2018年高三数学(文)第二轮复习 规范滚动训练1
2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题三 三角函数及解三角形 1-3-2

限时规范训练九 三角恒等变换与解三角形限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分) 1.若sin α+cos αsin α-cos α=12,则sin αcos α=( )A .-34B .-310C .-43D.43解析:选B.解法一:由sin α+cos αsin α-cos α=12,得2(sin α+cos α)=sin α-cos α,即tan α=-3.又sin αcos α=sin αcos αsin 2α+cos 2α=tan α1+tan 2α=-310,故选B. 解法二:由题意得1+2sin αcos α1-2sin αcos α=14,即4+8sin αcos α=1-2sin αcos α ∴10sin αcos α=-3 即sin αcos α=-310,故选B.2.已知向量a =⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ⎝⎛⎭⎪⎫α+4π3=( ) A .-34B .-14C.34D.14解析:选B.∵a ⊥b ,∴a·b =4sin ⎝ ⎛⎭⎪⎫α+π6+4cos α- 3 =23sin α+6cos α- 3=43sin ⎝ ⎛⎭⎪⎫α+π3-3=0, ∴sin ⎝⎛⎭⎪⎫α+π3=14. ∴sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝ ⎛⎭⎪⎫α+π3=-14. 3.在△ABC 中,若3cos2A -B2+5sin2A +B2=4,则tan A ·tan B =( )A .4B.14 C .-4D .-14解析:选B.由条件得3×A -B +12+5×cos C +12=4,即3cos(A -B )+5cos C =0,所以3cos(A -B )-5cos(A +B )=0,所以3cos A cos B +3sin A sin B -5cos A cos B +5sin A sinB =0,即cos A cos B =4sin A sin B ,所以tan A ·tan B =sin A sin B cos A cos B =14.4.已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( ) A.79 B.13 C .-13D .-79解析:选D.cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=2×19-1=-79.5.已知在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38解析:选B.由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3,所以△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.6.已知△ABC 中,内角A 、B 、C 所对的边分别为a ,b ,c ,且a cos C +32c =b ,若a =1,3c -2b =1,则角B 为( )A.π4 B.π6 C.π3D.π12解析:选B.因为a cos C +32c =b ,所以sin A cos C +32·sin C =sin B =sin(A +C )=sin A cos C +cos A sin C ,所以32sin C =cos A sin C ,因为sin C ≠0,所以cos A =32,因为A 为△ABC 的内角,所以A =π6,由余弦定理a 2=b 2+c 2-2bc cos A ,知1=b 2+c 2-3bc ,联立⎩⎨⎧1=b 2+c 2-3bc ,3c -2b =1,解得c =3,b =1,由a sin A =b sin B ,得sin B =b sin Aa =1×121=12,∵b <c ,∴B <C ,则B =π6,故选B. 二、填空题(本题共3小题,每小题5分,共15分)7.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积为334,a =3,B =π3,则b =________.解析:由题意可得S =12ac sin B ,解得c =1,由余弦定理可得b 2=a 2+c 2-2ac cos B =9+1-3=7,故b =7.答案:78.已知tan(3π-x )=2,则2cos 2x2-sin x -1sin x +cos x =________.解析:∵tan(3π-x )=tan(π-x )=-tan x =2,故tan x =-2.所以2cos 2x2-sin x -1sin x +cos x =cos x -sin x sin x +cos x =1-tan xtan x +1=-3.答案:-39.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,则sin α+cos α的值为________.解析:由π2<β<α<3π4知π<α+β<3π2,⎩⎪⎨⎪⎧-3π4<-β<-π2π2<α<3π4⇒⎩⎪⎨⎪⎧-π4<α-β<π4α-β>0⇒0<α-β<π4.根据已知得sin(α-β)=513,cos(α+β)=-45,所以sin 2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=-35×1213+⎝ ⎛⎭⎪⎫-45×513=-5665,所以(sinα+cos α)2=1+sin 2α=1-5665=965.因为π2<α<3π4,所以sin α+cos α>0,所以sin α+cos α=36565.答案:36565三、解答题(本题共3小题,每小题12分,共36分)10.已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝ ⎛⎭⎪⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝ ⎛⎭⎪⎫α4=-25,α∈⎝ ⎛⎭⎪⎫π2,π,求sin ⎝⎛⎭⎪⎫α+π3的值. 解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数,由θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ),由f ⎝ ⎛⎭⎪⎫π4=0得-(a +1)=0,即a =-1. (2)由(1)得f (x )=-12sin 4x ,因为f ⎝ ⎛⎭⎪⎫α4=-12sin α=-25, 即sin α=45,又α∈⎝ ⎛⎭⎪⎫π2,π,从而cos α=-35,所以sin ⎝ ⎛⎭⎪⎫α+π3=sin αcos π3+cos αsin π3 =45×12+⎝ ⎛⎭⎪⎫-35×32=4-3310. 11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎪⎫2A -π6的值. 解:(1)在△ABC 中,由b sin B =csin C ,及sin B =6sin C ,可得b =6c .由a -c =66b ,得a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c2=64. (2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154.所以cos ⎝⎛⎭⎪⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.12.如图所示,在四边形ABCD 中,∠D =2∠B ,且AD =1, CD =3,cos B =33.(1)求△ACD 的面积; (2)若BC =23,求AB 的长.解:(1)因为∠D =2∠B ,cos B =33, 所以cos D =cos 2B =2cos 2B -1=-13.因为D ∈(0,π),所以sin D =1-cos 2D =223. 因为AD =1,CD =3,所以△ACD 的面积S =12AD ·CD ·sin D =12×1×3×223= 2.(2)在△ACD 中,AC 2=AD 2+DC 2-2AD ·DC ·cos D =12, 所以AC =2 3.因为BC =23,AC sin B =ABsin∠ACB,所以23sin B =ABπ-2B=ABsin 2B=AB2sin B cos B=AB233sin B,所以AB=4.。
2018届高考数学(理)二轮专题复习限时规范训练:第一部分专题二函数不等式导数1-2-3(含答案)

限时规范训练六 导数的简单应用限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k=e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=a x+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>k k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.由曲线y =x 2,y =x 围成的封闭图形的面积为( ) A.16 B.13 C.23D .1解析:选 B.由题意可知所求面积(如图中阴影部分的面积)为⎠⎛01(x -x 2)d x =⎝⎛⎪⎪⎪⎭⎪⎪⎫23x 32-13x 310=13.所以选B.二、填空题(本题共3小题,每小题5分,共15分)7.(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:直线y =kx +b 与曲线y =ln x +2,y =ln(x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln(x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k-1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k,-ln k +2,B ⎝ ⎛⎭⎪⎫1k-1,-ln k ,∵A 、B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b解得⎩⎪⎨⎪⎧b =1-ln 2,k =2.答案:1-ln 28.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的最大值是________.解析:函数的定义域是x +2>0,即x >-2,而f ′(x )=-x +bx +2=-x 2-2x +bx +2.因为x+2>0,函数f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,即-x 2-2x +b ≤0在x ∈(-1,+∞)上恒成立,得b ≤x 2+2x 在x ∈(-1,+∞)上恒成立,令g (x )=x 2+2x =(x +1)2-1,x ∈(-1,+∞),g (x )>g (-1)=-1,所以b ≤-1.所以b 的最大值为-1.答案:-1三、解答题(本题共3小题,每小题12分,共36分) 10.已知f (x )=2x +3-x +2x +1.(1)求证:当x =0时,f (x )取得极小值;(2)是否存在满足n >m ≥0的实数m ,n ,当x ∈[m ,n ]时,f (x )的值域为[m ,n ]?若存在,求m ,n 的值;若不存在,请说明理由.解:(1)证明:由已知得f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞. 当x >-12时,f ′(x )=2-2-x +x +2=8x 2+8x +x +x +2.设F (x )=8x 2+8x +2ln(2x +1),则f ′(x )=F x x +2.当x >-12时,y =8x 2+8x =8⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-122-2是单调递增函数,y =2ln(2x +1)也是单调递增函数.∴当x >-12时,F (x )=8x 2+8x +2ln(2x +1)单调递增.∴当-12<x <0时,F (x )<F (0)=0,当x >0时,F (x )>F (0)=0.∴当-12<x <0时,f ′(x )<0,f (x )单调递减,当x >0时,f ′(x )>0,f (x )单调递增.∴当x =0时,f (x )取得极小值.(2)由(1)知f (x )在[0,+∞)上是单调递增函数,若存在满足n >m ≥0的实数m ,n ,当x ∈[m ,n ]时,f (x )的值域为[m ,n ],则f (m )=m ,f (n )=n ,即f (x )=x 在[0,+∞)上有两个不等的实根m ,n .∴2x 2+7x +3-ln(2x +1)=0在[0,+∞)上有两个不等的实根m ,n . 设H (x )=2x 2+7x +3-ln(2x +1),则 H ′(x )=8x 2+18x +52x +1.当x >0时,2x +1>0,8x 2+18x +5>0, ∴H ′(x )=8x 2+18x +52x +1>0.∴H (x )在[0,+∞)上是单调递增函数,即当x ≥0时,H (x )≥H (0)=3. ∴2x 2+7x +3-ln(2x +1)=0在[0,+∞)上没有实数根. ∴不存在满足条件的实数m ,n .11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=x +mx -mx,当0<x <m 时,f ′(x )<0,函数f (x )单调递减;当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).(2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,当m =0时,F (x )=-12x 2+x ,x >0,有唯一零点;当m ≠0时,F ′(x )=-x -x -m x,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点. 12.(2017·河南洛阳模拟)已知函数f (x )=ln x -a x +x -1,曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 的图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x也相切?若存在,满足条件的x 0有几个?解:(1)∵函数f (x )=ln x -a x +x -1,∴f ′(x )=1x+2a x -2,∵曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1, ∴f ′⎝ ⎛⎭⎪⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x x -2.∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞). (2)存在且唯一,证明如下:∵g (x )=ln x ,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1 ①,设直线l 与曲线h (x )=e x相切于点(x 1,e x 1), ∵h ′(x )=e x,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0②,由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0=x 0+1x 0-1.证明:在区间(1,+∞)上x 0存在且唯一. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增, 又f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,结合零点存在性定理,说明方程f (x )=0必在区间(e ,e 2)上有唯一的根,这个根就是所求的唯一x 0.。
2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题二 函数、不等式、导数 1-2-4 Word版含答案

限时规范训练七 导数的综合应用限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎪⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭⎪⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )取极小值; ⑤当x =-12时,函数y =f (x )取极大值.则上述判断中正确的是( ) A .①② B .②③ C .③④⑤D .③解析:选D.当x ∈(-3,-2)时,f ′(x )<0,f (x )单调递减,①错;当x ∈⎝ ⎛⎭⎪⎫-12,2时,f ′(x )>0,f (x )单调递增,当x ∈(2,3)时,f ′(x )<0,f (x )单调递减,②错;当x =2时,函数y =f (x )取极大值,④错;当x =-12时,函数y =f (x )无极值,⑤错.故选D.2.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .[1,2)C.⎣⎢⎡⎭⎪⎫1,32 D.⎣⎢⎡⎭⎪⎫32,2 解析:选C.f ′(x )=4x -1x= 2x -1 2x +1x, ∵x >0,由f ′(x )=0得x =12.∴令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎪⎨⎪⎧k -1≥0,k -1<12<k +1⇒1≤k <32.故C 正确.3.已知函数f (x )(x ∈R )满足f ′(x )>f (x ),则( ) A .f (2)<e 2f (0) B .f (2)≤e 2f (0) C .f (2)=e 2f (0)D .f (2)>e 2f (0)解析:选D.由题意构造函数g (x )=f xex,则g ′(x )=f ′ x -f xex>0,则g (x )=f xex在R 上单调递增,则有g (2)>g (0),故f (2)>e 2f (0).4.不等式e x-x >ax 的解集为P ,且[0,2]⊆P ,则实数a 的取值范围是( ) A .(-∞,e -1) B .(e -1,+∞) C .(-∞,e +1)D .(e +1,+∞)解析:选A.由题意知不等式e x-x >ax 在区间[0,2]上恒成立,当x =0时,不等式显然成立,当x ≠0时,只需a <e xx -1恒成立,令f (x )=e xx -1,f ′(x )=e xx -1 x2,显然函数在区间(0,1]上单调递减,在区间[1,2]上单调递增,所以当x =1时,f (x )取得最小值e -1,则a <e -1,故选A.5.设函数f (x )=ln x ,g (x )=ax +b x,它们的图象在x 轴上的公共点处有公切线,则当x >1时,f (x )与g (x )的大小关系是( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )=g (x )D .f (x )与g (x )的大小关系不确定解析:选B.由题意得f (x )与x 轴的交点(1,0)在g (x )上,所以a +b =0,因为函数f (x ),g (x )的图象在此公共点处有公切线,所以f (x ),g (x )在此公共点处的导数相等,f ′(x )=1x,g ′(x )=a -b x 2,以上两式在x =1时相等,即1=a -b ,又a +b =0,所以a =12,b =-12,即g (x )=x 2-12x ,f (x )=ln x ,令h (x )=f (x )-g (x )=ln x -x 2+12x ,则h ′(x )=1x -12-12x 2=2x -x 2-12x 2=- x -122x 2,因为x >1,所以h ′(x )<0,所以h (x )在(1,+∞)上单调递减,所以h (x )<h (1)=0,所以f (x )<g (x ).故选B.6.设函数f (x )=ax 3-x +1(x ∈R ),若对于任意x ∈[-1,1]都有f (x )≥0,则实数a 的取值范围为( )A .(-∞,2]B .[0,+∞)C .[0,2]D .[1,2]解析:选C.∵f (x )=ax 3-x +1,∴f ′(x )=3ax 2-1,当a <0时,f ′(x )=3ax 2-1<0,f (x )在[-1,1]上单调递减,f (x )min =f (1)=a <0,不符合题意.当a =0时,f (x )=-x +1,f (x )在[-1,1]上单调递减,f (x )min =f (1)=0,符合题意. 当a >0时,由f ′(x )=3ax 2-1≥0,得x ≥13a 或x ≤-13a ,当0<13a <1,即a >13时,f (x )在⎣⎢⎡⎦⎥⎤-1,-13a 上单调递增,在⎝ ⎛⎭⎪⎫-13a,13a 上单调递减,在⎝⎛⎦⎥⎤13a ,1上单调递增,∴⎩⎪⎨⎪⎧f -1 =-a +1+1=2-a ≥0f ⎝ ⎛⎭⎪⎫13a =a ⎝ ⎛⎭⎪⎫13a 3-13a +1≥0,∴⎩⎪⎨⎪⎧a ≤2a ≥427a >13,∴13<a ≤2; 当13a ≥1,即0<a ≤13时,f (x )在[-1,1]上单调递减, f (x )min =f (1)=a >0,符合题意.综上可得,0≤a ≤2.二、填空题(本题共3小题,每小题5分,共15分)7.已知y =f (x )为R 上的连续可导函数,且xf ′(x )+f (x )>0,则函数g (x )=xf (x )+1(x >0)的零点个数为________.解析:因为g (x )=xf (x )+1(x >0),g ′(x )=xf ′(x )+f (x )>0,所以g (x )在(0,+∞)上单调递增,又g (0)=1,y =f (x )为R 上的连续可导函数,所以g (x )为(0,+∞)上的连续可导函数,又g (x )>g (0)=1,所以g (x )在(0,+∞)上无零点.答案:08.在函数f (x )=a ln x +(x +1)2(x >0)的图象上任取两个不同点P (x 1,y 1),Q (x 2,y 2),总能使得f (x 1)-f (x 2)≥4(x 1-x 2),则实数a 的取值范围为________.解析:不妨设x 1>x 2,则x 1-x 2>0,∵f (x 1)-f (x 2)≥4(x 1-x 2),∴f x 1 -f x 2x 1-x 2≥4,∵f (x )=a ln x +(x +1)2(x >0)∴f ′(x )=a x +2(x +1),∴a x +2(x +1)≥4,∴a ≥-2x 2+2x ,又-2x 2+2x =-2⎝ ⎛⎭⎪⎫x -122+12≤12,∴a ≥12. 答案:a ≥129.设函数y =f (x )图象上任意一点(x 0,y 0)处的切线方程为y -y 0=(3x 20-6x 0)(x -x 0),且f (3)=0,则不等式x -1f x≥0的解集为________. 解析:∵函数y =f (x )图象上任意一点(x 0,y 0)处的切线方程为y -y 0=(3x 20-6x 0)(x -x 0),∴f ′(x 0)=3x 20-6x 0,∴f ′(x )=3x 2-6x ,设f (x )=x 3-3x 2+c ,又f (3)=0,∴33-3×32+c =0,解得c =0,∴f (x )=x 3-3x 2,∴x -1f x ≥0可化为x -1x 3-3x 2≥0,解得0<x ≤1或x <0或x >3. 答案:(-∞,0)∪(0,1]∪(3,+∞)三、解答题(本题共3小题,每小题12分,共36分) 10.(2017·高考全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.解:(1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意.②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 因为f (1)=0,所以当且仅当a =1时,f (x )≥0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n ,从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e.而⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123>2,所以m 的最小值为3. 11.设函数f (x )=e mx+x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围. 解:(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f 1 -f 0 ≤e-1,f -1 -f 0 ≤e-1,即⎩⎪⎨⎪⎧e m-m ≤e-1,e -m+m ≤e-1.①设函数g (t )=e t-t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0. 故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].12.已知函数f (x )=mx 4x 2+16,g (x )=⎝ ⎛⎭⎪⎫12|x -m |,其中m ∈R 且m ≠0. (1)判断函数f (x )的单调性;(2)当m <-2时,求函数F (x )=f (x )+g (x )在区间[-2,2]上的最值;(3)设函数h (x )=⎩⎪⎨⎪⎧f x ,x ≥2,g x ,x <2,当m ≥2时,若对于任意的x 1∈[2,+∞),总存在唯一的x 2∈(-∞,2),使得h (x 1)=h (x 2)成立,试求m 的取值范围.解:(1)依题意,f ′(x )=m 4-x 2 4 x 2+4 2=m 2-x 2+x4 x 2+42, ①当m ≥0时,解f ′(x )≥0得-2≤x ≤2,解f ′(x )<0得x <-2或x >2;所以f (x )在[-2,2]上单调递增,在(-∞,-2),(2,+∞)上单调递减. ②当m <0时,解f ′(x )≤0得-2≤x ≤2,f ′(x )>0得x <-2或x >2; 所以f (x )在[-2,2]上单调递减;在(-∞,-2),(2,+∞)上单调递增. (2)当m <-2,-2≤x ≤2时,g (x )=⎝ ⎛⎭⎪⎫12|x -m |=⎝ ⎛⎭⎪⎫12x -m =2m ·⎝ ⎛⎭⎪⎫12x 在[-2,2]上单调递减,由(1)知,f (x )在[-2,2]上单调递减,所以F (x )=f (x )+g (x )=mx 4x 2+16+2m ⎝ ⎛⎭⎪⎫12x在[-2,2]上单调递减;∴F (x )max =F (-2)=4×2m-m16=2m +2-m16;F (x )min =F (2)=2m -2+m16.(3)当m ≥2,x 1∈[2,+∞)时,h (x 1)=f (x 1)=mx 14x 21+16,由(1)知h (x 1)在[2,+∞)上单调递减, 从而h (x 1)∈(0,f (2)],即h (x 1)∈⎝ ⎛⎦⎥⎤0,m 16;当m ≥2,x 2<2时,h (x 2)=g (x 2)=⎝ ⎛⎭⎪⎫12|x 2-m |=⎝ ⎛⎭⎪⎫12m -x 2=⎝ ⎛⎭⎪⎫12m ·2x 2在(-∞,2)上单调递增, 从而h (x 2)∈(0,g (2)),即h (x 2)∈⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12m -2;对于任意的x 1∈[2,+∞),总存在唯一的x 2∈(-∞,2),使得h (x 1)=h (x 2)成立,只需m16<⎝ ⎛⎭⎪⎫12m -2,即m 16-⎝ ⎛⎭⎪⎫12m -2<0成立即可.记函数H (m )=m16-⎝ ⎛⎭⎪⎫12m -2,易知H (m )=m16-⎝ ⎛⎭⎪⎫12m -2在[2,+∞)上单调递增,且H (4)=0. 所以m 的取值范围为[2,4).。
2018届高三数学每天一练半小时:阶段滚动检测试卷(一)有答案

一、选择题1.如图所示的Venn 图中,阴影部分对应的集合是( )A .A ∩B B .∁U (A ∩B )C .A ∩(∁U B )D .(∁U A )∩B2.命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是( )A .“若a ≠0或b ≠0,则a 2+b 2≠0”B .“若a 2+b 2≠0,则a ≠0或b ≠0”C .“若a =0且b =0,则a 2+b 2≠0”D .“若a 2+b 2≠0,则a ≠0且b ≠0”3.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∪(∁R N )等于() A .{x |x <1} B .{x |x ≥-1}C .{x |-1<x ≤1}D .{x |-1≤x <1}5.下列各组函数中是同一个函数的是( )①f (x )=-2x 3与g (x )=x -2x ;②f (x )=x 与g (x )=x 2;③f (x )=x 2与g (x )=x 4;④f (x )=x 2-2x -1与g (t )=t 2-2t -1.A .①②B .①③C .③④D .①④6.若a =2-3.1,b =0.53,c =log 3.14,则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .a <c <bD .a <b <c7.设函数f (x )=⎩⎪⎨⎪⎧ 2t x,x <2,log t (x 2-1),x ≥2,且f (2)=1,则f (1)等于( )A .8B .6C .4D .28.给出下列四个函数:①y =x ·sin x ;②y =x ·cos x ;③y =x ·|cos x |;④y =x ·2x.这四个函数的部分图象如下,但顺序被打乱,则按照从左到右的顺序将图象对应的函数序号安排正确的一组是( )A .①④②③B .①④③②C .④①②③D .③④②①9.已知函数f (x )是偶函数且满足f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-2,-1)∪(0,1) 10.已知命题p :若函数f (x )=x 2+|x -a |是偶函数,则a =0.命题q :∀m ∈(0,+∞),关于x 的方程mx2-2x +1=0有解.在①p ∨q ;②p ∧q ;③(綈p )∧q ;④(綈p )∨(綈q )中为真命题的是( )A .②③B .②④C .③④D .①④ 11.已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x .若函数g (x )=f (x )-mx -m 在(-1,1]内有2个零点,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,12 B.⎝ ⎛⎦⎥⎤-1,12 C.⎣⎢⎡⎭⎪⎫12,+∞ D.⎝⎛⎦⎥⎤-∞,12 12.已知定义域为A 的函数f (x ),若对任意的x 1,x 2∈A ,都有f (x 1+x 2)-f (x 1)≤f (x 2),则称函数f (x )为“定义域上的M 函数”,给出以下五个函数:①f (x )=2x +3,x ∈R ;②f (x )=x 2,x ∈⎣⎢⎡⎦⎥⎤-12,12;③f (x )=x 2+1,x ∈⎣⎢⎡⎦⎥⎤-12,12;④f (x )=sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2;⑤f (x )=log 2x ,x ∈[2,+∞).其中是“定义域上的M 函数”的有( )A .2个B .3个C .4个D .5个二、填空题13.已知集合A ={(x ,y )|y =x 2,x ∈R },B ={(x ,y )|y =|x |,x ∈R },则A ∩B 中元素的个数为________.14.已知p :∃x ∈R ,x 2+2x +a ≤0,若p 是错误的,则实数a 的取值范围是__________.(用区间表示)15.已知函数f (x )=12(31)4,0,(log ),0,a x a x f x x -+<⎧⎪⎨≥⎪⎩若f (4)>1,则实数a 的取值范围是____________.16.若直角坐标平面内不同两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )可看成同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧ k (x +1),x <0,x 2+1,x ≥0,有两个“伙伴点组”,则实数k 的取值范围是______________.三、解答题17.设p :f (x )=2x -m 在区间(1,+∞)上是减函数;q :若x 1,x 2是方程x 2-ax -2=0的两个实根,则不等式m 2+5m -3≥|x 1-x 2|对任意实数a ∈[-1,1]恒成立.若p 不正确,q 正确,求实数m 的取值范围.18.已知全集U =R ,集合A ={x |a -1<x <2a +1},B ={x |0<x <1}.(1)若a =12,求A ∩B ; (2)若A ∩B =∅,求实数a 的取值范围.19.已知函数f (x )=log 3(9x )·log 3(3x ),x ∈[19,9]. (1)若t =log 3x ,求t 的取值范围;(2)求f (x )的最值及取得最值时对应的x 的值.20.已知p :“∃x 0∈(-1,1),x 20-x 0-m =0(m ∈R )”是正确的,设实数m 的取值集合为M .(1)求集合M;(2)设关于x的不等式(x-a)(x+a-2)<0(a∈R)的解集为N,若“x∈M”是“x∈N”的充分条件,求实数a 的取值范围.21.据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.22.已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.答案精析1.C [根据题图可知,阴影部分是由属于A 且不属于B (属于∁U B )的元素组成的集合,观察各选项易得结果.]2.A [逆否命题是将原命题的条件与结论先调换位置,再将新条件与新结论同时否定,故选A.]3.A [A ={1,a },B ={1,2,3},若a =3,则A ={1,3},所以A ⊆B ;若A ⊆B ,则a =2或a =3,所以“a =3”是“A ⊆B ”的充分不必要条件.]4.A [M ={x |1-x 2>0}={x |-1<x <1},N ={x |1+x >0}={x |x >-1},所以M ∪(∁R N )={x |-1<x <1}∪{x |x ≤-1}={x |x <1}.]5.C [①中,f (x )=-2x 3=-x -2x ,故f (x ),g (x )不是同一个函数;②中,g (x )=x 2=|x |,故f (x ),g (x )不是同一个函数;易知③④中两函数表示同一个函数.]6.D [因为a =2-3.1,b =0.53=2-3,函数y =2x 在R 上单调递增,所以2-3.1<2-3<20=1,又函数y =log 3.1x 在(0,+∞)上单调递增,所以c =log 3.14>log 3.13.1=1,所以a <b <c .]7.B [因为f (2)=1,所以log t (22-1)=log t 3=1,解得t =3,所以f (1)=2×31=6.]8.A [本题是选择题,可利用排除法.对于①,令y =f (x ),∵f (x )的定义域关于原点对称,f (-x )=(-x )·sin(-x )=x ·sin x =f (x ),∴函数y =f (x )为偶函数,故①中的函数对应第1个图象,排除C 和D ;对于③,当x >0时,y ≥0,故③中的函数对应第4个图象,排除B.]9.C [若x ∈[-2,0],则-x ∈[0,2],此时f (-x )=-x -1.∵f (x )是偶函数,∴f (-x )=-x -1=f (x ),即f (x )=-x -1,x ∈[-2,0].∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ),∴函数f (x )是周期为4的函数.若x ∈[2,4],则x -4∈[-2,0],∴f (x )=f (x -4)=-(x -4)-1=3-x ,∴f (x )=⎩⎪⎨⎪⎧ -x -1,-2≤x <0,x -1,0≤x <2,3-x ,2≤x ≤4,作出函数f (x )在[-2,4]上的图象,如图所示,若0<x ≤3,则不等式xf (x )>0等价于f (x )>0,此时1<x <3;若-1≤x <0,则不等式xf (x )>0等价于f (x )<0,此时-1<x <0;若x =0,显然不等式xf (x )>0的解集为∅.综上,不等式xf (x )>0在[-1,3]上的解集为(-1,0)∪(1,3).]10.D [函数f (x )=x 2+|x -a |是偶函数⇒f (-x )=f (x )⇒a =0⇒p 为真命题;关于x 的方程mx 2-2x +1=0有解⇒Δ=4-4m ≥0⇒m ≤1⇒q 为假命题.故①④为真,故选D.]11.A [根据题意知,当x ∈(-1,0]时,x +1∈(0,1],则f (x )=1f (x +1)-1=1x +1-1,故函数f (x )在(-1,0]上是减函数,在[0,1]上是增函数.函数g (x )=f (x )-mx -m 在(-1,1]内有2个零点,相当于函数f (x )的图象与直线y =m (x +1)有2个交点,若其中1个交点为(1,1),则m =12,结合函数的图象(图略),可知m 的取值范围是(0,12],故选A.] 12.C [对于①,∀x 1,x 2∈R ,f (x 1+x 2)=2(x 1+x 2)+3<2(x 1+x 2)+6=f (x 1)+f (x 2),故①满足条件;对于②,∀x 1,x 2∈⎣⎢⎡⎦⎥⎤-12,12,f (x 1+x 2)=x 21+x 22+2x 1x 2,f (x 1)+f (x 2)=x 21+x 22, 当x 1x 2>0时,不满足f (x 1+x 2)≤f (x 1)+f (x 2),故②不是“定义域上的M 函数”;对于③,∀x 1,x 2∈⎣⎢⎡⎦⎥⎤-12,12,f (x 1+x 2)=x 21+x 22+2x 1x 2+1,f (x 1)+f (x 2)=x 21+x 22+2, 因为x 1,x 2∈⎣⎢⎡⎦⎥⎤-12,12,所以2x 1x 2≤12<1, 故f (x 1+x 2)<f (x 1)+f (x 2),故③满足条件;对于④,∀x 1,x 2∈[0,π2],f (x 1+x 2)=sin x 1cos x 2+sin x 2cos x 1≤sin x 1+sin x 2=f (x 1)+f (x 2),故④满足条件;对于⑤,∀x 1,x 2∈[2,+∞),f (x 1+x 2)=log 2(x 1+x 2),f (x 1)+f (x 2)=log 2(x 1x 2),因为x 1,x 2∈[2,+∞),所以1x 1+1x 2≤1,可得x 1+x 2≤x 1x 2,即f (x 1+x 2)≤f (x 1)+f (x 2),故⑤满足条件.所以是“定义域上的M 函数”的有①③④⑤,共4个.]13.3解析 由题意联立方程得⎩⎪⎨⎪⎧ y =x 2,y =|x |,消去y 得x 2=|x |,两边平方,解得x =0或x =-1或x =1,相应的y 值分别为0,1,1,故A ∩B 中元素的个数为3.14.(1,+∞)解析 由题意知∀x ∈R ,x 2+2x +a >0恒成立,∴关于x 的方程x 2+2x +a =0的根的判别式Δ=4-4a <0,∴a >1.∴实数a 的取值范围是(1,+∞).15.⎝⎛⎭⎪⎫-∞,12 解析 由题意知f (4)=f (log 124)=f (-2)=(3a -1)×(-2)+4a >1,解得a <12.故实数a 的取值范围是(-∞,12). 16.(2+22,+∞)解析 设点(m ,n )(m >0)是函数y =f (x )的一个“伙伴点组”中的一个点,则其关于原点的对称点(-m ,-n )必在该函数图象上,故⎩⎪⎨⎪⎧ n =m 2+1,-n =k (-m +1),消去n ,整理得m 2-km +k +1=0.若函数f (x )有两个“伙伴点组”,则该方程有两个不等的正实数根,得⎩⎪⎨⎪⎧Δ=k 2-4(k +1)>0,k >0,k +1>0, 解得k >2+2 2.故实数k 的取值范围是(2+22,+∞). 17.解 若p 正确,即f (x )=2x -m 在区间(1,+∞)上是减函数,则m ≤1. 若q 正确,∵x 1,x 2是方程x 2-ax -2=0的两个实根,a ∈[-1,1],∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8≤3.∵不等式m 2+5m -3≥|x 1-x 2|对任意实数a ∈[-1,1]恒成立,∴m 2+5m -3≥3,∴m 2+5m -6≥0,解得m ≥1或m ≤-6.又p 不正确,q 正确,∴⎩⎪⎨⎪⎧ m >1,m ≥1或m ≤-6,∴m >1.故实数m 的取值范围是{m |m >1}.18.解 (1)若a =12,则A ={x |-12<x <2},又B ={x |0<x <1}, ∴A ∩B ={x |0<x <1}.(2)当A =∅时,a -1≥2a +1,∴a ≤-2,此时满足A ∩B =∅;当A ≠∅时,则由A ∩B =∅,B ={x |0<x <1},易得⎩⎪⎨⎪⎧ 2a +1>a -1,a -1≥1或⎩⎪⎨⎪⎧ 2a +1>a -1,2a +1≤0,∴a ≥2或-2<a ≤-12. 综上可知,实数a 的取值范围为⎩⎨⎧⎭⎬⎫a |a ≤-12或a ≥2. 19.解 (1)由t =log 3x ,x ∈[19,9],解得-2≤t ≤2. (2)f (x )=(log 3x )2+3log 3x +2,令t =log 3x ,则y =t 2+3t +2=(t +32)2-14,t ∈[-2,2]. 当t =-32,即log 3x =-32, 即x =39时,f (x )min =-14; 当t =2,即log 3x =2,即x =9时,f (x )max =12.20.解 (1)由题意知,方程x 2-x -m =0在x ∈(-1,1)上有解,故m 的取值集合就是函数y =x 2-x 在(-1,1)上的值域,易得M ={m |-14≤m <2}. (2)因为“x ∈M ”是“x ∈N ”的充分条件,所以M ⊆N .当a =1时,集合N 为空集,不满足题意;当a >1时,a >2-a ,此时集合N ={x |2-a <x <a },则⎩⎪⎨⎪⎧ 2-a <-14,a ≥2,解得a >94; 当a <1时,a <2-a ,此时集合N ={x |a <x <2-a },则⎩⎪⎨⎪⎧ a <-14,2-a ≥2,解得a <-14. 综上可知,实数a 的取值范围为{a |a >94或a <-14}. 21.解 (1)由题中所给出的函数图象可知,当t =4时,v =3×4=12(km/h),∴s =12×4×12=24(km). (2)当0≤t ≤10时,s =12·t ·3t =32t 2; 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上可知,s =223,[0,10],230150,(10,20],70550,(20,35].t t t t t t t ⎧∈⎪⎪-∈⎨⎪-+-∈⎪⎩(3)∵当t ∈[0,10]时,s max =32×102=150<650, 当t ∈(10,20]时,s max =30×20-150=450<650,∴当t ∈(20,35]时,令-t 2+70t -550=650,解得t 1=30,t 2=40.∵20<t ≤35,∴t =30.∴沙尘暴发生30 h 后将侵袭到N 城.22.解 (1)当a =-1时,f (x )=x 2+(x -1)·|x +1|,则f (x )=⎩⎪⎨⎪⎧ 2x 2-1,x ≥-1,1,x <-1.当x ≥-1时,由f (x )=1,得2x 2-1=1,解得x =1或x =-1;当x <-1时,f (x )=1恒成立.∴方程的解集为{x |x ≤-1或x =1}.(2)由题意知f (x )=⎩⎪⎨⎪⎧ 2x 2-(a +1)x +a ,x ≥a ,(a +1)x -a ,x <a .若f (x )在R 上单调递增,则⎩⎪⎨⎪⎧ a +14≤a ,a +1>0,解得a ≥13. ∴实数a 的取值范围为{a |a ≥13}. (3)设g (x )=f (x )-(2x -3),则g (x )=⎩⎪⎨⎪⎧ 2x 2-(a +3)x +a +3,x ≥a ,(a -1)x -a +3,x <a ,不等式f (x )≥2x -3对任意x ∈R 恒成立,等价于不等式g (x )≥0对任意x ∈R 恒成立. ①若a >1,则1-a <0,即21-a <0, 取x 0=21-a,此时x 0<a , ∴g (x 0)=g ⎝ ⎛⎭⎪⎫21-a =(a -1)·21-a -a +3=1-a <0, 即对任意的a >1,总能找到x 0=21-a,使得g (x 0)<0, ∴不存在a >1,使得g (x )≥0恒成立.②若a =1,则g (x )=⎩⎪⎨⎪⎧ 2x 2-4x +4,x ≥1,2,x <1,∴g (x )的值域为[2,+∞),∴g (x )≥0恒成立.③若a <1,当x ∈(-∞,a )时,g (x )单调递减,其值域为(a 2-2a +3,+∞). 由于a 2-2a +3=(a -1)2+2≥2,所以g (x )≥0恒成立.当x ∈[a ,+∞)时,由a <1,知a <a +34,g (x )在x =a +34处取得最小值. 令g ⎝ ⎛⎭⎪⎫a +34=a +3-(a +3)28≥0,得-3≤a ≤5,又a <1,∴-3≤a <1. 综上,a ∈[-3,1].。
【高三数学试题精选】2018高考数学(理)二轮专题复习限时规范训练函数、不等式、导数 1

B.f(x)=ex)
解析选c根据条知,f(x)在(0,+∞)上单调递减.
对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;
对于B,f(x)=ex在(0,+∞)上单调递增,排除B;
对于c,f(x)=1x在(0,+∞)上单调递减,c正确;
故函数g(x)的定义域为[-1,1)∪(1,2 017].
6.下列函数为奇函数的是( )
A.=x3+3x2
B.=ex+e-x2
c.=xsin x
D.=lg23-x3+x
解析选D依题意,对于选项A,注意到当x=-1时,=2;当x=1时,=4,因此函数=x3+3x2不是奇函数.对于选项B,注意到当x=0时,=1≠0,因此函数=ex+e-x2不是奇函数.对于选项c,注意到当x=-π2时,=π2;当x=π2时,=π2,因此函数=xsin x不是奇函数.对于选项D,由3-x3+x>0得-3<x<3,
c.2 016D.2 018
解析选D令x==0,则f(1)=f(0)f(0)-f(0)+2=1×1-1+2=2,
令=0,则f(1)=f(x)f(0)-f(0)-x+2,将f(0)=1,f(1)=2代入,可得f(x)=1+x,所以f(2 017)=2 018故选D
3.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)的解析式可以是( )
2018高考数学(理)二轮专题复习限时规范训练函数、不等式、导数1
c限时规范训练四函数的图象与性质
限时40分钟,实际用时分值80分,实际得分
一、选择题(本题共12小题,每小题5分,共60分)
1.函数=lg x+1 x-2的定义域是( )
推荐-南丰中学2018届高三数学滚动练习卷(二)201820180

南丰中学18届高三数学滚动练习卷(二)2018.10.5班级 姓名 学号一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( )A .9B .8C .7D .62、集合A ={x |11+-x x <0=,B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是( )A .-2≤b <0B .0<b ≤2C .-3<b <-1D .-1≤b <3、已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b的值分别为( ) A .0,27,78 B .0,27,83 C .2.7,78 D .2.7,835、等比数列}{n a 的各项都是正数,且2a ,321a ,1a 称等差数列,则6554a a a a ++的值是( ) A .215+ B .215- C .251- D .215+或215- 6、已知连续函数)(x f y =在定义域内是单调函数,则方程c R c c x f ,()(∈=为常数)的解 的情况为( )A .有且只有一个解B .至少一个解C .至多一个解D .可能无解,可能一个或多个解7、已知函数的图象过点(3,2),则函数的图象关于x 轴的对称图形一定过点( )A. (2,-2) B. (2,2) C. (-4,2)D. (4,-2)8、设函数2()(),()0,(1)f x x x a a R f n f n +=++∈<+满足则的符号是 ( ) A 、(1)0f n +< B 、(1)0f n +> C 、0)1(≥+n f D 、(1)0f n +< 9、在等比数列}{n a 中,34129,10a a a a a n -=-=>且,则54a a +的值为 ( )A .16B .27C .36D .8110、已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y = 的图象关于直线x y =对称,则)()(x g x g -+的值为( )A .2B .0C .1D .不能确定 11、对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是( )A .-∞(,-2]B .[-2,2]C .[-2,)+∞D .[0,)+∞12、若P 1(),log ,(log )log ,log 22211y x P y x b a b a )log ,(log 333y x P b a 共线(a>0且a ≠1,b>0且b ≠1),其中321,,x x x 为成等比数列的互不相等的三个正数,则1y ,成32,y y ( )A 、等差数列,但不等比数列; B 、等比数列而非等差数列C 、可能成等比数列,也可能成等差数列D 、既不是等比数列,又不是等差数列 二、填空题:(4'×6=24') 13、若x =11,则1102112311222++++++++x x x x x x = 。
2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题三 三角函数及解三角形 1-3-2 Word版含答案
限时规范训练九 三角恒等变换与解三角形限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分) 1.若sin α+cos αsin α-cos α=12,则sin αcos α=( )A .-34B .-310C .-43D.43解析:选B.解法一:由sin α+cos αsin α-cos α=12,得2(sin α+cos α)=sin α-cos α,即tan α=-3.又sin αcos α=sin αcos αsin 2α+cos 2α=tan α1+tan 2α=-310,故选B. 解法二:由题意得1+2sin αcos α1-2sin αcos α=14,即4+8sin αcos α=1-2sin αcos α ∴10sin αcos α=-3 即sin αcos α=-310,故选B.2.已知向量a =⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ⎝ ⎛⎭⎪⎫α+4π3=( ) A .-34B .-14C.34 D.14解析:选B.∵a ⊥b ,∴a·b =4sin ⎝ ⎛⎭⎪⎫α+π6+4cos α- 3 =23sin α+6cos α- 3 =43sin ⎝ ⎛⎭⎪⎫α+π3-3=0, ∴sin ⎝⎛⎭⎪⎫α+π3=14. ∴sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝ ⎛⎭⎪⎫α+π3=-14. 3.在△ABC 中,若3cos 2A -B2+5sin2A +B2=4,则tan A ·tan B =( )A .4B.14C .-4D .-14解析:选B.由条件得3×cos A -B +12+5×cos C +12=4,即3cos(A -B )+5cos C =0,所以3cos(A -B )-5cos(A +B )=0,所以3cos A cos B +3sin A sin B -5cos A cos B +5sin A sinB =0,即cos A cos B =4sin A sin B ,所以tan A ·tan B =sin A sin B cos A cos B =14.4.已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( ) A.79 B.13 C .-13D .-79解析:选D.cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=2×19-1=-79.5.已知在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38解析:选B.由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3,所以△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.6.已知△ABC 中,内角A 、B 、C 所对的边分别为a ,b ,c ,且a cos C +32c =b ,若a =1,3c -2b =1,则角B 为( )A.π4B.π6C.π3D.π12解析:选B.因为a cos C +32c =b ,所以sin A cos C +32·sin C =sin B =sin(A +C )=sin A cos C +cos A sin C ,所以32sin C =cos A sin C ,因为sin C ≠0,所以cos A =32,因为A 为△ABC 的内角,所以A =π6,由余弦定理a 2=b 2+c 2-2bc cos A ,知1=b 2+c 2-3bc ,联立⎩⎨⎧1=b 2+c 2-3bc ,3c -2b =1,解得c =3,b =1,由a sin A =b sin B ,得sin B =b sin Aa =1×121=12,∵b <c ,∴B <C ,则B =π6,故选B. 二、填空题(本题共3小题,每小题5分,共15分)7.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积为334,a =3,B =π3,则b =________.解析:由题意可得S =12ac sin B ,解得c =1,由余弦定理可得b 2=a 2+c 2-2ac cos B =9+1-3=7,故b =7.答案:78.已知tan(3π-x )=2,则2cos 2x2-sin x -1sin x +cos x =________.解析:∵tan(3π-x )=tan(π-x )=-tan x =2,故tan x =-2. 所以2cos 2x2-sin x -1sin x +cos x =cos x -sin x sin x +cos x =1-tan xtan x +1=-3.答案:-39.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,则sin α+cos α的值为________.解析:由π2<β<α<3π4知π<α+β<3π2,⎩⎪⎨⎪⎧-3π4<-β<-π2π2<α<3π4⇒⎩⎪⎨⎪⎧-π4<α-β<π4α-β>0⇒0<α-β<π4.根据已知得sin(α-β)=513,cos(α+β)=-45,所以sin 2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=-35×1213+⎝ ⎛⎭⎪⎫-45×513=-5665,所以(sinα+cos α)2=1+sin 2α=1-5665=965.因为π2<α<3π4,所以sin α+cos α>0,所以sin α+cos α=36565.答案:36565三、解答题(本题共3小题,每小题12分,共36分)10.已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝ ⎛⎭⎪⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝ ⎛⎭⎪⎫α4=-25,α∈⎝ ⎛⎭⎪⎫π2,π,求sin ⎝⎛⎭⎪⎫α+π3的值. 解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数,由θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ),由f ⎝ ⎛⎭⎪⎫π4=0得-(a +1)=0,即a =-1. (2)由(1)得f (x )=-12sin 4x ,因为f ⎝ ⎛⎭⎪⎫α4=-12sin α=-25, 即sin α=45,又α∈⎝ ⎛⎭⎪⎫π2,π,从而cos α=-35,所以sin ⎝ ⎛⎭⎪⎫α+π3=sin αcos π3+cos αsin π3 =45×12+⎝ ⎛⎭⎪⎫-35×32=4-3310. 11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎪⎫2A -π6的值.解:(1)在△ABC 中,由b sin B =csin C ,及sin B =6sin C ,可得b =6c . 由a -c =66b ,得a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c2=64.(2)在△ABC 中,由cos A =64,可得sin A =104. 于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154.所以cos ⎝ ⎛⎭⎪⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.12.如图所示,在四边形ABCD 中,∠D =2∠B ,且AD =1, CD =3,cos B =33.(1)求△ACD 的面积; (2)若BC =23,求AB 的长. 解:(1)因为∠D =2∠B ,cos B =33, 所以cos D =cos 2B =2cos 2B -1=-13.因为D ∈(0,π), 所以sin D =1-cos 2D =223. 因为AD =1,CD =3,所以△ACD 的面积S =12AD ·CD ·sin D =12×1×3×223= 2.(2)在△ACD 中,AC 2=AD 2+DC 2-2AD ·DC ·cos D =12, 所以AC =2 3.因为BC =23,AC sin B =ABsin∠ACB, 所以23sin B =AB sin π-2B =AB sin 2B =AB 2sin B cos B =AB 233sin B ,所以AB =4.。
【精品】2018届高三数学:阶段滚动检测(二) 含答案
一、选择题1.函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1)B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)2.下列命题正确的是( ) A .∃x 0∈R ,x 20+2x 0+3=0 B .∀x ∈N ,x 3>x 2C .x >1是x 2>1的充分不必要条件 D .若a >b ,则a 2>b 23.定义在R 上的偶函数f (x ),当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)4.已知函数f (x )=12log ,1,24,1,xx x x >⎧⎪⎨⎪+≤⎩则f (f (12))等于( )A .4B .-2C .2D .15.函数f (x )=2|x |-x 2的图象为()6.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴相切于原点,且x轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为( )A .-1B .0C .1D .-27.函数f (x )=x 3+3x 2+3x -a 的极值点的个数是( ) A .2 B .1 C .0D .0或18.若函数f (x )=1+2x +12x +1+tan x 在区间[-1,1]上的值域为[m ,n ],则m +n 等于( )A .2B .3C .4D .59.设函数f (x )=e x+2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( ) A .g (a )<0<f (b ) B .f (b )<0<g (a ) C .0<g (a )<f (b )D .f (b )<g (a )<010.已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上,f (x )=x ,若关于x 的方程f (x )=log a x 有三个不同的根,则a 的取值范围为( ) A .(2,4) B .(2,22) C .(6,22)D .(6,10)11.若曲线C 1:y =ax 2(x >0)与曲线C 2:y =e x存在公共点,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫e 28,+∞ B.⎝ ⎛⎦⎥⎤0,e 28C.⎣⎢⎡⎭⎪⎫e 24,+∞ D.⎝ ⎛⎦⎥⎤0,e 24 12.定义全集U 的子集P 的特征函数f P (x )=⎩⎪⎨⎪⎧1,x ∈P ,0,x ∈∁U P .已知P ⊆U ,Q ⊆U ,给出下列命题:①若P ⊆Q ,则对于任意x ∈U ,都有f P (x )≤f Q (x ); ②对于任意x ∈U ,都有f ∁U P (x )=1-f P (x ); ③对于任意x ∈U ,都有f P ∩Q (x )=f P (x )·f Q (x ); ④对于任意x ∈U ,都有f P ∪Q (x )=f P (x )+f Q (x ).其中正确的命题是( ) A .①②③ B .①②④ C .①③④ D .②③④二、填空题13.设全集为R ,集合M ={x |x 2≤4},N ={x |log 2x ≥1},则(∁R M )∩N =________.14.已知函数f (x )=e x,g (x )=ln x 2+12的图象分别与直线y =m 交于A ,B 两点,则|AB |的最小值为________.15.设a ,b ∈Z ,已知函数f (x )=log 2(4-|x |)的定义域为[a ,b ],其值域为[0,2],若方程⎝ ⎛⎭⎪⎫12|x |+a +1=0恰有一个解,则b -a =________.16.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e -x(x -1).给出以下命题: ①当x <0时,f (x )=e x(x +1); ②函数f (x )有五个零点;③若关于x 的方程f (x )=m 有解,则实数m 的取值范围是f (-2)≤m ≤f (2); ④对∀x 1,x 2∈R ,|f (x 2)-f (x 1)|<2恒成立. 其中,正确命题的序号是________. 三、解答题17.已知集合A 是函数y =lg(20+8x -x 2)的定义域,集合B 是不等式x 2-2x +1-a 2≥0(a >0)的解集,p :x ∈A ,q :x ∈B . (1)若A ∩B =∅,求a 的取值范围;(2)若綈p 是q 的充分不必要条件,求a 的取值范围.18.设命题p :关于x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零;命题q :不等式2x 2+x >2+ax 对∀x ∈(-∞,-1)恒成立.如果命题“p ∨q ”为真命题, 命题“p ∧q ”为假命题,求实数a 的取值范围.19.已知函数f (x )=a ln x (a >0),求证f (x )≥a (1-1x).20.定义在R 上的单调函数f (x )满足f (2)=32,且对任意x ,y ∈R ,都有f (x +y )=f (x )+f (y ).(1)求证:f (x )为奇函数;(2)若f (k ·3x)+f (3x-9x-2)<0对任意x ∈R 恒成立,求实数k 的取值范围.21.为了缓解城市交通压力,某市市政府在市区一主要交通干道修建高架桥,两端的桥墩现已建好,已知这两桥墩相距m 米,“余下的工程”只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记“余下工程”的费用为y 万元.(1)试写出工程费用y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使工程费用y 最小?并求出其最小值.22.已知函数f(x)=e x-ax2(x∈R),e=2.718 28…为自然对数的底数.(1)求函数f(x)在点P(0,1)处的切线方程;(2)若函数f(x)为R上的单调递增函数,试求实数a的取值范围.答案精析1.C [由题意知x 2-x >0,解得x >1或x <0,所以函数f (x )=ln(x 2-x )的定义域为(-∞,0)∪(1,+∞).]2.C [对于A ,因为Δ=22-12<0,所以不存在x 0∈R ,使x 20+2x 0+3=0,所以选项A 错误;对于B ,当x =1时,13=12,所以选项B 错误;对于C ,x >1可推出x 2>1,x 2>1可推出x >1或x <-1,所以x >1是x 2>1的充分不必要条件,所以选项C 正确;对于D ,当a =0,b =-1时,a 2<b 2,所以选项D 错误.]3.A [因为函数是偶函数,所以f (-2)=f (2),f (-3)=f (3),又函数在[0,+∞)上是增函数,所以f (2)<f (3)<f (π),即f (-2)<f (-3)<f (π),选A.] 4.B [f (12)=2+124=2+2=4,则f (f (12))=f (4)=12log 4=12log (12)-2=-2.]5.D [由f (-x )=f (x )知函数f (x )是偶函数,其图象关于y 轴对称,排除选项A 、C ;当x =0时,f (x )=1,排除选项B.]6.A [因为f ′(x )=-3x 2+2ax +b ,函数f (x )的图象与x 轴相切于原点,所以f ′(0)=0,即b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0),因为函数f (x )的图象与x 轴所围成区域的面积为112,所以⎠⎛a(-x 3+ax 2)d x =-112,所以⎝ ⎛⎭⎪⎫-14x 4+13ax 3⎪⎪⎪a =-112,所以a =-1或a =1(舍去).]7.C [因为f ′(x )=3x 2+6x +3=3(x +1)2≥0,则f (x )在R 上是增函数,所以不存在极值点.]8.C [因为f (x )=1+2x +12x +1+tan x ,所以f (-x )=1+2·2-x2-x +1+tan(-x )=1+21+2x -tan x ,则f (x )+f (-x )=2+2·2x2x +1+21+2x =4.又f (x )=1+2·2x2x +1+tan x 在区间[-1,1]上是一个增函数,其值域为[m ,n ],所以m +n =f (-1)+f (1)=4.故选C.]9.A [依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,且函数g (x )在(0,+∞)内单调递增,所以函数g (x )的零点在区间(1,2)内,即1<b <2.于是有f (b )>f (1)>0,g (a )<g (1)<0,所以g (a )<0<f (b ).故选A.]10.D [由f (x -4)=f (x ),知f (x )的周期为4,又f (x )为偶函数,所以f (x -4)=f (x )=f (4-x ),所以函数f (x )的图象关于直线x =2对称,作出函数y =f (x )与y =log a x 的图象如图所示,要使方程f (x )=log a x 有三个不同的根,则⎩⎪⎨⎪⎧a >1,log a 6<2,log a 10>2,解得6<a <10,选D.]11.C [根据题意,函数y =ax 2与y =e x的图象在(0,+∞)上有公共点, 令ax 2=e x,得a =exx2(x >0).设f (x )=exx2(x >0),则f ′(x )=x 2e x -2x e xx 4,由f ′(x )=0,得x =2.当0<x <2时,f ′(x )<0,函数f (x )=exx2在区间(0,2)上是减函数;当x >2时,f ′(x )>0,函数f (x )=exx2在区间(2,+∞)上是增函数.所以当x =2时,函数f (x )=e x x 2在(0,+∞)上有最小值f (2)=e 24,所以a ≥e24.故选C.]12.A [令U ={1,2,3},P ={1},Q ={1,2}. 对于①,f P (1)=1=f Q (1),f P (2)=0<f Q (2)=1,f P (3)=f Q (3)=0,可知①正确;对于②,有f P (1)=1,f P (2)=0,f P (3)=0,f ∁U P (1)=0,f ∁U P (2)=1,f ∁U P (3)=1,可知②正确;对于③,有f P (1)=1,f P (2)=0,f P (3)=0,f Q (1)=1,f Q (2)=1,f Q (3)=0,f P ∩Q (1)=1,f P ∩Q (2)=0,f P ∩Q (3)=0,可知③正确;对于④,有f P (1)=1,f P (2)=0,f P (3)=0,f Q (1)=1,f Q (2)=1,f Q (3)=0,f P ∪Q (1)=1,f P ∪Q (2)=1,f P ∪Q (3)=0,可知④不正确.]13.(2,+∞)解析 由M ={x |x 2≤4}={x |-2≤x ≤2}=[-2,2],可得∁R M =(-∞,-2)∪(2,+∞),又N ={x |log 2x ≥1}={x |x ≥2}=[2,+∞),则(∁R M )∩N =(2,+∞). 14.2+ln 2解析 显然m >0,由e x=m ,得x =ln m , 由ln x 2+12=m ,得x =212em -,则|AB |=212em --ln m . 令h (m )=212em --ln m ,由h ′(m )=212em --1m =0,求得m =12. 当0<m <12时,h ′(m )<0,函数h (m )在⎝ ⎛⎭⎪⎫0,12上单调递减; 当m >12时,h ′(m )>0,函数h (m )在⎝ ⎛⎭⎪⎫12,+∞上单调递增. 所以h (m )min =h ⎝ ⎛⎭⎪⎫12=2+ln 2,因此|AB |的最小值为2+ln 2. 15.5解析 由方程⎝ ⎛⎭⎪⎫12|x |+a +1=0恰有一个解,得a =-2.又⎩⎪⎨⎪⎧4-|x |>0,1≤4-|x |≤4,解得-3≤x ≤3,所以b =3.所以b -a =3-(-2)=5. 16.①④解析 当x <0时,-x >0,所以f (-x )=e x(-x -1)=-f (x ),所以f (x )=e x(x +1),故①正确;当x <0时,f ′(x )=e x(x +1)+e x ,令f ′(x )=0,所以x =-2,所以f (x )在(-∞,-2)上单调递减,在(-2,0)上单调递增,而在(-∞,-1)上,f (x )<0,在(-1,0)上,f (x )>0,所以f (x )在(-∞,0)上仅有一个零点,由对称性可知,f (x )在(0,+∞)上也有一个零点,又f (0)=0,故该函数有三个零点,故②错误;因为当x <0时,f (x )在(-∞,-2)上单调递减,在(-2,0)上单调递增,且当x <-1时,f (x )<0,当-1<x <0时,f (x )>0,所以当x <0时,f (-2)≤f (x )<1,即-1e 2≤f (x )<1,由对称性可知,当x >0时,-1<f (x )≤1e 2,又f (0)=0,故当x ∈(-∞,+∞)时,f (x )∈(-1,1),若关于x 的方程f (x )=m 有解,则-1<m <1,且对∀x 1,x 2∈R ,|f (x 2)-f (x 1)|<2恒成立,故③错误,④正确.17.解 (1)由题意得A ={x |-2<x <10},B ={x |x ≥1+a 或x ≤1-a }. 若A ∩B =∅,则必须满足⎩⎪⎨⎪⎧1+a ≥10,1-a ≤-2,解得a ≥9,a >0,∴a 的取值范围为a ≥9.(2)易得綈p :x ≥10或x ≤-2.∵綈p 是q 的充分不必要条件,∴{x |x ≥10或x ≤-2}是{x |x ≥1+a 或x ≤1-a }的真子集,则⎩⎪⎨⎪⎧10≥1+a ,-2≤1-a ,a >0,其中两个等号不能同时成立,解得0<a ≤3, ∴a 的取值范围为0<a ≤3.18.解 令f (x )=x 2+(a +1)x +a -2.∵二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零, ∴f (0)<0,即a -2<0,∴a <2. ∴命题p 为真时,有a <2. ∵x ∈(-∞,-1),∴由不等式2x 2+x >2+ax ,可得a >2x -2x+1.令g (x )=2x -2x+1,∴g ′(x )=2+2x2>0,∴g (x )在x ∈(-∞,-1)单调递增,且g (-1)=1, ∴g (x )∈(-∞,1).又不等式2x 2+x >2+ax 对∀x ∈(-∞,-1)恒成立, ∴命题q 为真时,有a ≥1.依题意,命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,则有 ①若p 真q 假,得a <1; ②若p 假q 真,得a ≥2.综上可得,所求实数a 的取值范围为(-∞,1)∪[2,+∞).19.证明 要证f (x )≥a ⎝⎛⎭⎪⎫1-1x (x >0),只需证f (x )-a ⎝⎛⎭⎪⎫1-1x ≥0(x >0),即证a ⎝⎛⎭⎪⎫ln x +1x-1≥0(x >0).∵a >0,∴只需证ln x +1x -1≥0(x >0).令g (x )=ln x +1x-1(x >0), 即证g (x )min ≥0(x >0). ∴g ′(x )=1x -1x 2=x -1x2(x >0).令g ′(x )=0,得x =1.∴当0<x <1时,g ′(x )<0,此时g (x )在(0,1)上单调递减; 当x >1时,g ′(x )>0,此时g (x )在(1,+∞)上单调递增. ∴[g (x )]min =g (1)=0≥0,即ln x +1x-1≥0成立,故有f (x )≥a ⎝⎛⎭⎪⎫1-1x 成立.20.(1)证明 f (x +y )=f (x )+f (y )(x ,y ∈R ),①令x =y =0,代入①式,得f (0+0)=f (0)+f (0),即f (0)=0. 令y =-x ,代入①式,得f (x -x )=f (x )+f (-x ),又f (0)=0, 则有0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 恒成立, 所以f (x )是奇函数.(2)解 f (2)=32>0,即f (2)>f (0),又f (x )在R 上是单调函数, 所以f (x )在R 上是增函数. 又由(1)知f (x )是奇函数,f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2),所以k ·3x <-3x +9x +2,32x -(1+k )·3x+2>0对任意x ∈R 恒成立. 令t =3x>0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立.令g (t )=t 2-(1+k )t +2,其对称轴t =1+k 2.当1+k 2<0,即k <-1时,g (0)=2>0,符合题意;当1+k2≥0时,对任意t >0,g (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2.综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x-2)<0对任意x ∈R 恒成立. 21.解 (1)设需要新建n (n ∈N *)个桥墩,则(n +1)x =m , ∴n =mx-1(n ∈N *).∴y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎪⎫mx-1+mx(2+x )x =256m x+m x +2m -256(0<x ≤m ).(2)由(1)得,f ′(x )=-256m x 2+12m 12x -=m2x 2(32x -512).令f ′(x )=0,得x 32=512,∴x =64.当0<x <64时,f ′(x )<0,此时,f (x )在区间(0,64)内为减函数; 当64≤x <640时,f ′(x )>0,此时,f (x )在区间[64,640)内为增函数.∴函数f (x )在x =64处取得极小值,也是其最小值.∵m =640,∴n =m x -1=64064-1=9.此时,y min =8 704(万元).故需新建9个桥墩才能使工程费用y 取得最小值,且最少费用为8 704万元. 22.解 (1)由题设,得f ′(x )=e x-2ax ,∴f ′(0)=1, ∴f (x )在点P (0,1)处的切线方程为y -f (0)=f ′(0)x ,即y =x +1.(2)依题意,知f ′(x )=e x-2ax ≥0(x ∈R )恒成立, ①当x =0时,有f ′(x )≥0恒成立,此时a ∈R .②当x >0时,有2a ≤e xx ,令g (x )=e xx ,则g ′(x )=e x(x -1)x2, 由g ′(x )=0,得x =1且当x >1时,g ′(x )>0;当0<x <1时,g ′(x )<0.∴g (x )min =g (1)=e ,则有2a ≤g (x )min =e ,∴a ≤e2.③当x <0时,有2a ≥exx,∵exx<0,则有2a ≥0,∴a ≥0.又a =0时,f ′(x )=e x≥0恒成立.综上,若函数f (x )为R 上的单调递增函数,所求a ∈⎣⎢⎡⎦⎥⎤0,e 2.。
2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题五 立体几何 1-5-2 Word版含答案
限时规范训练十三空间中的平行与垂直一、选择题(本题共小题,每小题分,共分).(·高考山东卷)已知直线,分别在两个不同的平面α,β内,则“直线和直线相交”是“平面α和平面β相交”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件解析:选.因为直线和直线相交,所以直线与直线有一个公共点,而直线,分别在平面α、β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线与直线可能相交、平行、异面.故选..(·高考全国卷Ⅲ)在正方体中,为棱的中点,则( ).⊥.⊥.⊥.⊥解析:选.根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,项,若⊥,那么⊥,很显然不成立;项,若⊥,那么⊥,显然不成立;项,若⊥,那么⊥,成立,反过来⊥时,也能推出⊥,所以成立,项,若⊥,则⊥,显然不成立,故选..设α,β是两个不同的平面,,是两条不同的直线,且⊂α,⊂β( ).若⊥β,则α⊥β.若α⊥β,则⊥.若∥β,则α∥β.若α∥β,则∥解析:选.选项中,由平面与平面垂直的判定定理可知正确;选项中,当α⊥β时,,可以垂直,也可以平行,也可以异面;选项中,∥β时,α,β可以相交;选项中,α∥β时,,也可以异面..已知α,β为两个平面,为直线,若α⊥β,α∩β=,则( ).垂直于平面β的平面一定平行于平面α.垂直于直线的直线一定垂直于平面α.垂直于平面β的平面一定平行于直线.垂直于直线的平面一定与平面α,β都垂直解析:选.由α⊥β,α∩β=,知:垂直于平面β的平面与平面α平行或相交,故不正确;垂直于直线的直线若在平面β内,则一定垂直于平面α,否则不一定,故不正确;垂直于平面β的平面与的关系有⊂β,∥β,与β相交,故不正确;由平面垂直的判定定理知:垂直于直线的平面一定与平面α,β都垂直,故正确..设,,表示三条直线,α,β表示两个平面,则下列命题中逆命题不成立的是( ) .⊥α,若⊥β,则α∥β.⊂α,⊄α,若∥α,则∥.⊂β,若⊥α,则β⊥α.,⊂α,∩=,⊥,⊥,若α⊥β,则⊂β解析:选.利用排除法求解.的逆命题为:⊥α,若α∥β,则⊥β,成立;的逆命题为:⊂α,⊄α,若∥,则∥α,成立;的逆命题为:⊂β,若β⊥α,则⊥α,不成立;的逆命题为:,⊂α,∩=,⊥,⊥,若⊂β,则α⊥β,成立,故选..(·江西六校联考)已知,是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若⊥α,⊥β,⊥,则α⊥β;②若∥α,∥β,⊥,则α∥β;③若⊥α,∥β,⊥,则α∥β;④若⊥α,∥β,α∥β,则⊥.其中所有正确命题的序号是( ).①④.②④.①.④解析:选.借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,故①正确;对于②,平面α,β可能垂直,如图()所示,故②不正确;对于③,平面α,β可能垂直,如图()所示,故③不正确;对于④,由⊥α,α∥β可得⊥β,因为∥β,所以过作平面γ,且γ∩β=,如图()所示,所以与交线平行,因为⊥,所以⊥,故④正确.综上,选.二、填空题(本题共小题,每小题分,共分).如图,四棱锥的底面是直角梯形,∥,⊥,=,⊥底面,为的中点,则与平面的位置关系为.解析:取的中点,连接,,在△中,.又因为∥且=,所以,所以四边形是平行四边形,所以∥.又因为⊄平面,⊂平面,所以∥平面.答案:平行.(·山师大附中模拟)若α,β是两个相交平面,则在下列命题中,真命题的序号为.(写出所有真命题的序号)①若直线⊥α,则在平面β内,一定不存在与直线平行的直线;②若直线⊥α,则在平面β内,一定存在无数条直线与直线垂直;③若直线⊂α,则在平面β内,不一定存在与直线垂直的直线;④若直线⊂α,则在平面β内,一定存在与直线垂直的直线.解析:对于①,若直线⊥α如果α,β互相垂直,则在平面β内,存在与直线平行的直线,故①错误;对于②,若直线⊥α,则直线垂直于平面α内的所有直线,在平面β内存在无数条与交线平行的直线,这无数条直线均与直线垂直,故②正确;对于③,④,若直线⊂α,则在平面β内,一定存在与直线垂直的直线,故③错误,④正确.答案:②④.(·沈阳三模)如图,已知四边形为矩形,⊥平面,下列结论中正确的是.(把正确结论的序号都填上)①⊥;②⊥平面;③⊥;④∥平面.解析:对于①,因为⊥,⊥,∩=,所以⊥平面,所以⊥,则①正确;对于②,⊥,当⊥时,⊥平面,但与不一定垂直,故②不正确;对于③,因为⊥,⊥,∩=,所以⊥平面,所以⊥,则③正确;对于④,因为∥,⊄平面,⊂平面,所以∥平面,则④正确.故填①③④.答案:①③④三、解答题(本题共小题,每小题分,共分).(·高考全国卷Ⅱ)如图,四棱锥中,侧面为等边三角形且垂直于底面,==,∠=∠=°.()证明:直线∥平面;()若△的面积为,求四棱锥的体积.解:()证明:在平面内,因为∠=∠=°,所以∥.又⊄平面,⊂平面,故∥平面.()如图,取的中点,连接,.由==及∥,∠=°得四边形为正方形,则⊥.因为侧面为等边三角形且垂直于底面,平面∩平面=,所以⊥,⊥底面.因为⊂底面,所以⊥.设=,则=,=,==,===.如图,取的中点,连接,则⊥,所以===.因为△的面积为,所以××=,解得=-(舍去)或=.于是==,=,=.所以四棱锥的体积=××=..(·山东潍坊模拟)如图,在四棱台中,⊥平面,底面是平行四边形,=,=,∠=°.()证明:⊥;()证明:∥平面.证明:()因为⊥平面,且⊂平面,所以⊥.又因为=,∠=°,在△中,由余弦定理得=°)==,所以+=,即⊥.又∩=,所以⊥平面.又⊂平面,所以⊥.()连接,.设∩=,连接,因为四边形为平行四边形,所以=.由棱台定义及==知,∥且=,所以四边形为平行四边形,因此∥.又因为⊂平面,⊄平面.所以∥平面..(·吉林调研)如图①,在直角梯形中,∥,∠=,===,是的中点,是与的交点.将△沿折起到图②中△的位置,得到四棱锥.()证明:⊥平面;()当平面⊥平面时,四棱锥的体积为,求的值.解:()证明:在题图①中,因为===,是的中点,∠=,所以⊥.即在题图②中,⊥,⊥,从而⊥平面,又∥,所以⊥平面.()由已知,平面⊥平面,且平面∩平面=,又由(),⊥,所以⊥平面,即是四棱锥的高.由题图①知,==,平行四边形的面积=·=.从而四棱锥的体积为=××=××=,由=,得=.。
2018届高考数学文科二轮复习(全国通用):阶段滚动练8(对应1~18练)Word版含解析
阶段滚动练8(对应1~18练)(建议时间:100分钟)一、选择题1.(2017·安徽池州联考)已知集合A ={x |(x -3)(x +1)≥0},B =⎩⎨⎧⎭⎬⎫y |y <-45,则A ∩B 等于( )A.{x |x ≤-1}B.{x |x ≥3}C.⎩⎨⎧⎭⎬⎫x |x <-54D.⎩⎨⎧⎭⎬⎫x |-54≤x <-1答案 A解析 A ={x |x ≥3或x ≤-1},A ∩B ={x |x ≤-1}, 故选A.2.已知i 是虚数单位,z =2-i 2+i -i 2 017,且z 的共轭复数为z ,则z 在复平面内对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 A解析 z =2-i 2+i -i =(2-i )25-i =35-95i ⇒z =35+95i ,故z 在复平面内对应的点在第一象限.3.(2017·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则|a -2b |等于( )A.1B.3C.2D.32答案 A解析 根据条件a ·b =1×12×12=14,∴(a -2b )2=a 2-4a ·b +4b 2=1-4×14+4×14=1,∴|a -2b |=1,故选A.4.已知命题p :“关于x 的方程x 2-4x +a =0有实根”,若綈p 为真命题的充分不必要条件为a >3m +1,则实数m 的取值范围是( ) A.[1,+∞) B.(1,+∞) C.(-∞,1) D.(-∞,1] 答案 B解析 命题p :a ≤4,綈p 为a >4,又綈p 为真命题的充分不必要条件为a >3m +1,故3m+1>4⇒m >1.5.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y +3≥0,x -2y +6≥0,3x -y -2≤0,则目标函数z =x -y 的最小值为( )A.0B.-1C.-3D.-5 答案 D解析 作出可行域:所以当过B 时目标函数取得最小值-4-1=-5.6.如果执行如图的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A.A +B 为a 1,a 2,…,a N 的和B.A +B2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 答案 C解析 不妨令N =3,a 1<a 2<a 3,则有k =1,x =a 1,A =a 1,B =a 1; k =2,x =a 2,A =a 2; k =3,x =a 3,A =a 3, 故输出A =a 3,B =a 1,故选C.7.数列{a n }满足a 1=2,a n +1=a 2n (a n >0),则a n 等于( ) A.10n -2B.10n -1C.1210n -D.122n -答案 D解析 因为数列{a n }满足a 1=2,a n +1=a 2n (a n >0), 所以log 2a n +1=2log 2a n ⇒log 2a n +1log 2a n =2,所以{log 2a n }是公比为2的等比数列, 所以log 2a n =log 2a 1·2n -1⇒a n =122n -.8.某几何体的正(主)视图和侧(左)视图如图(1),它的俯视图的直观图是矩形O 1A 1B 1C 1(如图(2)),其中O 1A 1=3,O 1C 1=1,则该几何体的侧面积及体积为( )A.24,24 2B.32,8 2C.48,24 2D.64,64 2答案 C解析 由三视图可知,该几何体为一个四棱柱:因为它的俯视图的直观图是矩形,所以它的俯视图直观图面积为3,所以它的俯视图面积为62,它的俯视图是边长为3的菱形,棱柱高为4,所以侧面积为3×4×4=48,体积为62×4=24 2.9.已知函数f (x )=3sin ωx cos ωx -4cos 2ωx (ω>0)的最小正周期为π,且f (θ)=12,则f ⎝⎛⎭⎫θ+π2等于( )A.-52B.-92C.-112D.-132答案 B解析 由题意可知, f (x )=32sin 2ωx -2cos 2ωx -2,由最小正周期为π,可得ω=1,又f (θ)=12代入可得,52sin(2θ+φ)=52⎝⎛⎭⎫tan φ=-43,sin(2θ+φ)=1,则f ⎝⎛⎭⎫θ+π2=-52sin(2θ+φ)-2=-92. 10.若圆x 2+y 2-3x -4y -5=0关于直线ax -by =0(a >0,b >0)对称,则双曲线x 2a 2-y 2b2=1的离心率为( ) A.43 B.53 C.54 D.74 答案 C解析 若圆x 2+y 2-3x -4y -5=0关于直线ax -by =0对称,则圆心⎝⎛⎭⎫32,2在直线ax -by =0上,所以32a -2b =0,即b a =34,所以双曲线x 2a 2-y 2b 2=1的离心率e =a 2+b 2a 2=1+⎝⎛⎭⎫b a 2=54,故选C.11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-4x +5,x ≤1,ln x ,x >1,若关于x 的方程f (x )=kx -12恰有四个不相等的实数根,则实数k 的取值范围是( )A.⎝⎛⎭⎫12,eB.⎣⎡⎭⎫12,eC.⎝⎛⎤12,e eD.⎝⎛⎫12,ee 答案 D解析 作出函数图象如图所示.又直线f (x )=kx -12恒过点B (0,-0.5),当直线经过点A 时恰好有三个交点,此时斜率k =0.5, 当直线与ln x 相切时为第二个临界位置, 设切点为(x 0,ln x 0),故切线方程为y -ln x 0=1x 0(x -x 0),过(0,-0.5)得x 0=e ⇒k =ee,故选D. 12.设函数f (x )的定义域为D ,若f (x )满足条件:存在[a ,b ]⊆D (a <b ),使f (x )在[a ,b ]上的值域也是[a ,b ],则称为“优美函数”,若函数f (x )=log 2(4x +t )为“优美函数”,则t 的取值范围是( )A.⎝⎛⎭⎫14,+∞B.(0,1)C.⎝⎛⎭⎫0,12D.⎝⎛⎭⎫0,14 答案 D解析 ∵函数f (x )=log 2(4x +t )是定义域上的单调增函数, 由题意得,若函数为“优美函数”, 则f (x )=x 至少有两个不相等的实数根, 即log 2(4x +t )=x , 整理得4x +t =2x ,∴(2x )2-2x +t =0有两个不相等的实根, ∵2x >0,令λ=2x (λ>0),∴λ2-λ+t =0有两个不相等的正实根,∴⎩⎪⎨⎪⎧Δ=1-4t >0,t >0,解得0<t <14,即t ∈⎝⎛⎭⎫0,14,故选D. 二、填空题13.在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则cos ⎝⎛⎭⎫3π2-A =________. 答案 -32解析 由正弦定理根据边化角可得, 2sin A sin B =3sin B ⇒sin A =32⇒A =π3, 所以cos ⎝⎛⎭⎫3π2-A =-sin A =-32. 14.(2017·江苏)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若P A →·PB →≤20,则点P 的横坐标的取值范围是________. 答案 [-52,1]解析 方法一 因为点P 在圆O :x 2+y 2=50上, 所以设P 点坐标为(x ,±50-x 2)(-52≤x ≤52). 因为A (-12,0),B (0,6),所以P A →=(-12-x ,-50-x 2)或P A →=(-12-x ,50-x 2),PB →=(-x ,6-50-x 2)或PB →=(-x ,6+50-x 2).因为P A →·PB →≤20,先取P (x ,50-x 2)进行计算,所以(-12-x )·(-x )+(-50-x 2)(6-50-x 2)≤20, 即2x +5≤50-x 2.当2x +5≤0,即x ≤-52时,上式恒成立.当2x +5≥0,即x ≥-52时,(2x +5)2≤50-x 2,解得-52≤x ≤1,故x ≤1.同理可得P (x ,-50-x 2)时,得x ≤-5. 又-52≤x ≤52,所以-52≤x ≤1. 故点P 的横坐标的取值范围为[-52,1].方法二 设P (x ,y ),则P A →=(-12-x ,-y ),PB →=(-x ,6-y ). ∵P A →·PB →≤20,∴(-12-x )·(-x )+(-y )·(6-y )≤20, 即2x -y +5≤0.如图,作圆O :x 2+y 2=50,直线2x -y +5=0与⊙O 交于E ,F 两点, ∵P 在圆O 上且满足2x -y +5≤0,∴点P 在 EDF上. 由⎩⎪⎨⎪⎧x 2+y 2=50,2x -y +5=0,得F 点的横坐标为1, 又D 点的横坐标为-52,∴P 点的横坐标的取值范围为[-52,1].15.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )+3m 有3个零点,则实数m 的取值范围是________. 答案 ⎝⎛⎭⎫-13,0 解析 分别作出函数y =f (x )和y =-3m 的图象(略)可知,当0<-3m <1时有三个交点, 故实数m 的取值范围是⎝⎛⎭⎫-13,0. 16.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2且S n +2-3S n +1+2S n +a n =0(n ∈N *),记T n=1S 1+1S 2+…+1S n (n ∈N *),若(n +6)λ≥T n 对n ∈N *恒成立,则λ的最小值为________. 答案 16解析 S n +2-3S n +1+2S n +a n =S n +2-S n +1-2(S n +1-S n )+a n =a n +2-2a n +1+a n =0,即 a n +2-a n +1=a n +1-a n ,∴{a n }为首项为1,公差为2-1=1的等差数列, a n =1+(n -1)×1=n , S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, T n =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1, 由(n +6)λ≥T n 得λ≥2n (n +1)(n +6)=2n +6n+7, ∵当n =2或n =3时,2n +6n +7有最大值16,∴λ≥16,即λ的最小值为16.三、解答题17.(2017·衡水中学押题卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A . (1)求角A 的大小;(2)已知等差数列{a n }的公差不为零,若a 1sin A =1,且a 2,a 4,a 8成等比数列,求⎩⎨⎧⎭⎬⎫4a n a n +1的前n 项和S n .解 (1)由正弦定理可得3sin A cos C =2sin B cos A -3sin C cos A ,从而可得3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32, 又A 为三角形的内角,所以A =π6.(2)设{a n }的公差为d ,因为a 1sin A =1,且a 2,a 4,a 8成等比数列,所以a 1=1sin A=2,且a 24=a 2·a 8, 所以(a 1+3d )2=(a 1+d )(a 1+7d ),且d ≠0,解得d =2, 所以a n =2n ,所以4a n a n +1=1n (n +1)=1n -1n +1,所以S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=nn +1. 18.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ADC ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值. (1)证明 ∵四边形DCBE 为平行四边形, ∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C , ∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2), ∴S △ABC =12AC ·BC =12x ·4-x 2,∴V (x )=V E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤⎝⎛⎭⎫x 2+4-x 222=4,当且仅当x 2=4-x 2,即x =2时,取等号,∴当x =2时,体积有最大值33. 19.已知函数f (x )=(bx -1)e x +a (a ,b ∈R ).(1)如果曲线y =f (x )在点(0,f (0))处的切线方程为y =x ,求a ,b 的值;(2)若a <1,b =2,关于x 的不等式f (x )<ax 的整数解有且只有一个,求a 的取值范围.解 (1)函数f (x )的定义域为R , f ′(x )=b e x +(bx -1)e x =(bx +b -1)e x .因为曲线y =f (x )在点(0,f (0))处的切线方程为y =x ,所以⎩⎪⎨⎪⎧ f (0)=0,f ′(0)=1,得⎩⎪⎨⎪⎧ a -1=0,b -1=1,解得⎩⎪⎨⎪⎧a =1,b =2. (2)当b =2时,f (x )=(2x -1)e x +a (a <1), 关于x 的不等式f (x )<ax 的整数解有且只有一个,等价于关于x 的不等式(2x -1)e x +a -ax <0的整数解有且只有一个. 构造函数F (x )=(2x -1)e x +a -ax ,x ∈R , 所以F ′(x )=e x (2x +1)-a .①当x ≥0时,因为e x ≥1,2x +1≥1,所以e x (2x +1)≥1, 又a <1,所以F ′(x )>0, 所以F (x )在(0,+∞)上单调递增. 因为F (0)=-1+a <0,F (1)=e >0,所以在[0,+∞)上存在唯一的整数x 0=0使得F (x 0)<0,即f (x 0)<ax 0.②当x <0时,为满足题意,函数F (x )在(-∞,0)内不存在整数使F (x )<0,即F (x )在(-∞,-1]上不存在整数使F (x )<0. 因为x ≤-1,所以e x (2x +1)<0. 当0≤a <1时,函数F ′(x )<0, 所以F (x )在(-∞,-1)上为减函数, 所以F (-1)≥0,即32e≤a <1;当a <0时,F (-1)=-3e +2a <0,不符合题意.综上所述,a 的取值范围为⎣⎡⎭⎫32e ,1.20.F 为抛物线C :x 2=2py (p >0)的焦点,直线x =4与抛物线C 交于点Q ,与x 轴交于点P ,且|QF |=54|PQ |.(1)求抛物线C 的方程;(2)过F 的直线l 交抛物线于A ,B 两点,交x 轴于点M ,过点M 作抛物线C 的切线,切点为D (异于原点),求证:2k DF =k DA +k DB .(1)解 设Q (4,m ),代入x 2=2py ,得m =8p ,由抛物线定义得p 2+m =54m ,因此p 2+8p =54·8p ,解得p =2(舍去p =-2),即抛物线C 的方程为x 2=4y .(2)证明 设l :y =kx +1(k ≠0),代入x 2=4y 化简得x 2-4kx -4=0⇒x 1+x 2=4k ,令y =0,得M ⎝⎛⎭⎫-1k ,0. ∵y =14x 2,∴y ′=12x ,设D ⎝⎛⎭⎫t ,t 24,则12t =t 24-0t -⎝⎛⎭⎫-1k ⇒t =-2k,D ⎝⎛⎭⎫-2k ,1k 2, 2k DF =21k 2-1-2k -0=k -1k ,设A (x 1,y 1),B (x 2,y 2),k DA +k DB =x 214-t 24x 1-t +x 224-t 24x 2-t =x 1+t 4+x 2+t 4=4k +2t 4=k -1k ,因此2k DF =k DA +k DB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 规范滚动训练(一)
(建议用时45分钟)
解答题(解答应写出文字说明,证明过程或演算步骤)
1.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A .
(1)求角C 的大小;
(2)若c =2,且△ABC 的面积为3,求a +b 的值.
解:(1)由题意得3a 2c =sin A ,由正弦定理得3sin A 2sin C =sin A ,
又sin A ≠0,∴sin C =32,又0°<C <90°,
∴C =60°.
(2)∵S △ABC =12ab sin 60°=3,∴ab =4.
又c =2,∴由余弦定理得c 2=a 2+b 2-2ab cos 60°,
即4=a 2+b 2
-2ab ·12,即4=(a +b )2-2ab -ab , ∴(a +b )2=4+3ab =16,∴a +b =4.
2.已知函数f (x )=2cos πx ·cos 2φ2+sin[(x +1)π]·sin φ-cos πx ⎝ ⎛⎭
⎪⎫0<φ<π2的部分图象如图所示.
(1)求φ的值及图中x 0的值;
(2)将函数f (x )的图象上的各点向左平移16个单位长度,再将所得图象上各点的横
坐标不变,纵坐标伸长到原来的3倍,得到函数g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值. 解:(1)f (x )=2cos πx ·cos 2φ
2+sin[(x +1)π]·sin φ-cos πx =cos πx ·⎝ ⎛⎭⎪⎫2cos 2φ2-1-sin
πx ·sin φ
=cos πx ·cos φ-sin πx ·sin φ=cos(πx +φ).
由题图可知,cos φ=32,又0<φ<π2,所以φ=π6.
又cos ⎝ ⎛⎭
⎪⎫πx 0+π6=32,所以πx 0+π6=11π6, 所以x 0=53.
(2)由(1)可知f (x )=cos ⎝ ⎛⎭
⎪⎫πx +π6,将图象上的各点向左平移16个单位长度得到y =cos ⎣⎢⎡⎦
⎥⎤π⎝ ⎛⎭⎪⎫x +16+π6 =cos ⎝ ⎛⎭
⎪⎫πx +π3的图象,然后将各点的横坐标不变,纵坐标伸长到原来的3倍后得到g (x )=3cos ⎝ ⎛⎭
⎪⎫πx +π3的图象. 因为x ∈⎣⎢⎡⎦
⎥⎤-12,13,所以-π6≤πx +π3≤2π3. 所以当πx +π3=0,即x =-13时,g (x )取得最大值3;
当πx +π3=2π3,即x =13时,g (x )取得最小值-32.
3.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C ),且m ∥n .
(1)若b 2=ac ,试判断△ABC 的形状;
(2)求y =1-2cos 2A 1+tan A
的值域. 解:(1)由已知,m ∥n ,则2b cos C =2a -c ,
由正弦定理,得2sin B cos C =2sin(B +C )-sin C ,
即2sin B cos C =2sin B cos C +2cos B sin C -sin C ,
在△ABC 中,sin C ≠0,因而2cos B =1,则B =π3.
又b 2=ac ,b 2=a 2+c 2-2ac cos B ,
因而ac =a 2+c 2-2ac cos π3,即(a -c )2=0,
所以a =c ,△ABC 为等边三角形.
(2)y =1-2cos 2A 1+tan A
=1-2(cos 2A -sin 2A )1+sin A cos A
=1-2cos A (cos A -sin A )
=sin 2A -cos 2A =2sin ⎝ ⎛⎭⎪⎫2A -π4,由已知条件B =π3知A ∈⎝ ⎛⎦
⎥⎤0,2π3. 所以,2A -π4∈⎝ ⎛⎭
⎪⎫-π4,3π4. 因而所求函数的值域为(-1,2].
4.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6sin ⎝ ⎛⎭
⎪⎫x +π3,x ∈R . (1)求函数f (x )的最小正周期;
(2)在△ABC 中,若A =π4,c =2,且锐角C 满足f ⎝ ⎛⎭
⎪⎫C 2+π6=12,求△ABC 的面积S .
解:(1)由题意得,
f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6sin ⎝ ⎛⎭
⎪⎫x +π3 =2sin ⎝ ⎛⎭⎪⎫x -π6sin ⎣
⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫x -π6 =2sin ⎝ ⎛⎭⎪⎫x -π6cos ⎝ ⎛⎭
⎪⎫x -π6 =sin ⎝ ⎛⎭
⎪⎫2x -π3, 所以函数f (x )的最小正周期为2π2=π.
(2)由(1)得,f ⎝ ⎛⎭⎪⎫C 2+π6=sin ⎣⎢⎡⎦
⎥⎤2⎝ ⎛⎭⎪⎫C 2+π6-π3=sin C , 所以sin C =12,又角C 为锐角,所以C =π6.
由正弦定理,得a c =sin A sin C =sin π4sin π6
=2212=2, 又c =2,所以a =2 2. 又sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =6+24, 所以△ABC 的面积S =12ac sin B =12×22×2×6+24=1+ 3.。