2 1?11?∴∈AA,∴A=?2,-1,2.??1-?-1?1假设A中仅含一个元素,不妨设为a, 则a∈A,有A,又A中只有一个元素, 1-a1∴a,即a2-a+1=0,但此方程Δ ∴不存在这样的实数a.故A不可能是单元素集合.集合练习题一.选择题1.满足条件{1,2,3}??M??{1,2,3,4,5,6}的集合M的个数是A、8B、C、6D、52.若集合A??x|x2,则下列结论中正确的是 A、A=0B、0?A C、A?? D、??A 3.下列五个写法中①?00,1,2?,②0,③?0,1,21,2,0?,④0??,⑤0??,错误的写法个数是A、1个B、2个C、3个D、4个4.方程组?xy11的解集是?x?y?A ?x?0,y?1? B?0,1?C ?? D?|x?0或y?1?.设A、B是全集U的两个子集,且A?B,则下列式子成立的是 A)CUA?CUB CUA?CUB=U A?CUB=?CUA?B=?6.已知全集Ma|6?5?a?N且a?Z?,则M= A、{2,3} B、{1,2,3,4}C、{1,2,3,6} D、{-1,2,3,4}7.集合M?{xx22xa0,xR},且M ,则实数a的范围是 A、a??1B、a?1C、a??1D、a?18. 设集合P、S满足P?S=P,则必有; P?S;;S=P。

2017高考全国3数学试卷及解析

2017高考全国3数学试卷及解析

2017年普通高等学校招生全国统一考试(III)一.选择题(共12小题)1.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.9.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2 C.D.2二.填空题(共4小题)13.若x,y满足约束条件,则z=3x﹣4y的最小值为.14.设等比数列{a n}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=.15.设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)三.解答题(共7小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?19.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.20.已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,﹣2),求直线l与圆M的方程.21.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.22.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(c osθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2018年04月22日fago的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.0【分析】解不等式组求出元素的个数即可.【解答】解:由,解得:或,∴A∩B的元素的个数是2个,故选:B.【点评】本题考查了集合的运算,是一道基础题.2.设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.2【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:∵(1+i)z=2i,∴(1﹣i)(1+i)z=2i(1﹣i),z=i+1.则|z|=.故选:C.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【分析】根据已知中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,逐一分析给定四个结论的正误,可得答案.【解答】解:由已有中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;故选:A.【点评】本题考查的知识点是数据的分析,命题的真假判断与应用,难度不大,属于基础题.4.(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.80=(2x)5﹣r(﹣y)r=25﹣r(﹣1)【分析】(2x﹣y)5的展开式的通项公式:T r+1r x5﹣r y r.令5﹣r=2,r=3,解得r=3.令5﹣r=3,r=2,解得r=2.即可得出.【解答】解:(2x﹣y)5的展开式的通项公式:T r=(2x)5﹣r(﹣y)r=25﹣r(﹣+11)r x5﹣r y r.令5﹣r=2,r=3,解得r=3.令5﹣r=3,r=2,解得r=2.∴(x+y)(2x﹣y)5的展开式中的x3y3系数=22×(﹣1)3+23×=40.故选:C.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.5.已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.【解答】解:椭圆+=1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,可得,即,可得=,解得a=2,b=,所求的双曲线方程为:﹣=1.故选:B.【点评】本题考查椭圆与双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.6.设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【分析】根据三角函数的图象和性质分别进行判断即可.【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D.【点评】本题主要考查与三角函数有关的命题的真假判断,根据三角函数的图象和性质是解决本题的关键.7.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.2【分析】通过模拟程序,可得到S的取值情况,进而可得结论.【解答】解:由题可知初始值t=1,M=100,S=0,要使输出S的值小于91,应满足“t≤N”,则进入循环体,从而S=100,M=﹣10,t=2,要使输出S的值小于91,应接着满足“t≤N”,则进入循环体,从而S=90,M=1,t=3,要使输出S的值小于91,应不满足“t≤N”,跳出循环体,此时N的最小值为2,故选:D.【点评】本题考查程序框图,判断出什么时候跳出循环体是解决本题的关键,注意解题方法的积累,属于中档题.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.【分析】推导出该圆柱底面圆周半径r==,由此能求出该圆柱的体积.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r==,∴该圆柱的体积:V=Sh==.故选:B.【点评】本题考查面圆柱的体积的求法,考查圆柱、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.9.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.8【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项的和.【解答】解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为==﹣24.故选:A.【点评】本题考查等差数列前6项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.10.已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e===.故选:A.【点评】本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.11.已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.1【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1+)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a=,符合条件;综上所述,a=,故选:C.【点评】本题考查函数零点的判定定理,考查函数的单调性,考查运算求解能力,考查数形结合能力,考查转化与化归思想,考查分类讨论的思想,注意解题方法的积累,属于难题.12.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2 C.D.2【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.【点评】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P的坐标,考查了学生的运算能力和转化能力,属于中档题.二.填空题(共4小题)13.若x,y满足约束条件,则z=3x﹣4y的最小值为﹣1.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=3x﹣4y的最小值.【解答】解:由z=3x﹣4y,得y=x﹣,作出不等式对应的可行域(阴影部分),平移直线y=x﹣,由平移可知当直线y=x﹣,经过点B(1,1)时,直线y=x﹣的截距最大,此时z取得最小值,将B的坐标代入z=3x﹣4y=3﹣4=﹣1,即目标函数z=3x﹣4y的最小值为﹣1.故答案为:﹣1.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.设等比数列{a n}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=﹣8.【分析】设等比数列{a n}的公比为q,由a1+a2=﹣1,a1﹣a3=﹣3,可得:a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解出即可得出.【解答】解:设等比数列{a n}的公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,∴a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解得a1=1,q=﹣2.则a4=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.15.设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是(,+∞).【分析】根据分段函数的表达式,分别讨论x的取值范围,进行求解即可.【解答】解:若x≤0,则x﹣≤﹣,则f(x)+f(x﹣)>1等价为x+1+x﹣+1>1,即2x>﹣,则x>,此时<x≤0,当x>0时,f(x)=2x>1,x﹣>﹣,当x﹣>0即x>时,满足f(x)+f(x﹣)>1恒成立,当0≥x﹣>﹣,即≥x>0时,f(x﹣)=x﹣+1=x+,此时f(x)+f(x﹣)>1恒成立,综上x>,故答案为:(,+∞).【点评】本题主要考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键.16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是②③.(填写所有正确结论的编号)【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|=,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|=,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量=(0,1,0),||=1,直线b的方向单位向量=(1,0,0),||=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,=(cosθ,sinθ,﹣1),||=,设与所成夹角为α∈[0,],则cosα==|sinθ|∈[0,],∴α∈[,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ===|cosθ|,当与夹角为60°时,即α=,|sinθ|===,∵cos2θ+sin2θ=1,∴cosβ=|cosθ|=,∵β∈[0,],∴β=,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三.解答题(共7小题)17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinA +cosA=0,a=2,b=2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【分析】(1)先根据同角的三角函数的关系求出A ,再根据余弦定理即可求出, (2)先根据夹角求出cosC ,求出CD 的长,得到S △ABD =S △ABC . 【解答】解:(1)∵sinA +cosA=0,∴tanA=,∵0<A <π, ∴A=,由余弦定理可得a 2=b 2+c 2﹣2bccosA , 即28=4+c 2﹣2×2c ×(﹣), 即c 2+2c ﹣24=0,解得c=﹣6(舍去)或c=4, 故c=4.(2)∵c 2=b 2+a 2﹣2abcosC , ∴16=28+4﹣2×2×2×cosC ,∴cosC=,∴CD===∴CD=BC∵S △ABC =AB•AC•sin ∠BAC=×4×2×=2,∴S △ABD =S △ABC =【点评】本题考查了余弦定理和三角形的面积公式,以及解三角形的问题,属于中档题18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【分析】(1)由题意知X 的可能取值为200,300,500,分别求出相应的概率,由此能求出X 的分布列.(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,只需考虑200≤n ≤500,根据300≤n ≤500和200≤n ≤300分类讨论经,能得到当n=300时,EY 最大值为520元.【解答】解:(1)由题意知X的可能取值为200,300,500,P(X=200)==0.2,P(X=300)=,P(X=500)==0.4,∴X的分布列为:X200300500P0.20.40.4(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200≤n≤500,当300≤n≤500时,若最高气温不低于25,则Y=6n﹣4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n﹣300)﹣4n=1200﹣2n;若最高气温低于20,则Y=6×200+2(n﹣200)﹣4n=800﹣2n,∴EY=2n×0.4+(1200﹣2n)×0.4+(800﹣2n)×0.2=640﹣0.4n,当200≤n≤300时,若最高气温不低于20,则Y=6n﹣4n=2n,若最高气温低于20,则Y=6×200+2(n﹣200)﹣4n=800﹣2n,∴EY=2n×(0.4+0.4)+(800﹣2n)×0.2=160+1.2n.∴n=300时,Y的数学期望达到最大值,最大值为520元.【点评】本题考查离散型随机变量的分布列的求法,考查数学期望的最大值的求法,考查函数、离散型随机变量分布列、数学期望等基础知识,考查推理论证能力、运算求解能力,考查分类与整合思想、化归与转化思想,是中档题.19.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.【分析】(1)如图所示,取AC的中点O,连接BO,OD.△ABC是等边三角形,可得OB⊥AC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜边,∠ADC=90°.可得DO=AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用线面面面垂直的判定与性质定理即可证明.(2)设点D,B到平面ACE的距离分别为h D,h E.则=.根据平面AEC把四面体ABCD分成体积相等的两部分,可得===1,即点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.利用法向量的夹角公式即可得出.【解答】(1)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO=AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(2)解:设点D,B到平面ACE的距离分别为h D,h E.则=.∵平面AEC把四面体ABCD分成体积相等的两部分,∴===1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E.=(﹣1,0,1),=,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取=.同理可得:平面ACE的法向量为=(0,1,).∴cos===﹣.∴二面角D﹣AE﹣C的余弦值为.【点评】本题考查了空间位置关系、空间角、三棱锥的体积计算公式、向量夹角公式,考查了推理能力与计算能力,属于中档题.20.已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,﹣2),求直线l与圆M的方程.【分析】(1)方法一:分类讨论,当直线斜率不存在时,求得A和B的坐标,由•=0,则坐标原点O在圆M上;当直线l斜率存在,代入抛物线方程,利用韦达定理及向量数量积的可得•=0,则坐标原点O在圆M上;方法二:设直线l的方程x=my+2,代入抛物线方程,利用韦达定理及向量数量积的坐标运算,即可求得•=0,则坐标原点O在圆M上;(2)由题意可知:•=0,根据向量数量积的坐标运算,即可求得k的值,求得M点坐标,则半径r=丨MP丨,即可求得圆的方程.【解答】解:方法一:证明:(1)当直线l的斜率不存在时,则A(2,2),B(2,﹣2),则=(2,2),=(2,﹣2),则•=0,∴⊥,则坐标原点O在圆M上;当直线l的斜率存在,设直线l的方程y=k(x﹣2),A(x1,y1),B(x2,y2),,整理得:k2x2﹣(4k2+2)x+4k2=0,则x1x2=4,4x1x2=y12y22=(y1y2)2,由y1y2<0,则y1y2=﹣4,由•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,综上可知:坐标原点O在圆M上;方法二:设直线l的方程x=my+2,,整理得:y2﹣2my﹣4=0,A(x1,y1),B(x2,y2),则y1y2=﹣4,则(y1y2)2=4x1x2,则x1x2=4,则•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,∴坐标原点O在圆M上;(2)由(1)可知:x1x2=4,x1+x2=,y1+y2=,y1y2=﹣4,圆M过点P(4,﹣2),则=(4﹣x1,﹣2﹣y1),=(4﹣x2,﹣2﹣y2),由•=0,则(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,整理得:k2+k﹣2=0,解得:k=﹣2,k=1,当k=﹣2时,直线l的方程为y=﹣2x+4,则x1+x2=,y1+y2=﹣1,则M(,﹣),半径为r=丨MP丨==,∴圆M的方程(x﹣)2+(y+)2=.当直线斜率k=1时,直线l的方程为y=x﹣2,同理求得M(3,1),则半径为r=丨MP丨=,∴圆M的方程为(x﹣3)2+(y﹣1)2=10,综上可知:直线l的方程为y=﹣2x+4,圆M的方程(x﹣)2+(y+)2=或直线l的方程为y=x﹣2,圆M的方程为(x﹣3)2+(y﹣1)2=10.【点评】本题考查直线与抛物线的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.21.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【分析】(1)通过对函数f(x)=x﹣1﹣alnx(x>0)求导,分a≤0、a>0两种情况考虑导函数f′(x)与0的大小关系可得结论;(2)通过(1)可知lnx≤x﹣1,进而取特殊值可知ln(1+)<,k∈N*.一方面利用等比数列的求和公式放缩可知(1+)(1+)…(1+)<e,另一方面可知(1+)(1+)…(1+)>2,从而当n≥3时,(1+)(1+)…(1+)∈(2,e),比较可得结论.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),若a≠1,则f(a)<f(1)=0,从而与f(x)≥0矛盾;所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.【点评】本题是一道关于函数与不等式的综合题,考查分类讨论的思想,考查转化与化归思想,考查运算求解能力,考查等比数列的求和公式,考查放缩法,注意解题方法的积累,属于难题.22.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【分析】解:(1)分别消掉参数t与m可得直线l1与直线l2的普通方程为y=k(x ﹣2)①与x=﹣2+ky②;联立①②,消去k可得C的普通方程为x2﹣y2=4;(2)将l3的极坐标方程为ρ(cosθ+sinθ)﹣=0化为普通方程:x+y﹣=0,再与曲线C的方程联立,可得,即可求得l3与C的交点M的极径为ρ=.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.【点评】本题考查参数方程与极坐标方程化普通方程,考查函数与方程思想与等价转化思想的运用,属于中档题.23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.【分析】(1)由于f(x)=|x+1|﹣|x﹣2|=,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max=,从而可得m的取值范围.【解答】解:(1)∵f(x)=|x+1|﹣|x﹣2|=,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)=,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x=>﹣1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x=∈(﹣1,2),∴g(x)≤g()=﹣+﹣1=;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x=<2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max=,∴m的取值范围为(﹣∞,].【点评】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S=S -T
结束
输出S
T=T+S

开始

T≥0

T=0,S=1

陆河外国语学校2014高三数学考前押题题(二)
参考公式:
1.锥体的体积公式13VSh,其中S为锥体的底面积,h为锥体的高.

2.
22
列联表随机变量))()()(()(22dbcadcbabcadnK. )(2kKP与k对
应值表:

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题
给出的四个选项中,只有一项是符合题目要求的.

1.已知集合A=4),(22yxyx, B=22),(yxyx , C=AB,
则集合C的子集有( )个
A .1 B.2 C .3 D.4

2复数ii11的共轭复数是 ( )
A . 2 B .i C.-i D.-2i
3.若函数f(x)=ex-ax的一条切线经过原点,切点的纵坐标为e-1,则a的值是
( )
A .1 B .e C .-1 De1

4.已知向量 a =(3,4) , b =(-1,5) , 向量k a+2 b 与向
量c =(2,-3 )垂直,则 k 的值是( )

A .2 B-317 C.1 D.-3
5.执行如图所示的程序框图,输出的S值为( )
A.2 B. 1 C. 0 D. 1

6. 已知数列na满足:11,7a对于任意的nN,

则17(1),2nnnaaa14131314aa( )

)(2kKP
0.10 0.05 0.025 0.010 0.005 0.001
k 2.706 3.841 5.024 6.635 7.879 10.828
A.27 B. 27 C. 37 D.
3
7

7.已知条件p:函数f(x)= ax-2b+2 对于任意的x[-1,1]恒有f(x) 0 , 若对任意的
一个实数a[-2, 2】,一个实数 b[0,2] ,则满足条件P的概率是( )

A21 B31 C41 D81
8.已知G是三角形ABC的重心,过G的直线分别交直线AB,AC于M,N两点,
,ACmAB
ANnAC
,(m,n都是正数),nm21的最小值是( )

A.2 B.3 C.1. D223
9.已知双曲线12222byax的左.右焦点为F1,F2 , 过F1 的直线垂直于x轴且与该
双曲线相交于A,B两点,ABF2 的内切圆经过点(0,a),则该双曲线的离心率
为( )

A. 2 B.3 C3 D.5

10已知函数f(x)=cos(2x+)向右移12得到函数g(x), 若函数G(x)=g(x)+mx2+ n x
(m, n,是常数)是奇函数,则tan=( )
A .1 B。-1 C3 D.-3
二、填空题:(本大题共5小题,考生作答4小题,每小题5分,满分20分).
(一)必做题(11~13题)

11.已知函数f(x)=ex的反函数是g(x) ,点M,N分别是函数f(x),g(x)上的两个动点,
线段MN的最小值是
12. 某几何体的三视图如图所示,其中正(主)
视图与侧(左)视图的边界均为直角三
角形,俯视图的边界为直角梯形,则该
几何体的体积为 .

1 (x有理数)
13.已知函数f(x)= -1 (x是无理数)

数列an=[f()2(n ] n , sn是数列 { an }的前n项和,则s2013- s2014 =

_
俯视图

_
侧视图

_

正视图

_ 2_ 2_ 4

_ 2
(二)选做题(14~15题,考生只能从中选做一题)
14.(极坐标与参数方程选做题)设曲线C的参数方程为 X=cos
Y=2sin2
(为参数),一直角坐标系的原点为极点,x轴的正半轴为极轴,且两种坐标系

中坐标轴上的单位长度相同,已知直线l的极坐标方程是=3,
则曲线C与直线l的交点坐标是 .
15.(几何证明选讲选做题) 如图,过点C作ABC的外接圆O的

切线交BA的延长线 于点D.若3CD, 2ABAC,则
BC
.

三、解答题:(本大题共6小题,满分80分。解答须写出文字说明、证明过程和
演算步骤)。
16.(本小题满分12分)

已知 函数f(x)=23sin2xcos2x+2cos22x .
(1)求函数f(x)的对称轴
(2)(2) 已知f()=513, (2,) 求sin(2+127)的值

D
B

C

O
A
17.(本小题满分12分)
2013-2014第二学年度某校对高一年级课外活动学生在教室学习的情况进

行了调查,其中抽查了高一(2)班的50名学生得到如下22列联表:

(1)根据独立性检验的基本思想,约有多大的把握认为“在课外活动女生比男
生更喜欢读书”?
(2)若从高一(2)班抽出学生对老师进行问卷调查,用分层抽样方法抽取5人,
男生与女生各抽多少?
(3)若从抽出的5名学生中抽出两名学生,按照某种方案进行抽取所得到的概

率是107。写出这种方案,并给出计算过程.

在教室 不在教室 合计
男 6 24 30
女 14 6 20
合计 20 30
50
18.(本小题满分14分)
如图,菱形ABCD的边长为6,60BAD,OBDAC.将菱形ABCD
沿对角线AC折起,得到三棱锥 ,点M是棱BC的中点,23DM.
(1)求证:MDOABC平面平面;
(2)求三棱锥ABDM的体积.
19.(本小题满分14分)
已知数列{an}前n项和为sn, sn与an关系是
sn=2an-3
n

(1)求数列an的通项公式

(2) 设bn=31nnsn , 求数列bn的前n项和T
n
20.(本小题满分14分)
已知双曲线的顶点在坐标原点,对称轴是y轴,经过点A(2,1)

M(x1,y1),N(x2,y2)是抛物线上异于点A的两点,MAN=2.
(1)求抛物线的方程
(2)求证:直线MN经过定点,并且求定点坐标

(3)若x2 <221.(本小题满分14分)
设函数f(x)=lnx +xa221-(1+a)x (aR)
(1)讨论函数的单调性
(2)若函数f(x)在(2,3)上有极值点,求a的范围
(3)求证:2)1(ln......44ln33ln22lnnnnn

相关文档
最新文档