等差数列与等比数列测试题

合集下载

拉萨市选修二第一单元《数列》测试卷(含答案解析)

拉萨市选修二第一单元《数列》测试卷(含答案解析)

一、选择题1.设n S 是等比数列{}n a 的前n 项和,若423S S =,则64S S =( ) A .2B .73 C .310 D .12或2.已知无穷等比数列{}n a 的各项的和为3,且12a =,则2a =( ) A .13B .25C .23D .323.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1624.已知数列{}n a 满足112a =,121n n a a n n +=++,则n a =( )A .312n- B .321n -+ C .111n -+ D .312n+ 5.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .06.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .77.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .128.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]9.等比数列{} n a 的前n 项和为n S ,若63:3:1S S =,则93:S S =( ) A .4:1B .6:1C .7:1D .9:110.已知等差数列{}n a 中,50a >,470a a +<则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC .6SD .7S11.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .20012.在公差不为零的等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( ) A .nB .1n +C .21n -D .21n二、填空题13.数列{}n a 满足2121231722222n n a a a a n n -+++⋅⋅⋅+=-,若对任意0λ>,所有的正整数n 都有22n k a λλ-+>成立,则实数k 的取值范围是_________.14.数列{}n a 的前n 项和2n S n n =-+,则它的通项公式是n a =__________.15.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.16.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.17.已知正项等比数列满足:,若存在两项使得,则的最小值为 .18.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____.19.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.20.等比数列{}n a 中,11a =,且2436a a a +=,则5a =________.三、解答题21.若数列{}n a ,12,a =且132n n a a +=+. (1)证明{}1n a +是等比数列; (2)设()131n n n a b n n +=⋅+,n T 是其前n 项和,求n T .22.设数列{}n a 的前n 项和为n S ,已知()*214,21n n S a S n N +==+∈.数列{}nb 是首项为1a ,公差不为零的等差数列,且127,,b b b 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)若nn nb c a =,数列{}n c 的前n 项和为n T ,且n T m <恒成立,求m 的取值范围. 23.已知等差数列{}n a 的前n 项和为n S ,若2512a a +=,424S S =. (1)求数列{}n a 的通项公式n a 及n S ; (2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{}n a 的前n 项和为n S ,点(),n n a s 在直线22y x =-,上n *∈N .(1)求{}n a 的通项公式;(2)若n n b n a =+,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 满足1122n n n a a a +=+()N n *∈,11a =. (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式.(2)若记n b 为满足不等式11122k nn a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭()N n *∈的正整数k 的个数,数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求关于n 的不等式4032n S <的最大正整数解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据等比数列的性质求解.在1q ≠-时,24264,,S S S S S --仍成等比数列. 【详解】设24,3S k S k ==,由数列{}n a 为等比数列(易知数列{}n a 的公比1q ≠-),得24264,,S S S S S --为等比数列又242,2S k S S k =-=644S S k ∴-= 67,S k ∴=647733S k S k ∴== 故选:B . 【点睛】结论点睛:数列{}n a 是等比数列,若0m S ≠,则232,,m m m m m S S S S S --成等比数列.简称等比数列的片断和仍成等比数列.注意{}n a 是等比数列与232,,m m m m m S S S S S --成等比数列之间不是充要条件.2.C解析:C 【分析】设等比数列的公比为q ,进而根据题意得()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,从而解得13q =,故223a =【详解】解:设等比数列的公比为q ,显然1q ≠, 由于等比数列{}n a 中,12a = 所以等比数列{}n a 的前n 项和为:()()112111n n n a q q S qq--==--,因为无穷等比数列{}n a 的各项的和为3, 所以()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,所以231q =-,解得13q =, 所以2123a a q ==. 故选:C. 【点睛】本题解题的关键在于根据题意将问题转化为()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,进而根据极限得13q =,考查运算求解能力,是中档题. 3.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N+=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.4.A解析:A 【分析】利用已知条件得到121111n n a a n n n n +-==-++,再用累加法求出数列的通项,用裂项相消法求数的和. 【详解】 由121n n a a n n +=++得:121111n na a n n n n +-==-++, 即1111n n a a n n--=--, 所以()()()121321n n n a a a a a a a a -=+-+-++-111111*********n n n=+-+-++-=--. 故选:A . 【点睛】 方法点睛:递推公式求通项公式,有以下几种方法:型如:()1n n a a f n +-=的数列的递推公式,采用累加法求通项; 形如:()1n na f n a +=的数列的递推公式,采用累乘法求通项; 形如:1n n a pa q +=+ ()()10pq p -≠的递推公式,通过构造转化为()1n n a t p a t +-=-,构造数列{}n a t -是以1a t -为首项,p 为公比的等比数列,形如:1nn n a pa q +=+ ()()10pq p -≠的递推公式,两边同时除以1n q +,转化为1n n b mb t +=+的形式求通项公式;形如:11n n n n a a d a a ++=-,可通过取倒数转化为等差数列求通项公式.5.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=,所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .6.C解析:C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题.7.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.8.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2, 两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0, 由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2, 所以11n a n ++=321++n n =3﹣11n +<3, 因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.9.C解析:C 【分析】利用等比数列前n 项和的性质k S ,2k k S S -,32k k S S -,43k k S S -,成等比数列求解.【详解】因为数列{} n a 为等比数列,则3S ,63S S -,96S S -成等比数列, 设3S m =,则63S m =,则632S S m -=,故633S S S -=96632S S S S -=-,所以964S S m -=,得到97S m =,所以937S S =. 故选:C. 【点睛】本题考查等比数列前n 项和性质的运用,难度一般,利用性质结论计算即可.10.B解析:B 【分析】根据50a >和470a a +<判断出数列的单调性,根据数列的单调性确定出n S 的最大值. 【详解】因为470a a +<,所以560a a +<,又因为50a >,所以60a <, 因为{}n a 为等差数列,所以650d a a =-<,所以{}n a 为单调递减数列, 所以n S 的最大值为5S , 故选:B. 【点睛】本题考查根据等差数列的单调性求解前n 项和的最大值,难度一般.求解等差数列前n 项和的最值,关键是分析等差数列的单调性,借助单调性可说明n S 有最大值还是最小值并且求解出对应结果.11.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。

《数列》单元测试题(含答案解析)

《数列》单元测试题(含答案解析)

《数列》单元练习试题一、选择题1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( )(A )1 (B )2 (C )3 (D )02.一个等差数列的第5项等于10,前3项的和等于3,那么( )(A )它的首项是2-,公差是3 (B )它的首项是2,公差是3- (C )它的首项是3-,公差是2 (D )它的首项是3,公差是2- 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则=24a S ( ) (A )2 (B )4 (C )215 (D )2174.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( )(A )54S S < (B )54S S = (C )56S S < (D )56S S = 5.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A )0 (B )3- (C )3 (D )236.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A )130 (B )170 (C )210 (D )2607.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( )(A )5481a a a a +>+ (B )5481a a a a +<+(C )5481a a a a +=+ (D )81a a +和54a a +的大小关系不能由已知条件确定 8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=⋅⋅⋅⋅a a a a ,那么30963a a a a ⋅⋅⋅⋅ 等于( )(A )210(B )220(C )216(D )21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )二、填空题11.已知等差数列}{n a 的公差0≠d ,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值是.12.等比数列}{n a 的公比0>q .已知12=a ,n n n a a a 612=+++,则}{n a 的前4项和=4S . 13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是8.5℃,5km 高度的气温是-17.5℃,那么3km 高度的气温是℃. 14.设21=a ,121+=+n n a a ,21n n n a b a +=-,∈n N *,则数列}{n b 的通项公式=n b . 15.设等差数列}{n a 的前n 项和为n S ,则4S ,48S S -,812S S -,1216S S -成等差数列.类比以上结论有:设等比数列}{n b 的前n 项积为n T ,则4T ,,,1216T T 成等比数列. 三、解答题16.已知}{n a 是一个等差数列,且12=a ,55-=a .(Ⅰ)求}{n a 的通项n a ;(Ⅱ)求}{n a 的前n 项和n S 的最大值.17.等比数列}{n a 的前n 项和为n S ,已知1S ,3S ,2S 成等差数列.(Ⅰ)求}{n a 的公比q ; (Ⅱ)若331=-a a ,求n S .18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?19.设数列}{n a 满足333313221n a a a a n n =++++- ,∈n N *. (Ⅰ)求数列}{n a 的通项;(Ⅱ)设nn a nb =,求数列}{n b 的前n 项和n S .20.设数列}{n a 的前n 项和为n S ,已知11=a ,241+=+n n a S .(Ⅰ)设n n n a a b 21-=+,证明数列}{n b 是等比数列; (Ⅱ)求数列}{n a 的通项公式.21.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n an n n b 2)1(41⋅-+=-λ(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n b b >+1成立.数列测试题一、选择题(每小题5分,共60分)1.等差数列{a n }中,若a 2+a 8=16,a 4=6,则公差d 的值是( )A .1B .2C .-1D .-22.在等比数列{a n }中,已知a 3=2,a 15=8,则a 9等于( )A .±4B .4C .-4D .163.数列{a n }中,对所有的正整数n 都有a 1·a 2·a 3…a n =n 2,则a 3+a 5=( )A.6116B.259C.2519D.31154.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( )A .8B .-8C .±8D.985.等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( )A .130B .65C .70D .756.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .97.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N +,则S 10的值为( )8.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4 C.2D .49.首项为-24的等差数列,从第10项开始为正数,则公差d 的取值围是( ) A .d >83 B .d <3C.83≤d <3D.83<d ≤3 10.等比数列{}n a 中,首项为1a ,公比为 q ,则下列条件中,使{}n a 一定为递减数列的条件是( ) A .1q < B 、10,1a q >< C 、10,01a q ><<或10,1a q <> D 、1q >11. 已知等差数列{}n a 共有21n +项,所有奇数项之和为130,所有偶数项之和为120,则n 等于( )A.9B.10C.11D.12 12.设函数f (x )满足f (n +1)=2)(2nn f + (n ∈N +),且f (1)=2,则f (20)为( ) A .95B .97C .105D .192二、填空题(每小题5分,共20分.把答案填在题中的横线上)13.已知等差数列{a n }满足:a 1=2,a 3=6.若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________. 14.已知数列{a n } 中,a 1=1且31111+=+n n a a (n ∈ N +),则a 10= 15.在数列{a n }中,a 1=1,a 2=2,且满足)2)(1(31≥-=+-n n a a n n ,则数列{a n }的通项公式为=n a 16.已知数列满足:a 1=1,a n +1=a na n +2,(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值围为三、解答题(本大题共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N +). (1)求数列{a n }的通项公式;(2)求数列{a n }的前20项和为S 20.18.(12分)已知数列}{n a 前n 项和n n S n 272-=,(1)求|}{|n a 的前11项和11T ;(2) 求|}{|n a 的前22项和22T ;19.(12分)已知数列}{n a 各项均为正数,前n 项和为S n ,且满足2S n =2n a + n -4(n ∈N +). (1)求证:数列}{n a 为等差数列;(2)求数列}{n a 的前n 项和S n .20.(12分)数列{}n a 的前n 项和记为n S ,()111,211n n a a S n +==+≥. (1)求{}n a 的通项公式;(2)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .21.(12分)已知数列{a n },{b n }满足a 1=2,2a n =1+a n a n +1,b n =a n -1(b n ≠0). (1)求证数列{1b n}是等差数列;(2)令11+=n n a c ,求数列{n c }的通项公式.22.(12分)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .《数列》单元测试题 参考答案 一、选择题1.D 2.A 3.C 4.B5.B 6.C 7.A 8.A 9.B 10.C 二、填空题11.1613 12.21513.-4.5 14.12+n 15.48T T ,812T T 三、解答题16.(Ⅰ)设}{n a 的公差为d ,则⎩⎨⎧-=+=+.54,111d a d a 解得⎩⎨⎧-==.2,31d a ∴52)2()1(3+-=-⨯-+=n n a n .(Ⅱ)4)2(4)2(2)1(322+--=+-=-⨯-+=n n n n n n S n .∴当2=n 时,n S 取得最大值4.17.(Ⅰ)依题意,有3212S S S =+,∴)(2)(2111111q a q a a q a a a ++=++,由于01≠a ,故022=+q q ,又0≠q ,从而21-=q . (Ⅱ)由已知,得3)21(211=--a a ,故41=a ,从而])21(1[38)21(1])21(1[4n n n S --=----⨯=.18.(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n , 整理,得0140132=-+n n ,解得7=n ,20-=n (舍去). 第1次相遇是在开始运动后7分钟. (Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n , 整理,得0420132=-+n n ,解得15=n ,28-=n (舍去). 第2次相遇是在开始运动后15分钟.19.(Ⅰ)∵333313221na a a a n n =++++- ,① ∴当2≥n 时,31333123221-=++++--n a a a a n n . ② 由①-②,得3131=-n n a ,n n a 31=.在①中,令1=n ,得311=a .∴n n a 31=,∈n N *. (Ⅱ)∵nn a n b =,∴n n n b 3⋅=,∴nn n S 33332332⋅++⨯+⨯+= ,③ ∴14323333233+⋅++⨯+⨯+=n n n S . ④即31)31(3321---⋅=+n n n n S ,∴4343)12(1+-=+n n n S . 20.(Ⅰ)由11=a ,241+=+n n a S ,有24121+=+a a a ,∴52312=+=a a ,∴32121=-=a a b .∵241+=+n n a S ,①∴241+=-n n a S (2≥n ), ②由①-②,得1144-+-=n n n a a a ,∴)2(2211-+-=-n n n n a a a a ,∵n n n a a b 21-=+,∴12-=n n b b ,∴数列}{n b 是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ),得11232-+⋅=-=n n n n a a b ,∴432211=-++n n n n a a , ∴数列}2{nn a 是首项为21,公差为43的等差数列, ∴414343)1(212-=⨯-+=n n a nn ,∴22)13(-⋅-=n n n a . 21.(Ⅰ)由已知,得()()111n n n n S S S S +----=(2n ≥,*n ∈N ),即11n n a a +-=(2n ≥,*n ∈N ),且211a a -=,∴数列{}n a 是以12a =为首项,1为公差的等差数列,∴1n a n =+.(Ⅱ)∵1n a n =+,∴114(1)2n n n n b λ-+=+-⋅,要使n n b b >+1恒成立,∴()()112114412120n n n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立, ∴()11343120n nn λ-+⋅-⋅->恒成立,∴()1112n n λ---<恒成立.(ⅰ)当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1,∴1λ<.(ⅱ)当n 为偶数时,即12n λ->-恒成立,当且仅当2n =时,12n --有最大值2-,∴2λ>-.∴21λ-<<,又λ为非零整数,则1λ=-.综上所述,存在1λ=-,使得对任意*n ∈N ,都有1n n b b +>.数列试题答案1---12:BBAB AAD C DCDB13---16:-11,41,⎪⎪⎩⎪⎪⎨⎧--=)(223)(213为偶数为奇数n n n n a n ,λ<2 17.解:(1)∵数列{a n }满足a n +2-2a n +1+a n =0,∴数列{a n }为等差数列,设公差为d .∴a 4=a 1+3d ,d 2-8=-2.∴a =a +(n -1)d =8-2(n -1)=10-2n .(2) S =)9(n n -得S = -22018.解:n n S n 272-=282-=∴n a n ∴当14<n 时,0<n a 14≥n 时0≥n a(1)||||||112111a a a T +++= 176)(11111=-=++-=S a a (2)|)||(|)||||(|2214132122a a a a a T ++++++=2215141321)(a a a a a a +++++++-= 132213S S S -+-=25421322=-=S S19.(1)证明:当n=1时,有2a 1=+1-4,即-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n-1=+n-5,又2S n =+n-4,两式相减得2a n =-+1,即-2a n +1=,也即(a n -1)2=,因此a n -1=a n-1或a n -1=-a n-1.若a n -1=-a n-1,则a n +a n-1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n-1,即a n -a n-1=1,因此数列{a n }为等差数列.(2)解:由(1)知a 1=3,d=1,所以数列{a n }的通项公式a n =3+(n-1)×1=n+2,即a n =n+2.得252nn S n +=21.(1)证明:∵b n =a n -1,∴a n =b n +1.又∵2a n =1+a n a n +1,∴2(b n +1)=1+(b n +1)(b n +1+1).化简得:b n -b n +1=b n b n +1.∵b n ≠0,∴b n b n b n +1-b n +1b n b n +1=1.即1b n +1-1b n=1(n ∈N +). 又1b 1=1a 1-1=12-1=1,∴{1b n }是以1为首项,1为公差的等差数列. (2)∴1b n =1+(n -1)×1=n .∴b n =1n .∴a n =1n +1=n +1n.∴1211+=+=n na c n n。

等比数列基础练习题及答案

等比数列基础练习题及答案

等比数列基础练习题及答案一.选择题1.已知{an}是等比数列,a2=2,a5=,则公比q=4.已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值是7.已知数列{an}满足,其中λ为实常数,则数列{an} *n12.已知等比数列{an}中,a6﹣2a3=2,a5﹣2a2=1,则等比数列{an}的公比是15.在等比数列{an}中,,则tan=17.设等比数列{an}的前n项和为Sn,若=3,则= 222.在等比数列{an}中,若a3a4a5a6a7=243,则的值为2二.填空题28.已知数列{an}中,a1=1,an=2an﹣1+3,则此数列的一个通项公式是29.数列30.等比数列{an}的首项a1=﹣1,前n项和为Sn,若,则公比q等于 _________ .的前n项之和是22参考答案与试题解析一.选择题1.已知{an}是等比数列,a2=2,a5=,则公比q=4.已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值是7.已知数列{an}满足,其中λ为实常数,则数列{an} 数列测试题优能提醒:请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题:1.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于B2.设数列{an}的前n项和,则a8的值为A3.数列1,﹣3,5,﹣7,9,…的一个通项公式为A. an=2n﹣1C. an=nB. an=n D. an=nB4.已知数列?an?的前n项和为Sn,且Sn?2an?1,则a5? A.?16B.1C.31 D.32B5.在公比为整数的等比数列{an}中,如果a1+a4=18,a2+a3=12,那么该数列的前8项之和为C6.已知数列{an}满足:a1=1,an=2an﹣1+1,则a4=A.0 B. 1C.1 D. 15D7.设等差数列?an?的公差d不为0,a1?9d 若ak是a1与a2k的等比中项,则k?等差数列{an}中,已知a3?5,a2?a5?12,an?29,则n?__________. 1511.在等比数列?an?中,已知a1a2a3?5,a7a8a9?40,则a5a6a7?2012.已知数列{an}满足an?2n?1?2n?1,则数列{an}的前n 项和Sn?_______.Sn?2n?n2?113.在等差数列?an?中,已知a2?a7?a8?a9?a14?70,则a8?.1414.在数列?an?中,已知a1?a2?1,an?2?an?1?an815.已知?an?等差数列Sn为其前n项和.若a1??n?N?,则a*6 ?___________.1,S2?a3,则a21等差数列{an}中,已知a3?5,a2?a5?12,an?29,则n?__________ 1517.在各项均为正数的等比数列{an}中,若a3a8=9,则log3a1+log3a10218.已知{an}是首项a1=1,公差d=3的等差数列,如果an=2005,则序号n等于.66919.等比数列{an}中,已知a+a2+a3=7,a1a2a3=8,且{an}为递增数列,则a4820.已知三个数﹣7,a,1成等差数列,则a等于.﹣321.等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______-222.在等比数列{an}中,若,则公比q的值等于.﹣或123.等比数列{an}中,公比q?1,其前3项和S3?3a1,则q=?2考点:等比数列求和24.设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=___________?3525.若等比数列?an?满足a2a4?1,则a1a32a5?__________.1426.已知递增的等差数列?an?满足a1?1,a3?a2?4,则an=____?2n-127.s13设等差数列?an?的前n项和为Sn,若a7?7a4,则s7= .1328.设数列{an}的前n项和Sn?n2?n,则a7的值为__.1429.参考答案与试题解析一.选择题1.已知{an}是等比数列,a2=2,a5=,则公比q=4.已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值是7.已知数列{an}满足,其中λ为实常数,则数列{an} *n。

等比数列精选高考题

等比数列精选高考题

高二数学《等比数列》专题练习题 注意事项:1.考察内容:等比数列 2.题目难度:中等题型3.题型方面:10道选择,4道填空,4道解答。

4.参考答案:有详细答案5.资源类型:试题/课后练习/单元测试 一、选择题1.等比数列{}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++L =A .12B .10C .8D .2+3log 52.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则=1020a a ( )A.32 B.23 C. 32或23 D. -32或-233.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( )A .16B .24C .48D .1284.实数12345,,,,a a a a a 依次成等比数列,其中a 1=2,a 5=8,则a 3的值为( ) A. -4 B.4 C . ±4 D. 55.设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69S S =A . 2 B.73C. 83D.36.等比数列{}n a 的前n 项和为n S ,若242S S =,则公比为( ) A.1 B.1或-1 C.21或21- D.2或-27.已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为 A .15 B .17 C .19 D .218.已知等比数列{}na 的首项为8,nS 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现了其中一个数算错了,则该数为 ( ) A 、 S 1 B 、S 2 C 、 S 3 D 、 S 49.已知数列{}n a 的前n 项和n n S aq =(0a ≠,1q ≠,q 为非零常数),则数列{}n a 为( )A.等差数列B.等比数列C.既不是等比数列也不是等差数列D.既是等差数列又是等比数列10.某人为了观看2008年奥运会,从2001年起每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并且每年到期的存款及利息均自动转为新一年定期,到2008年将所有的存款和利息全部取回,则可取回的钱的总数(元)为( ).A a(1+p)7B a(1+p)8C )]1()1[(7p p pa +-+ D )1()1[(8p p pa +-+]二、填空题11.若各项均为正数的等比数列{}n a 满足23123a a a =-,则公比q = . 12.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则=+221b a a ______.13.等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S = _____14.等比数列{}n a 的前n 项和n S =22-+⋅a a n ,则n a =_______. 三、解答题15.设二次方程2110()n n a x a x n N *+-+=∈有两个实根α和β,且满足6263ααββ-+=. (1)试用n a 表示1n a +; (2)求证:2{}3na -是等比数列; (3)当176a=时,求数列{}n a 的通项公式.16.已知数列{}n a 满足:111,1,22,n n n a n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数,且*22,n n b a n N =-∈(Ⅰ)求234,,a a a ;(Ⅱ)求证数列{}n b 为等比数列并求其通项公式; (Ⅲ)求和2462n nT a a a a =+++L17.在等比数列{}n a 中,,11>a 公比0>q ,设n n a b 2log =,且.0,6531531==++b b b b b b(1)求证:数列{}n b 是等差数列;(2)求数列{}n b 的前n 项和n S 及数列{}n a 的通项公式; (3)试比较n a 与n S 的大小.18.等比数列{}n a 的前n 项和为n S ,已知231,,S S S 成等差数列. (1)求{}n a 的公比q ; (2)若331=-a a ,求n S .答案一、选择题 1.B 2.C 3.A 4.B 5.B 6.B 7.A 8.D 9.C 10.D二、填空题11.3212.25;解析:∵1, a 1, a 2, 4成等差数列,∴12145a a +=+=;∵1, b 1, b 2, b 3, 4成等比数列,∴22144b =⨯=,又2210b q =⨯>,∴22b =;∴=+221b a a 25;13.15214.12-n三、解答题15.(1)解析:11,n nna a a αβαβ++==,而6263ααββ-+=,得1623n n na a a +-=, 即1623n n a a +-=,得11123n n aa +=+; (2)证明:由(1)11123n n a a +=+,得1212()323n n a a +-=-,所以2{}3na -是等比数列;(3)解析:当176a =时,2{}3na -是以721632-=为首项,以12为公比的等比数列,1211()322n n a --=⨯,得21()()32n na n N *=+∈.16.解析:(Ⅰ)2335,,22aa ==-474a = (Ⅱ)当2(21)12112,22(21)22n n n n n ba a a n -+-≥=-=-=+--时 222(1)1111[2(22)](21)2[2]222n n n a n n a b ---=--+--=-= ∴12122b a =-=-又 ∴1111()()222n n nb -=-⋅=-(Ⅲ)∵22n n a b =+ ∴242n n T a a a =++L=12(2)n b b b n ++++L 11[1()]1222()2 1.1212n n n n -=-+=+-- 17.解析:(1)由已知q a a b b nn n n log log 121==-++为常数.故数列{}n b 为等差数列,且公差为.log 2q d = (先求q 也可) 4分 (2)因0log ,11211>=⇒>a b a ,又263531=⇒=++b b b b ,所以.05=b由.291,404,22211513⎩⎨⎧-=⇒-==⇒=+==+=n n S d b d b b d b b n 由*511212,221,164log 1log N n a q a a b q d n n ∈=⇒==⇒⎩⎨⎧==-==-. 8分(3)因,0>na 当9≥n 时,0≤n S ,所以9≥n 时,n n S a >;又可验证2,1=n 是时,n nS a >;8,7,6,5,4,3=n 时,n n S a <. 12分18.解析:(1)由题意有)(2)(2111111q a q a a q a a a ++=++ ,又0,01≠≠q a ,故.21-=q(2)由已知得.43)21(1211=⇒=--a a a从而].)21(1[38)21(1])21(1[4n n n S --=----=高二数学必修5《等比数列》练习卷知识点:1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.3、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.4、通项公式的变形:1n m n m a a q -=;2()11n n a a q --=;311n n a q a -=;4n m n ma q a -=.5、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅. 同步练习:1、在等比数列{}n a 中,如果66a =,99a =,那么3a 为( )A .4B .32C .169D .22、若公比为23的等比数列的首项为98,末项为13,则这个数列的项数是( )A .3B .4C .5D .63、若a 、b 、c 成等比数列,则函数2y ax bx c =++的图象与x 轴交点的个数为( ) A .0 B .1 C .2 D .不确定4、已知一个等比数列的各项为正数,且从第三项起的任意一项均等于前两项之和,则此等比数列的公比为( ) AB.(112±C.(112+D.(1125、设1a ,2a ,3a ,4a 成等比数列,其公比为2,则123422a a a a ++的值为( ) A .14B .12C .18D .16、如果1-,a ,b ,c ,9-成等比数列,那么( )A .3b =,9ac =B .3b =-,9ac =C .3b =,9ac =-D .3b =-,9ac =-7、在等比数列{}n a 中,11a =,103a =,则23456789a a a a a a a a 等于( ) A .81B.CD .2438、在等比数列{}n a 中,()9100a a a a +=≠,1920a a b +=,则99100a a +等于( ) A .98b a B .9b a ⎛⎫ ⎪⎝⎭C .109b aD .10b a ⎛⎫⎪⎝⎭9、在等比数列{}n a 中,3a 和5a 是二次方程250x kx ++=的两个根,则246a a a 的值为( ) A .25B.C.-D.±10,则它的第四项是( ) A .1 BCD.11、随着市场的变化与生产成本的降低,每隔5年计算机的价格降低13,2000年价格为8100元的计算机到2015年时的价格应为( ) A .900元B .2200元C .2400元D .3600元12、若数列{}n a 为等比数列,则下列数列中一定是等比数列的个数为( )1{}2n a ;21n a ⎧⎫⎨⎬⎩⎭;3{}n a ;4{}2log n a ;5{}1n n a a +⋅;6{}1n n a a ++A .3B .4C .5D .613、在等比数列{}n a 中,若39a =-,71a =-,则5a 的值为( ) A .3 B .3- C .3或3-D .不存在14、等比数列{}n a 中,236a a +=,238a a =,则q =( ) A .2B .12C .2或12D .12-或2-15、在等比数列{}n a 中,首项10a <,若{}n a 是递增数列,则公比q 满足( ) A .1q > B .1q < C .01q << D .0q <16、若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2 B .1或2- C .1-或2- D .1-或217、已知等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则4a 等于( ) A .8 B .10 C .12 D .1418、生物学中指出:生态系统中,在输入一个营养级的能量中,大约有10%~20%的能量能够流动到下一个营养级(称为能量传递率),在123456H →H →H →H →H →H 这条生物链中,若使6H 获得10kJ 的能量,则需要1H 最多提供的能量是( )A .410kJB .510kJC .610kJD .710kJ19、已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a =( ) A .4- B .6- C .8-D .10-20、数列{}n a 满足()1123n n a a n -=-≥,143a =,则4a =_________.21、若{}n a 是等比数列,且0n a >,若243546225a a a a a a ++=,那么35a a +的值等于________.22、若{}n a 为等比数列,且4652a a a =-,则公比q =________.23、首项为3的等比数列的第n 项是48,第23n -项是192,则n =________. 24、在数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =______________.25、已知等比数列{}n a 中,33a =,10384a =,则该数列的通项n a =_________________.26、已知数列{}n a 为等比数列. 1若54a =,76a =,求12a ;2若4224a a -=,236a a +=,125n a =,求n .27、已知数列{}n a 为等比数列,32a =,24203a a +=,求{}n a 的通项公式.28、若数列{}n a 满足关系12a =,132n n a a +=+,求数列的通项公式.29、有四个实数,前3个数成等比数列,它们的积为216,后3个数成等差数列,它们的和为12,求这四个数.高一数学同步测试(12)—等比数列一、选择题:1.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列 ②{ca n }(c ≠0)也是等比数列 ③{na 1}也是等比数列 ④{ln a n }也是等比数列A .4B .3C .2D .12.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( ) A .216 B .-216 C .217 D .-217 3.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( ) A .1 B .-21 C .1或-1 D .-1或214.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .25.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=06.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( ) A .1.1 4 a B .1.1 5 a C .1.1 6 a D . (1+1.1 5)a7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100等于 ( )A .89abB .(ab )9C .910abD .(ab )108.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为 ( ) A .32 B .313 C .12 D .159.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( ) A .11n B .11n C .112-n D .111-n10.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=L ,那么36930a a a a ⋅⋅⋅⋅L 等于 ( ) A .102 B .202 C .162 D .15211.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( ) A .全体实数 B .-1 C .1 D .312.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6] 二、填空题:13.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =________.14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.15.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10= .16.数列{n a }中,31=a 且n a a n n (21=+是正整数),则数列的通项公式=n a . 三、解答题:17.已知数列满足a 1=1,a n +1=2a n +1(n ∈N*) (1) 求证数列{a n +1}是等比数列; (2) 求{a n }的通项公式.18.在等比数列{a n }中,已知对n ∈N*,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.19.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .20.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1(x≠0).21.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.22.某城市1990年底人口为50万,人均住房面积为16 m 2,如果该市每年人口平均增长率为1%,每年平均新增住房面积为30万 m 2,求2000年底该市人均住房的面积数.(已知1.015≈1.05,精确到0.01 m 2)参考答案一、选择题: BDCAD BACDB BC 二、填空题:13.2, 3·2n -2.14.251+.15.512 .16.123-n .三、解答题:17.(1)证明: 由a n +1=2a n +1得a n +1+1=2(a n +1) 又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n -1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n -118.解析: 由a 1+a 2+…+a n =2n -1 ①n ∈N*知a 1=1且a 1+a 2+…+a n -1=2n -1-1 ②由①-②得a n =2n -1,n ≥2又a 1=1,∴a n =2n -1,n ∈N*212221)2()2(-+=n n nn a a =4即{a n 2}为公比为4的等比数列∴a 12+a 22+…+a n 2=)14(3141)41(21-=--nn a 19.解析一: ∵S 2n ≠2S n ,∴q ②÷①得:1+q n =45即q n =41③③代入①得qa -11=64④∴S 3n =qa -11(1-q 3n )=64(1-341)=63解析二: ∵{a n }为等比数列 ∴(S 2n -S n )2=S n (S 3n -S 2n )∴S 3n =48)4860()(22222-=+-n n n n S S S S +60=6320.解析:当x =1时,S n =1+3+5+…+(2n -1)=n 2当x ≠1时,∵S n =1+3x +5x 2+7x 3+…+(2n -1)x n -1, ① 等式两边同乘以x 得:xS n =x +3x 2+5x 3+7x 4+…+(2n -1)x n . ②①-②得:(1-x )S n =1+2x (1+x +x 2+…+x n -2)-(2n -1)x n =1-(2n -1)x n +根据已知条件⎪⎪⎩⎪⎪⎨⎧-=-=--q q a q q a n n 160)1(481)1(211① ②1)1(21---x x x n , ∴S n =21)1()1()12()12(-+++--+x x x n x n n n . 21.解析:∵a 1a n =a 2a n -1=128,又a 1+a n =66,∴a 1、a n 是方程x 2-66x +128=0的两根,解方程得x 1=2,x 2=64, ∴a 1=2,a n =64或a 1=64,a n =2,显然q ≠1. 若a 1=2,a n =64,由qqa a n --11=126得2-64q =126-126q ,∴q =2,由a n =a 1q n -1得2n -1=32, ∴n =6. 若a 1=64,a n =2,同理可求得q =21,n =6.综上所述,n 的值为6,公比q =2或21.22.解析:依题意,每年年底的人口数组成一个等比数列{a n }:a 1=50,q =1+1%=1.01,n =11 则a 11=50×1.0110=50×(1.015)2≈55.125(万),又每年年底的住房面积数组成一个等差数列{b n }:b 1=16×50=800,d =30,n =11∴b 11=800+10×30=1100(万米2)因此2000年底人均住房面积为:1100÷55.125≈19.95(m 2)1.3.1等比数列一、选择题1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-92.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .813.在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为( )A. B. C .2 D .34.一个数分别加上20,50,100后得到的三数成等比数列,其公比为( )A. B. C. D.5.若正项等比数列{a n}的公比q≠1,且a3,a5,a6成等差数列,则等于( )A. B. C. D.不确定二、填空题6.在等比数列{a n}中,a1=1,a5=16,则a3=________.7.首项为3的等比数列的第n项是48,第2n-3项是192,则n=________.8.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.三、解答题9.等比数列的前三项和为168,a2-a5=42,求a5,a7的等比中项.1.答案 B解析∵b2=(-1)×(-9)=9且b与首项-1同号,∴b=-3,且a,c 必同号.2.答案 B解析由已知a1+a2=1,a3+a4=9,∴q2=9.∴q=3(q=-3舍),∴a4+a5=(a3+a4)q=27.3.答案 A解析∵a4a6=a,∴a4a5a6=a=3,得a5=3.∵a1a9=a2a8=a,∴log3a1+log3a2+log3a8+log3a9=log3(a1a2a8a9)=log3a=log33=.4.答案 A解析设这个数为x,则(50+x)2=(20+x)·(100+x),解得x=25,∴这三个数为45,75,125,公比q为=.5.答案 A解析a3+a6=2a5,∴a1q2+a1q5=2a1q4,∴q3-2q2+1=0,∴(q-1)(q2-q -1)=0 (q≠1),∴q2-q-1=0,∴q= (q=<0舍去),∴==.6.答案 4解析q4==16,∴q2=4,a3=a1q2=4.7.答案 5解析设公比为q,则⇒⇒q2=4,得q=±2.由(±2)n-1=16,得n=5.9.解由题意可列关系式:②÷①得:q (1-q )==,∴q =,∴a 1===96.又∵a 6=a 1q 5=96×=3,∴a 5,a 7的等比中项为3.10.设{a n }、{b n }是公比不相等的两个等比数列,C n =a n +b n , 证明数列{C n }不是等比数列.证明 设{a n }、{b n }的公比分别为p 、q ,p ≠0,q ≠0,p ≠q ,C n =a n +b n . 要证{C n }不是等比数列,只需证C ≠C 1·C 3.8.答案解析 设三边为a ,aq ,aq 2 (q >1),则(aq 2)2=(aq )2+a 2,∴q 2=. 较小锐角记为θ,则sin θ==.高二数学必修5《等比数列的前n 项和》练习卷知识点:1、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.2、等比数列的前n 项和的性质:1若项数为()*2n n ∈N ,则Sq S =偶奇.2n n m n m S S q S +=+⋅.3n S ,2n n S S -,32n n S S -成等比数列.同步练习:1、数列1,a ,2a ,…,1n a -,…的前n 项和是( )A .11na a--B .111n a a+--C .211n a a+-- D .以上均不正确2、若数列的前n 项和为()10n n S a a =-≠,则这个数列是( )A .等比数列B .等差数列C .等比或等差数列D .非等差数列3、等比数列{}n a 的首项为1,公比为q ,前n 项和为S ,由原数列各项的倒数组成一个新数列1n a ⎧⎫⎨⎬⎩⎭,则1n a ⎧⎫⎨⎬⎩⎭的前n 项之和是( )A .1SB .1n q SC .1n Sq -D .nq S4、已知数列{}n a 的前n 项的和是n S ,若12n n n S S a +-=,则{}n a 是( )A .递增的等比数列B .递减的等比数列C .摆动的等比数列D .常数列5、某工厂去年产值为a ,计划5年内每年比上一年产值增长10%,从今年起五年内这个工厂的总产值是( ) A .41.1a B .51.1a C .()5101.11a - D .()2111.11a -6、等比数列前n 项和为54,前2n 项和为60,则前3n 项和为( ) A .54B .64C .2663D .26037、在等比数列中,301013S S =,1030140S S +=,则20S =( ) A .90B .70C .40D .308、等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为( )A .81B .120C .168D .192 9、一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180B .108C .75D .6310、在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数是( ) A .4 B .5 C .6 D .711、数列1,12+,2122++,…,(2122+++…12n -+),…的前n 项和等于( ) A .12n n +- B .122n n +--C .2n n -D .2n12、首项为a 的数列{}n a 既是等差数列,又是等比数列,则这个数列前n 项和为( ) A .1n a -B .naC .n aD .()1n a -13、设等比数列{}n a 的前n 项和为n S ,前n 项的倒数之和为n T ,则n nS T 的值为( )A .1n a aB .1na a C .1n n n a aD .1nn a a ⎛⎫ ⎪⎝⎭14、某林厂年初有森林木材存量S 3m ,木材以每年25%的增长率生长,而每年末要砍伐固定的木材量x 3m ,为实现经过两年砍伐后的木材的存量增加50%,则x 的值是( ) A .32S B .34S C .36S D .38S 15、已知数列{}n a 的前n 项和为()20,0n n S b a a b =⨯+≠≠.若数列{}n a 是等比数列,则a 、b 应满足的条件为()A .0a b -=B .0a b -≠C .0a b +=D .0a b +≠16、在正项等差比数列{}n a 中,若27S =,691S =,则4S 的值为( ) A .28 B .32 C .35 D .4917、等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132log log a a ++…310log a +=( ) A .12B .10C .8D .32log 5+18、等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( ) A .C A+B = B .2C B =AC .2C A +B -=BD .()22C A +B =A B+19、一个等比数列{}n a 共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为( )A .65B .56C .20D .11020、已知等比数列{}n a 的公比为13q =,且135a a a +++…9960a +=,则1234a a a a ++++…100a +=( )A .100B .80C .60D .40 21、若等比数列{}n a 的前n 项之和3n n S a =+,则a =( )A .3B .1C .0D .1-22、数列12,14,18,…的前10项和等于____________________.23、在等比数列{}n a 中,1220a a +=,3440a a +=,则6S =________.24、在等比数列{}n a 中,设11a =-,前n项和为nS ,若1053132S S =,则n S =_____________.25、若数列{}n a 满足:11a =,12n na a +=,1n =,2,3…,则12a a ++…n a +=________.26、在等比数列{}n a 中,332a =,392S =,则1a =___________.27、等比数列{}n a 中,若166n a a +=,21128n a a -⋅=,126n S =,则q =________. 28、一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.29、等比数列{}n a 中前n 项和为n S ,42S =,86S =,求17181920a a a a +++的值. 30、等比数列{}n a 的前n 项和为n S ,若510S =,1050S =,求15S .31、等比数列{}n a 的前n 项和为n S ,已知41S =,817S =,求{}n a 的通项公式. 高二数学必修5《等比数列》练习卷 知识点:1、如果一个数列从第 项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在 与 中间插入一个数 ,使 , , 成等比数列,则 称为 与 的等比中项.若 ,则称 为 与 的等比中项.3、若等比数列 的首项是 ,公比是 ,则 .4、通项公式的变形:① ;② ;③ ;④ .5、若 是等比数列,且 ( 、 、 、 ),则 ;若 是等比数列,且 ( 、 、 ),则 . 同步练习:1、在等比数列 中,如果 , ,那么 为( )A .B .C .D . 2、若公比为 的等比数列的首项为 ,末项为 ,则这个数列的项数是( ) A . B . C . D .3、若 、 、 成等比数列,则函数 的图象与 轴交点的个数为( ) A . B . C . D .不确定4、已知一个等比数列的各项为正数,且从第三项起的任意一项均等于前两项之和,则此等比数列的公比为()A.B.C.D.5、设,,,成等比数列,其公比为,则的值为()A.B.C.D.6、如果,,,,成等比数列,那么()A., B.,C.,D.,7、在等比数列中,,,则等于()A.B.C.D.8、在等比数列中,,,则等于()A.B.C.D.9、在等比数列中,和是二次方程的两个根,则的值为()A.B.C.D.10、设等比数列的前三项依次为,,,则它的第四项是()A.B.C.D.11、随着市场的变化与生产成本的降低,每隔年计算机的价格降低,年价格为元的计算机到年时的价格应为()A.元B.元C.元D.元12、若数列为等比数列,则下列数列中一定是等比数列的个数为()⑴;⑵;⑶;⑷;⑸;⑹A.B.C.D.13、在等比数列中,若,,则的值为()A.B.C.或D.不存在14、等比数列中,,,则()A.B.C.或D.或15、在等比数列中,首项,若是递增数列,则公比满足()A.B.C.D.16、若是等比数列,其公比是,且,,成等差数列,则等于()A.或B.或C.或D.或17、已知等差数列的公差为,若,,成等比数列,则等于()A.B.C.D.18、生物学中指出:生态系统中,在输入一个营养级的能量中,大约有%~%的能量能够流动到下一个营养级(称为能量传递率),在这条生物链中,若使获得的能量,则需要最多提供的能量是()A.B.C.D.19、已知等差数列的公差为,若,,成等比数列,则()A.B.C.D.20、数列满足,,则_________.21、若是等比数列,且,若,那么的值等于________.22、若为等比数列,且,则公比________.23、首项为的等比数列的第项是,第项是,则________.24、在数列中,若,,则该数列的通项______________.25、已知等比数列中,,,则该数列的通项_________________.26、已知数列为等比数列.⑴若,,求;⑵若,,,求.27、已知数列为等比数列,,,求的通项公式.28、若数列满足关系,,求数列的通项公式.29、有四个实数,前个数成等比数列,它们的积为,后个数成等差数列,它们的和为,求这四个数.高二数学必修5《等差数列》练习卷知识点:1、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.2、由三个数,,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项.若,则称为与的等差中项.3、若等差数列的首项是,公差是,则.4、通项公式的变形:①;②;③;④;⑤.5、若是等差数列,且(、、、),则;若是等差数列,且(、、),则.同步练习:1、等差数列,,,,…的一个通项公式是()A.B.C.D.2、下列四个命题:①数列,,,是公差为的等差数列;②数列,,,是公差为的等差数列;③等差数列的通项公式一定能写成的形式(、为常数);④数列是等差数列.其中正确命题的序号是()A.①②B.①③C.②③④D.③④3、中,三内角、、成等差数列,则()A.B.C. D.4、已知,,则、的等差中项是()A.B.C.D.5、已知等差数列,,,…,的公差为,则,,,…,(为常数,且)是()A.公差为的等差数列 B.公差为的等差数列C.非等差数列D.以上都不对6、在数列中,,,则的值为()A.B.C.D.7、是等差数列,,,…的()A.第项B.第项C.第项D.第项8、在等差数列中,已知,,则等于()A.B.C.D.9、在等差数列,,,…中第一个负数项是()A.第项B.第项C.第项D.第项10、在等差数列中,已知,,则等于()A.B.C.D.11、在和()两个数之间插入个数,使它们与、组成等差数列,则该数列的公差为()A.B.C.D.12、设是公差为正数的等差数列,若,,则()A.B.C.D.13、与的等差中项是()A.B.C.D.14、若,两个等差数列,,,与,,,,的公差分别为,,则()A.B.C.D.15、一个首项为,公差为整数的等差数列,如果前项均为正数,第7项起为负数,则它的公差是()A.B.C.D.16、在等差数列中,若,则的值等于()A .B .C .D .17、等差数列 中, , ,则 的值为( )A .B .C .D .18、设数列 是递增等差数列,前三项的和为 ,前三项的积为 ,则它的首项是( )A .B .C .D .19、高山上的温度从山脚起,每升高 米降低 ℃,已知山顶的温度是 ℃,山脚的温度是 ℃,则山脚到山顶的高度为( )A . 米B . 米C . 米D . 米20、等差数列 的公差是 , … ,则 … _________.21、定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.若数列 是等和数列,且 ,公和为 ,那么 的值为________,这个数列的通项公式 ____________________.22、在 和 之间插入 个数,使它们与 、 组成等差数列,则该数列的公差为________.23、已知数列 的公差 , ,则 ________.24、等差数列 中, , ,且从第 项开始每项都大于 ,则此等差数列公差 的取值范围是___________.25、等差数列 , , ,…的第 项的值为________.26、一个等差数列 , ,则 ___________.27、在数列 中,若 , ,则 __________________.28、 , , , , 是等差数列中的连续五项,则 __________, _________, ___________.29、在等差数列 中,已知 , ,求 , , , .30、在等差数列 中,若 … , … ,求 … .31、已知 个数成等差数列,它们的和为 ,平方和为 ,求这 个数.高二数学必修5《不等关系与不等式》练习卷知识点:1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: 1a b b a >⇔<;2,a b b c a c >>⇒>;3a b a c b c >⇒+>+; 4,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;5,a b c d a c b d >>⇒+>+;60,0a b c d ac bd >>>>⇒>;7()0,1n n a b a b n n >>⇒>∈N >;8)0,1a b n n >>>∈N >.同步练习:1、已知a b >,c d >,且c 、d 不为0,那么下列不等式成立的是( )A .ad bc >B .ac bc >C .a c b d ->-D .a c b d +>+2、下列命题中正确的是( )A .若a b >,则22ac bc >B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b <D .若a b >,c d <,则a b c d> 3、下列命题中正确命题的个数是( )1若x y z >>,则xy yz >;2a b >,c d >,0abcd ≠,则a b c d >; 3若110a b <<,则2ab b <;4若a b >,则11b b a a ->-.A .1B .2C .3D .44、如果0a <,0b >,则下列不等式中正确的是( )A .11a b < B .< C .22a b < D .a b >5、下列各式中,对任何实数x 都成立的一个式子是( ) A .()2lg 1lg 2x x +≥ B .212x x +> C .2111x ≤+ D .12x x +≥ 6、若a 、b 是任意实数,且a b >,则( )A .22a b >B .1b a <C .()lg 0a b ->D .1122a b ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7、如果a R ∈,且20a a +<,那么a ,2a ,a -,2a -的大小关系是( )A .22a a a a >>->-B .22a a a a ->>->C .22a a a a ->>>-D .22a a a a >->>- 8、若231x x M =-+,22x x N =+,则( ) A .M >N B .M <N C .M ≤ND .M ≥N9、若2x ≠或1y ≠-,2242x y x y M =+-+,5N =-,则M 与N 的大小关系是( )A .M >NB .M <NC .M =ND .M ≥N10、不等式1222a a +>,2()2221a b a b +≥--,322a b ab +>恒成立的个数是( )A .0B .1C .2D .3 11、已知0a b +>,0b <,那么a ,b ,a -,b -的大小关系是( ) A .a b b a >>->-B .a b a b >->->C .a b b a >->>-D .a b a b >>->-12、给出下列命题:122a b ac bc >⇒>;222a b a b >⇒>;333a b a b >⇒>;422a b a b >⇒>.其中正确的命题是( ) A .12 B .23 C .34 D .1413、已知实数a 和b 均为非负数,下面表达正确的是( )A .0a >且0b >B .0a >或0b >C .0a ≥或0b ≥D .0a ≥且0b ≥14、已知a ,b ,c ,d 均为实数,且0ab >,c d a b-<-,则下列不等式中成立的是( )A .bc ad <B .bc ad >C .a b c d >D .a b c d < 15、若()231f x x x =-+,()221g x x x =+-,则()f x ,()g x 的大小关系是( ) A .()()f x g x <B .()()f x g x =C .()()f x g x >D .随x 值的变化而变化16、某一天24小时内两艘船均须在某一码头停靠一次,为了卸货的方便,两艘船到达该码头的时间至少要相差两小时,设甲、乙两船到达码头的时间分别x ,y 小时,且两船互不影响,则x ,y 应满足的关系是( )A .20y x x y -≥⎧⎪≥⎨⎪≥⎩ B .200x y x y -≥⎧⎪≥⎨⎪≥⎩ C .200y x x y ->⎧⎪≥⎨⎪≥⎩ D .2024024y x x y ⎧-≥⎪≤≤⎨⎪≤≤⎩17、某商场对顾客实行优惠活动,规定一次购物付款总额:1200元以内(包括200元)不予优惠;2超过200元不超过500元,按标价9折优惠;3超过500元其中500元按2优惠,超过部分按7折优惠,某人两次购物分别付款168元和423元,若他一次购物,应付款_______________元.18、某高校录取新生对语、数、英三科的高考分数的要求是:语文不低于70分;数学应高于80分;语、数、英三科的成绩之和不少于230分.若张三被录取到该校,设该生的语、数、英的成绩分别为x ,y ,z ,则x ,y ,z 应满足的条件是____________________________.19、用“>”“<”号填空:如果0a b c >>>,那么c a ________c b. 20、某品牌酸奶的质量规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是____________________.21、某中学对高一美术生划定录取控制分数线,专业成绩x 不低于95分,文化课总分y 不低于380分,体育成绩z 不低于45分,写成不等式组就是____________________.22、若0a b <<,且12a b +=,则12,a ,2ab ,22a b +中最大的是_______________.23、a 克糖水中有b 克糖(0a b >>),若再添进m 克糖(0m >),则糖水就变甜了,试根据事实提炼一个不等式______________________.24、已知a 、b R +∈,且a b ≠,比较55a b +与3223a b a b +的大小.25、比较下列各组中两个数或代数式的大小: 12 ()()4422a b a b ++与()233a b +. 26、已知0a b >>,0c d <<,0e <,求证:e e a c b d >--.新课标数学必修5第2章数列单元试题(2)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数的等差中项为10,等比中项为8,则以两数为根的一元二次方程是( )A .x 2+10x +8=0B .x 2-10x +64=0C .x 2+20x +64=0D .x 2-20x +64=0考查等差中项,等比中项概念及方程思想.【解析】设两数为a 、b ,则有a +b =20,ab =64.由韦达定理,∴a 、b 为x 2-20x +64=0的两根.【答案】D2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成( )A .511个B .512个C .1023个D .1024个考查等比数列的简单运用.【解析】a 1=1,公比q =2.经过3小时分裂9次,∴末项为a 10,则a 10=a 1·29=512.【答案】B3.等比数列{a n },a n >0,q ≠1,且a 2、21a 3、a 1成等差数列,则5443a a a a ++等于( )A .215+B .215-C .251-D .215± 考查等比数列性质及方程思想.【解析】依题意:a 3=a 1+a 2,则有a 1q 2=a 1+a 1q ,∵a 1>0,∴q 2=1+q ⇒q =251±.又∵a n >0.∴q >0,∴q =215+,5443a a a a ++=q 1=215-. 【答案】B4.已知数列2、6、10、14、32……那么72是这个数列的第( )项( )A .23B .24C .19D .25考查数列方法的灵活运用.【解析】由题意,根号里面是首项为2、公差为4的等差数列,得a n =2+(n -1)4=4n -2,而72=98,令98=4n -2⇒n =25.【答案】D5.等差数列{a n }中,S 9=-36,S 13=-104,等比数列{b n }中,b 5=a 5,b 7=a 7,则b 6等于( )A .42B .-42C .±42D .无法确定考查等比、等差的综合运用.【解析】S 9=-36⇒a 5=-4,S 13=-104⇒a 7=-8⇒b 6=±75a a =±42.【答案】C6.数列{a n }前n 项和是S n ,如果S n =3+2a n (n ∈N *),则这个数列是( )A .等比数列B .等差数列C .除去第一项是等比D .除去最后一项为等差考查数列求和及通项.【解析】S n +1-S n =(3+2a n +1)-(3+2a n )⇒a n +1=2a n (n ≥1).【答案】A7.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30等于( )A .210B .220C .26D .215考查等比数列性质的运用及转化能力.【解析】由a 1·a 30=a 2a 29=…=a 15a 16已知转化为(a 1a 30)15=230⇒a 1a 30=22又a 3·a 6·…·a 30=(a 3a 30)5=(a 1q 2·a 30)5=(a 1a 30)5·210=220.【答案】B8.若S n 是{a n }前n 项和且S n =n 2,则{a n }是( )A .等比但不是等差B .等差但不是等比C .等差也是等比D .既非等差也非等比考查数列概念.【解析】∵S n =n 2,S n -1=(n -1)2,S n +1=(n +1)2∴a n =S n -S n -1=2n -1,a n +1=S n +1-S n =2n +1∴a n +1-a n =2,但12121-+=+n n a a n n 不是常数. 【答案】B9.a 、b 、c 成等比数列,则f (x )=ax 2+bx +c 的图象与x 轴的交点个数是( )A .0B .1C .2D .不确定考查等比数列与二次函数知识的综合运用.【解析】由已知b 2=ac ,∴Δ=b 2-4ac =-3ac .又∵a 、b 、c 成等比,∴a 、c 同号,∴Δ<0.【答案】A10.一房地产开发商将他新建的20层商品房的房价按下列方法定价,先定一个基价a 元/m 2,再据楼层的不同上下浮动,一层价格为(a -d )元/m 2,二层价格a 元/m 2,三层价格为(a +d )元/m 2,第i 层(i ≥4)价格为[a +d (32)i-3]元/m 2.其中a >0,d >0,则该商品房的各层房价的平均值为( )A .a 元/m 2B .a +101[(1-(32)17)d 元/m 2 C .a +[1-(32)17]d 元/m 2D .a +101[1-(32)18]d 元/m 2 考查等比数列的应用.【解析】a 4+a 5+…+a 20=17a +d321)32(13217-⎥⎦⎤⎢⎣⎡- =17a +2d ·[1-(32)17] ∴a 1+a 2+…+a 20=20a +2d [1-(32)17]∴平均楼价为a +101d [1-(32)17]. 【答案】B第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分)11.一条信息,若一人得知后,一小时内将信息传给两人,这两人又在一小时内各传给未知信息的另外两人.如此下去,要传遍55人的班级所需时间大约为_______小时.考查等比数列求和的运用,化归迁移能力.【解析】由题意,n 小时后有2n 人得知,此时得知信息总人数为1+2+22+…+2n =2n +1-1≥55.即2n +1≥56⇒n +1≥6⇒n ≥5.【答案】512.已知a n =nn n 10)1(9+(n ∈N *),则数列{a n }的最大项为_______. 考查数列及不等式的运用. 【解析】设{a n }中第n 项最大,则有⎩⎨⎧≥≥-+11n n n n a a a a即⎪⎪⎩⎪⎪⎨⎧+≥+⋅≥+++--111110)1(910)1(910910)1(9n n nn n n n n n n nn ,∴8≤n ≤9 即a 8、a 9最大. 【答案】a 8和a 913.一个五边形的五个内角成等差数列,且最小角为46°,则最大角为_______.考查关于多边形内角和和等差数列的运用. 【解析】由S 5=5×46°+245⨯d =540°得d =31°∴a 5=46°+4×31°=170°. 【答案】170°14.在数列{a n }中,已知a 1=1,a n =a n -1+a n -2+…+a 2+a 1.(n ∈N *,n ≥2),这个数列的通项公式是_______. 考查数列的解题技巧.【解析】由a n =a n -1+a n -2+…+a 2+a 1=S n -1(n ≥2) 又a n =S n -S n -1=a n -1-a n∴nn a a 1+=2(n ≥2),由a 2=a 1=1∴a n =2n -2(n ≥2),∴a n =⎩⎨⎧≥=-)2( 2)1( 12n n n【答案】a n =⎩⎨⎧≥=-)2( 2)1( 12n n n三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)数列3、9、…、2187,能否成等差数列或等比数列?若能.试求出前7项和.考查等差、等比数列概念、求和公式和运用知识的能力.【解】(1)若3,9,…,2187,能成等差数列,则a 1=3,a 2=9,即d =6.则a n =3+6(n -1),令3+6(n -1)=2187,解得n =365.可知该数列可构成等差数列,S 7=7×3+267⨯×6=147.(2)若3,9,…,2187能成等比数列,则a 1=3,q =3,则a n =3·3n -1=3n ,令3n=2187,得n =7∈N ,可知该数列可构成等比数列,S 7=31)31(37--=3279.16.(本小题满分10分)已知三个实数成等比数列,在这三个数中,如果最小的数除以2,最大的数减7,所得三个数依次成等差数列,且它们的积为103,求等差数列的公差.考查等差、等比数列的基本概念、方程思想及分类讨论的思想. 【解】设成等比数列的三个数为qa ,a ,aq ,由qa ·a ·aq =103,解得a =10,即等比数列q10,10,10q .(1)当q >1时,依题意,q5+(10q -7)=20.解得q 1=51(舍去),q 2=25.此时2,10,18成等差数列,公差d =8.(2)当0<q <1,由题设知(q10-7)+5q =20,求得成等差数列的三个数为18、10、2,公差为-8. 综上所述,d =±8.17.(本小题满分10分)已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )的表达式. 考查用函数的观点认识数列的能力及等比数列的求和.【解】设y =f (x )=kx +b ,则f (2)=2k +b ,f (5)=5k +b ,f (4)=4k +b ,依题意:[f (5)]2=f (2)·f (4).即(5k +b )2=(2k +b )(4k +b )化简得k (17k +4b )=0. ∵k ≠0,∴b =-417k ①又∵f (8)=8k +b =15 ② 将①代入②得k =4,b =-17.∴S n =f (1)+f (2)+…+f (n )=(4×1-17)+(4×2-17)+…+(4n -17)=4(1+2+…+n )-17n =2n 2-15n .18.(本小题满分12分)设a n 是正数组成的数列,其前n 项和为S n ,且对所有自然数n ,a n 与2的等差中项等于S n 与2的等比中项,求数列{a n }的通项公式.考查已知前n 项和S n 求通项a n 方法及运用等差、等比数列知识解决问题的能力.【解】∵a n 与2的等差中项等于S n 与2的等比中项,∴21(a n +2)=nS 2,即S n =81(a n +2)2当n =1时,a 1=81(a 1+2)2 a 1=2.当n ≥2时,a n =S n -S n -1=81[(a n +2)2-(a n -1+2)2]即(a n +a n -1)(a n -a n -1-4)=0又∵a n +a n -1>0,∴a n =a n -1+4,即d =4. 故a n =2+(n -1)×4=4n -2.19.(本小题满分12分)是否存在互不相等的三个数,使它们同时满足三个条件①a +b +c =6,②a 、b 、c 成等差数列,③将a 、b 、c 适当排列后,能构成一个等比数列.考查等差、等比数列性质及分类讨论思想. 【解】假设存在这样的三个数 ∵a 、b 、c 成等差数列,∴2b =a +c 又a +b +c =6,∴b =2.设a =2-d ,b =2,c =2+d .①若2为等比中项,则22=(2+d )(2-d ) ∴d =0,则a =b =c ,不符合题意.②若2+d 为等比中项,则(2+d )2=2(2-d ),解得d =0(舍去)或d =-6.∴a =8,b =2,c =-4.③若2-d 为等比中项,则(2-d )2=2(2+d ),解得d =0(舍去)或d =6 ∴a =-4,b =2,c =8综上所述,存在这样的三个不相等数,同时满足3个条件,它们是8,2,-4或-4,2,8.新课标数学必修5第2章数列单元试题(3)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么由a n +b n 所组成的数列的第37项值为( )。

高考数学压轴专题人教版备战高考《数列》基础测试题附答案解析

高考数学压轴专题人教版备战高考《数列》基础测试题附答案解析

【高中数学】数学《数列》复习知识点一、选择题1.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.2.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9.故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.3.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.4.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.5.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.6.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】 【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.7.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( ) AB .2CD .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.8.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案. 【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q---====--+-,解得2q =,所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.9.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.10.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.11.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =, 所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.12.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.13.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a A b b b b b B +++⨯-==⨯=⨯=⨯=++⨯+, 故选:C. 【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.14.设等比数列{}n a 的前n 项和记为n S ,若105:1:2S S =,则155:S S =( ) A .34B .23C .12D .13【答案】A 【解析】 【分析】根据等比数列前n 项和的性质求解可得所求结果. 【详解】∵数列{}n a 为等比数列,且其前n 项和记为n S , ∴51051510,,S S S S S --成等比数列. ∵105:1:2S S =,即1051 2S S =, ∴等比数列51051510,,S S S S S --的公比为105512S S S -=-, ∴()1510105511 24S S S S S -=--=, ∴15510513 44S S S S =+=, ∴1553:4S S =. 故选A . 【点睛】在等比数列{}n a 中,其前n 项和记为n S ,若公比1q ≠,则233,,,k k k k k S S S S S --L 成等比数列,即等比数列中依次取k 项的和仍为等比数列,利用此性质解题时可简化运算,提高解题的效率.15.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.16.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( ) A .121n -+ B .2n n ⋅C .31n -D .123n n -⋅【答案】B 【解析】 【分析】由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n nn n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n -+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n nS n n n =⨯+⋅=⋅+. 故选:B 【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.17.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--,当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立;当10a <时,11322a d a =--≥=1a =立; ∴实数d的取值范围为(,)-∞⋃+∞.故选:D.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.18.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )A .23岁B .32岁C .35岁D .38岁【答案】C【解析】【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案.【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-, 又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁.故选C .【点睛】 本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)【答案】D【解析】【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<-⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。

《等差数列》单元测试题百度文库

《等差数列》单元测试题百度文库
A.数列 单调递减B.数列 有最大值
C.数列 单调递减D.数列 有最大值
30.下面是关于公差 的等差数列 的四个命题,其中的真命题为().
A.数列 是递增数列
B.数列 是递增数列
C.数列 是递增数列
D.数列 是递增数列
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题
1.B
【分析】
根据等差数列的性质可知 ,结合题意,可得出 ,最后根据等差数列的前 项和公式和等差数列的性质,得出 ,从而可得出结果.
1、由 成等比,即 ;
2、等差数列前n项和公式 的应用.
3.D
【分析】
由题意结合新定义的概念求得数列的前n项和,然后利用前n项和求解通项公式,最后裂项求和即可求得最终结果.
【详解】
设数列 的前n项和为 ,由题意可得: ,则: ,
当 时, ,
当 时, ,
且 ,据此可得 ,
故 , ,
据此有:
故选:D
4.C
一、等差数列选择题
1.设等差数列 的前 项和为 ,若 ,则 ()
A.60B.120C.160D.240
2.等差数列 的公差为2,若 成等比数列,则 ()
A.72B.90C.36D.45
3.定义 为 个正数 的“均倒数”,若已知数列 的前 项的“均倒数”为 ,又 ,则 ()
A. B. C. D.
4.在等差数列{an}中,a3+a7=4,则必有()
对于D,令 ,解得 ,故n的最大值为12,故D正确.
故选:ACD.
【点睛】
方法点睛:由于等差数列 是关于 的二次函数,当 与 异号时, 在对称轴或离对称轴最近的正整数时取最值;当 与 同号时, 在 取最值.

专题4 第1讲 等差数列与等比数列

第1讲 等差数列与等比数列「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,一般设置一道选择题和一道解答题.核心知识回顾1.等差数列(1)01a n =a 1+(n -1)d =a m +(n -m )d . (2)022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 03S n =n (a 1+a n )2=na 1+n (n -1)d2.2.等比数列(1)01a n =a 1q n -1=a m q n -m .(2)02a 2n =a n -1·a n +1(n ∈N *,n ≥2).(3)等比数列的前n 项和公式:03S n =⎩⎨⎧na 1(q =1),a 1-a n q 1-q =a 1(1-q n )1-q (q ≠1).3.等差数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 02a m +a n =2a p .(2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)(3)等差数列“依次m 项的和”即S m …仍是等差数列.(4)等差数列{a n },当项数为2n 时,S 偶-S 奇,S 奇S 偶=a n +12n -1时,S 奇-S 偶,S 奇S 偶=n -1其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)4.等比数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k 反之不一定成立);特别地,当m +n =2p(2)当n 为偶数时,S 偶S 奇=公比为q ).(其中S 偶表示所有的偶数项之和,S奇表示所有的奇数项之和)(3)等比数列“依次m 项的和”,即S m …(S m ≠0)成等比数列.热点考向探究考向1 等差数列、等比数列的运算例1 (1)(2020·山东省青岛市模拟)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,S n 是{a n }的前n 项和,则S 9等于( )A .-8B .-6C .10D .0答案 D解析 ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+2×2)2=a 1·(a 1+3×2),即2a 1=-16,解得a 1=-8.则S 9=-8×9+9×82×2=0,故选D.(2)(2020·山东省泰安市肥城一中模拟)公比不为1的等比数列{a n }的前n 项和为S n ,若a 1,a 3,a 2成等差数列,mS 2,S 3,S 4成等比数列,则m =( )A.78 B .85 C .1 D .95答案 D解析 设{a n }的公比为q (q ≠0且q ≠1), 根据a 1,a 3,a 2成等差数列, 得2a 3=a 1`+a 2,即2a 1q 2=a 1+a 1q ,因为a 1≠0,所以2q 2-1-q =0,即(q -1)(2q +1)=0. 因为q ≠1,所以q =-12, 则S 2=a 1(1-q 2)1-q =34·a 11-q ,S 3=a 1(1-q 3)1-q =98·a 11-q ,S 4=a 1(1-q 4)1-q =1516·a 11-q,因为mS 2,S 3,S 4成等比数列,所以S 23=mS 2·S 4, 即⎝ ⎛⎭⎪⎫98·a 11-q 2=m ·34·a 11-q ·1516·a 11-q ,因为a 1≠0,所以a 11-q ≠0,所以⎝ ⎛⎭⎪⎫982=m ×34×1516, 得m =95,故选D.利用等差数列、等比数列的通项公式、前n 项和公式,能够在已知三个元素的前提下求解另外两个元素,其中等差数列的首项和公差、等比数列的首项和公比为最基本的量,解题中首先要注意求解最基本的量.1.(多选)(2020·山东省青岛市模拟)已知等差数列{a n }的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20 答案 BCD解析 等差数列{a n }的前n 项和为S n ,公差d ≠0, 由S 6=90,可得6a 1+15d =90,即2a 1+5d =30, ①由a 7是a 3与a 9的等比中项,可得a 27=a 3a 9,即(a 1+6d )2=(a 1+2d )(a 1+8d ),化为a 1+10d =0, ② 由①②解得a 1=20,d =-2,则a n =20-2(n -1)=22-2n ,S n =12n (20+22-2n )=21n -n 2, 由S n =-⎝ ⎛⎭⎪⎫n -2122+4414,可得n =10或n =11时,S n 取得最大值110.由S n >0,可得0<n <21,即n 的最大值为20.故选BCD. 2.定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2022a 2020=( )A .4×20202-1B .4×20192-1C .4×20222-1D .4×20192答案 A解析 ∵a 1=a 2=1,a 3=3,∴a 3a 2-a 2a 1=2,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +1a n 是以1为首项,2为公差的等差数列,∴a n +1a n=2n -1,∴a 2022a 2020=a 2022a 2021·a 2021a2020=(2×2021-1)×(2×2020-1)=4×20202-1.故选A.考向2 等差数列、等比数列的判定与证明例2 (1)设数列{a n }满足a 1=1,a n +1=44-a n (n ∈N *).求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是等差数列.证明 ∵a n +1=44-a n ,∴1a n +1-2-1a n -2=144-a n -2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12为常数,又a 1=1, ∴1a 1-2=-1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)数列{a n }的前n 项和为S n ,且满足S n +a n =n -1n (n +1)+1,n =1,2,3,…,设b n =a n +1n (n +1),求证:数列{b n }是等比数列.证明 S n =1-a n +n -1n (n +1),∴S n +1=1-a n +1+n(n +1)(n +2),当n =1时,易知a 1=12,∴a n +1=S n +1-S n =n(n +1)(n +2)-a n +1-n -1n (n +1)+a n ,∴2a n +1=n +2-2(n +1)(n +2)-n -1n (n +1)+a n =1n +1-2(n +1)(n +2)-1n +1+1n (n +1)+a n ,∴2⎣⎢⎡⎦⎥⎤a n +1+1(n +1)(n +2)=a n +1n (n +1),b n =a n +1n (n +1),则b n +1=a n +1+1(n +1)(n +2),上式可化为2b n +1=b n ,∴数列{b n }是以b 1=1为首项,12为公比的等比数列,b n =⎝ ⎛⎭⎪⎫12n -1.(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n}为等比数列时,不能仅仅证明a n+1=qa n,还要说明a1≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n}为等比数列.(3)证明等差、等比数列,还可利用等差、等比数列的中项公式.1.(多选)(2020·日照一中摸底考试)已知数列{a n}满足:a1=3,当n≥2时,a n=( a n-1+1+1)2-1,则关于数列{a n},下列说法正确的是()A.a2=8 B.数列{a n}为递增数列C.数列{a n}为周期数列D.a n=n2+2n答案ABD解析由a n=(a n-1+1+1)2-1得a n+1=(a n-1+1+1)2,∴a n+1=a n-1+1+1,即数列{a n+1}是首项为a1+1=2,公差为1的等差数列,∴a n+1=2+(n-1)×1=n+1.∴a n=n2+2n.所以易知A,B,D正确.2.已知正项数列{a n}满足a2n+1-6a2n=a n+1a n,若a1=2,则数列{a n}的前n 项和为________.答案3n-1解析∵a2n+1-6a2n=a n+1a n,∴(a n+1-3a n)(a n+1+2a n)=0,∵a n>0,∴a n+1=3a n,∴{a n}为等比数列,且首项为2,公比为3,∴S n=3n-1.考向3数列中a n与S n的关系问题例3(1)(2020·河南省高三阶段性测试)设正项数列{a n}的前n项和为S n,且4S n=(1+a n)2(n∈N*),则a5+a6+a7+a8=()A.24 B.48C.64 D.72答案 B解析 当n =1时,由S 1=a 1=(1+a 1)24,得a 1=1,当n ≥2时,⎩⎨⎧4S n =(1+a n )2,4S n -1=(1+a n -1)2,得4a n =(1+a n )2-(1+a n -1)2,∴a 2n -a 2n -1-2a n -2a n -1=0,(a n +a n -1)(a n -a n -1-2)=0.∵a n >0,∴a n -a n -1=2,∴{a n }是等差数列,∴a n =2n -1,∴a 5+a 6+a 7+a 8=2(a 6+a 7)=48.(2)(2020·山东省德州市二模)给出以下三个条件: ①数列{a n }是首项为 2,满足S n +1=4S n +2的数列; ②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列. 请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{a n }的前n 项和为S n ,a n 与S n 满足________.记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+n b n b n +1,求数列{c n }的前n 项和T n .解 选①,由已知S n +1=4S n +2, (*) 当n ≥2时,S n =4S n -1+2, (**) (*)-(**),得a n +1=4(S n -S n -1)=4a n , 即a n +1=4a n .当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,所以a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1.b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,c n =n 2+n b n b n +1=n (n +1)n 2(n +1)2=1n (n +1)=1n -1n +1.所以T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.选②,由已知3S n =22n +1+λ, (*) 当n ≥2时,3S n -1=22n -1+λ, (**) (*)-(**),得3a n =22n +1-22n -1=3·22n -1, 即a n =22n -1.当n =1时,a 1=2满足a n =22n -1,所以a n =22n -1, 下同选①.选③,由已知3S n =a n +1-2, (*) 则n ≥2时,3S n -1=a n -2, (**) (*)-(**),得3a n =a n +1-a n ,即a n +1=4a n .当n =1时,3a 1=a 2-2,而a 1=2,得a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1, 下同选①.由a n 与S n 的关系求通项公式的注意点(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”). (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎨⎧S 1(n =1),S n-S n -1(n ≥2).已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:13S 1+15S 2+17S 3+…+12n +1S n <12.证明 (1)当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n ·S n -1,1S n -1S n -1=2,所以数列⎩⎨⎧⎭⎬⎫1S n 是以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)·2=2n -1,所以S n =12n -1.13S 1+15S 2+17S 3+…+12n +1S n =11×3+13×5+15×7+…+1(2n -1)(2n +1) =12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12×⎝ ⎛⎭⎪⎫1-12n +1<12.真题押题『真题检验』1.(2020·全国卷Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A .12B .24C .30D .32答案 D解析 设等比数列{a n }的公比为q ,则a 1+a 2+a 3=a 1(1+q +q 2)=1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q (1+q +q 2)=q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 5(1+q +q 2)=q 5=32.故选D.2.(2020·全国卷Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -1答案 B解析 设等比数列{a n }的公比为q ,由a 5-a 3=12,a 6-a 4=24可得⎩⎨⎧ a 1q 4-a 1q 2=12,a 1q 5-a 1q 3=24,解得⎩⎨⎧q =2,a 1=1,所以a n =a 1q n -1=2n -1,S n =a 1(1-q n )1-q =1-2n1-2=2n -1.因此S na n =2n-12n -1=2-21-n .故选B.3.(2020·新高考卷Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.答案 3n 2-2n解析 因为数列{2n -1}是以1为首项,以2为公差的等差数列,数列{3n -2}是以1为首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以1为首项,以6为公差的等差数列,所以{a n }的前n 项和为n ·1+n (n -1)2·6=3n 2-2n . 4.(2020·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,由a 1=-2,a 2+a 6=2,可得a 1+d +a 1+5d =2,即-2+d +(-2)+5d =2,解得d =1.所以S 10=10×(-2)+10×(10-1)2×1=-20+45=25.5.(2020·江苏高考)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________.答案 4解析 等差数列{a n }的前n 项和公式为P n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,等比数列{b n }的前n 项和公式为Q n =b 1(1-q n )1-q =-b 11-q q n +b 11-q ,依题意S n =P n+Q n ,即n 2-n +2n -1=d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n -b 11-q q n +b 11-q,通过对比系数可知⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,q =2,b11-q =-1,得⎩⎪⎨⎪⎧d =2,a 1=0,q =2,b 1=1,故d +q =4.6.(2020·新高考卷Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.解 (1)设等比数列{a n }的首项为a 1,公比为q , 依题意有⎩⎨⎧a 1q +a 1q 3=20,a 1q 2=8,解得a 1=2,q =2或a 1=32,q =12(舍去), 所以a n =2n ,所以数列{a n }的通项公式为a n =2n . (2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128, b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1; b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7], 则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15], 则b 8=b 9=…=b 15=3,即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31], 则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63], 则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480. 7.(2020·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . 解 (1)设等比数列{a n }的公比为q ,根据题意,有 ⎩⎨⎧ a 1+a 1q =4,a 1q 2-a 1=8,解得⎩⎨⎧a 1=1,q =3, 所以a n =3n -1.(2)令b n =log 3a n =log 33n -1=n -1, 则S n =n (0+n -1)2=n (n -1)2,根据S m +S m +1=S m +3,可得 m (m -1)2+m (m +1)2=(m +2)(m +3)2, 整理得m 2-5m -6=0,因为m >0,所以m =6.『金版押题』8.已知数列{a n }满足na n -28a n +1=n -1(n ∈N *),a 1+a 2+a 3=75,记S n =a 1a 2a 3+a 2a 3a 4+a 3a 4a 5+…+a n a n +1·a n +2,则a 2=________,使得S n 取得最大值的n 的值为________.答案 25 10解析 由na n -28a n +1=n -1(n ∈N *),可取n =1,即a 1-28=0,可得a 1=28,取n =2,可得2a 2-28a 3=1,即a 3=2a 2-28,又a 1+a 2+a 3=75,可得a 2=25,a 3=22,当n ≥2时,由na n -28a n +1=n -1可得a n +1n -a nn -1=-28n (n -1),可令c n =a n +1n ,则c n -1=a nn -1(n ≥2),c n -c n -1=28⎝ ⎛⎭⎪⎫1n -1n -1(n ≥2), 由c n =c 1+(c 2-c 1)+…+(c n -c n -1)=c 1+28⎝ ⎛⎭⎪⎫12-1+13-12+…+1n -1n -1, 可得c n =c 1+28⎝ ⎛⎭⎪⎫1n -1=a 2+28⎝ ⎛⎭⎪⎫1n -1,则a n +1=nc n =na 2+28(1-n )=28+n (a 2-28), 故a n +1=28-3n (n ≥2),所以a n =31-3n (n ≥3), 又a 1=28,a 2=25,也符合上式,所以a n =31-3n . 令b n =a n a n +1a n +2=(31-3n )(28-3n )(25-3n ), 由b n ≥0,可得(31-3n )(28-3n )(25-3n )≥0, 解得1≤n ≤8(n ∈N *)或n =10,又b 9=-8,b 10=10,所以n =10时,S n 取得最大值.9.记数列{a n }的前n 项和为S n ,已知2a n +1+n =4S n +2p ,a 3=7a 1=7. (1)求p ,S 4的值;(2)若b n =a n +1-a n ,求证:数列{b n }是等比数列. 解 (1)由a 3=7a 1=7知,a 3=7,a 1=1.当n =1时,由2a n +1+n =4S n +2p ,得a 2=32+p ,当n =2时,由2a n +1+n =4S n +2p ,得a 3=4+3p =7,所以p =1, 当n =3时,由2a n +1+n =4S n +2p ,得2a 4+3=4S 3+2,解得a 4=412.所以S 4=1+52+7+412=31.(2)证明:由(1)可得a n +1=2S n -12n +1, 则a n +2=2S n +1-12(n +1)+1. 两式作差得a n +2-a n +1=2a n +1-12, 即a n +2=3a n +1-12(n ∈N *). 由(1)得a 2=52,所以a 2=3a 1-12, 所以a n +1=3a n -12对n ∈N *恒成立, 由上式变形可得a n +1-14=3⎝ ⎛⎭⎪⎫a n -14.而a 1-14=34≠0,所以⎩⎨⎧⎭⎬⎫a n -14是首项为34,公比为3的等比数列,所以a n -14=34×3n -1=3n4,所以b n =a n +1-a n =a n +1-14-⎝ ⎛⎭⎪⎫a n -14=3n +14-3n 4=3n 2,所以b n +1=3n +12,b n +1b n=3.又b 1=32,所以数列{b n }是首项为32,公比为3的等比数列.专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2020·山东德州高三下学期联考)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( )A .4B .8C .16D .32答案 D解析 设等比数列{a n }的公比为q ,∵a 1=1,a 5+a 7a 2+a 4=8,∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2,则a 6=25=32.故选D. 2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎨⎧ a 1+4d =5,4a 1+6d =0,解得⎩⎨⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A. 3.等差数列{a n }的公差为d ,若a 1+1,a 2+1,a 4+1成以d 为公比的等比数列,则d =( )A .2B .3C .4D .5答案 A解析 将a 1+1,a 2+1,a 4+1转化为a 1,d 的形式为a 1+1,a 1+1+d ,a 1+1+3d ,由于这三个数成以d 为公比的等比数列,故a 1+1+d a 1+1=a 1+1+3da 1+1+d =d ,化简得a 1+1=d ,代入a 1+1+d a 1+1=d ,得2dd =2=d ,故选A.4.(2020·河北省张家口市二模)已知正项等比数列{a n }的公比为q ,若a 1=q≠1,且a m=a1a2a3…a10,则m=()A.19 B.45C.55 D.100答案 C解析∵正项等比数列{a n}的公比为q,a1=q≠1,∴a n=q.q n-1=q n,∵a m=a1a2a3...a10,∴q m=q.q2.q3.....q10=q1+2+3+ (10)q55.∴m=55.故选C.5.(2020·河北省保定市一模)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有五人五钱,令上二人所得与下三人等,问各得几何?”其意思是:“现有甲、乙、丙、丁、戊,五人依次差值等额分五钱,要使甲、乙两人所得的钱数与丙、丁、戊三人所得的钱数相等,问每人各得多少钱?”请问上面的问题里,五人中所得的最少钱数为()A.76钱B.56钱C.13钱D.23钱答案 D解析依题意设甲、乙、丙、丁、戊所得钱数分别为a-2d,a-d,a,a+d,a+2d,又有a-2d+a-d=a+a+d+a+2d,得a=-6d,∵a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则d=-16,∴a+2d=23.故选D.6.(2020·广州模拟)正项等比数列{a n}满足a2a4=1,S3=13,则其公比是()A.1 B.1 2C.13D.14答案 C解析设{a n}的公比为q,因为a2a4=1,且a2a4=a23,所以a23=1,易知q>0,所以a3=1.由S3=1+1q +1q2=13,得13q2=1+q+q2,即12q2-q-1=0,解得q=13.故选C.7.已知S n 为等比数列{a n }的前n 项和,若S 3,S 9,S 6成等差数列,则( ) A .S 6=-2S 3 B .S 6=-12S 3 C .S 6=12S 3 D .S 6=2S 3答案 C解析 设等比数列{a n }的公比为q (q ≠1),则S 6=(1+q 3)S 3,S 9=(1+q 3+q 6)S 3,因为S 3,S 9,S 6成等差数列,所以2(1+q 3+q 6)S 3=S 3+(1+q 3)S 3,易知S 3≠0,解得q 3=-12,故S 6=12S 3.8.已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项和为( )A .0B .252 C .21 D .42 答案 C解析 函数y =f (x +1)的图象关于y 轴对称,平移可得y =f (x )的图象关于直线x =1对称,且函数f (x )在(1,+∞)上单调,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,所以a 1+a 21=a 4+a 18=2,可得数列{a n }的前21项和S 21=21(a 1+a 21)2=21.故选C.二、选择题:在每小题给出的选项中,有多项符合题目要求.9.已知无穷数列{a n }的前n 项和S n =an 2+bn +c ,其中a ,b ,c 为实数,则( )A .{a n }可能为等差数列B .{a n }可能为等比数列C .{a n }中一定存在连续的三项构成等差数列D .{a n }中一定存在连续的三项构成等比数列 答案 ABC解析解法一:因为S n=an2+bn+c,所以S n-1=a(n-1)2+b(n-1)+c(n≥2),所以a n=S n-S n-1=2na-a+b(n≥2),若数列{a n}为等差数列,则a1=a+b+c=a+b,c=0,验证知,当c=0时,{a n}为等差数列,所以A正确;在a n=2na-a +b(n≥2)中,当a=0,b≠0时,a n=b(n≥2),若数列{a n}为等比数列,则a1=b +c=b,c=0,验证知,当a=c=0,b≠0时,{a n}为等比数列,所以B正确;由a n=2na-a+b(n≥2)可知,{a n}中一定存在连续的三项构成等差数列,所以C 正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka -a+b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.解法二:当c=0,a≠0时,数列{a n}为等差数列,所以A正确;当a=c=0,b≠0时,数列{a n}为常数列,也是等比数列,所以B正确;当n≥2时,a n=S n -S n-1=2na-a+b,则{a n}中一定存在连续的三项构成等差数列,所以C正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka-a +b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.10.(2020·海南省海口市模拟)已知正项等比数列{a n}满足a1=2,a4=2a2+a3,若设其公比为q,前n项和为S n,则()A.q=2 B.a n=2nC.S10=2047 D.a n+a n+1<a n+2答案ABD解析根据题意,对于A,正项等比数列{a n}满足2q3=4q+2q2,变形可得q2-q-2=0,解得q=2或q=-1,又{a n}为正项等比数列,则q=2,故A正确;对于B,a n=2×2n-1=2n,B正确;对于C,S n=2×(1-2n)1-2=2n+1-2,所以S10=2046,C错误;对于D,a n+a n+1=2n+2n+1=3×2n=3a n,而a n+2=2n+2=4×2n =4a n>3a n,D正确.故选ABD.11.等差数列{a n}的前n项和记为S n,若a1>0,S10=S20,则()A.公差d<0 B.a16<0C .S n ≤S 15D .当且仅当S n <0时n ≥32答案 ABC解析 因为等差数列中,S 10=S 20,所以a 11+a 12+…+a 19+a 20=5(a 15+a 16)=0,又a 1>0,所以a 15>0,a 16<0,所以d <0,S n ≤S 15,故A ,B ,C 正确;因为S 31=31(a 1+a 31)2=31a 16<0,故D 错误.故选ABC.12.设正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,则( ) A .a 2a 9的最大值为10 B .a 2+a 9的最大值为210 C.1a 22+1a 29的最大值为15D .a 42+a 49的最小值为200答案 ABD解析 因为正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,所以(a 2+a 9)2=2a 2a 9+20,即a 22+a 29=20,则a 2a 9≤a 22+a 292=202=10,当且仅当a 2=a 9=10时等号成立,故A 正确;由于⎝ ⎛⎭⎪⎫a 2+a 922≤a 22+a 292=10,所以a 2+a 92≤10,a 2+a 9≤210,当且仅当a 2=a 9=10时等号成立,故B 正确;1a 22+1a 29=a 22+a 29a 22·a 29=20a 22·a 29≥20⎝ ⎛⎭⎪⎫a 22+a 2922=20102=15,当且仅当a 2=a 9=10时等号成立,所以1a 22+1a 29的最小值为15,故C 错误;a 42+a 49=(a 22+a 29)2-2a 22·a 29=400-2a 22·a 29≥400-2×102=200,当且仅当a 2=a 9=10时等号成立,故D 正确.故选ABD. 三、填空题13.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1,则S n =________. 答案 3n -1解析 由2S n =a n +1得2S n =a n +1=S n +1-S n ,所以3S n =S n +1,即S n +1S n =3,所以数列{S n }是以S 1=a 1=1为首项,q =3为公比的等比数列,所以S n =3n -1.14.(2020·山东省聊城市三模)已知数列{a n }中,a 1=1,a n +1=a n +n ,则a 6=________.答案 16解析 由题意,得a 2=a 1+1=2,a 3=a 2+2=4,a 4=a 3+3=7,a 5=a 4+4=11,a 6=a 5+5=16.15.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n+1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________. 答案 a n =n (n +1)2解析 由题设可得a n +1=b n b n +1,a n =b n b n -1,得2b n =a n +a n +1⇒2b n =b n b n -1+b n b n +1,即2b n =b n -1+b n +1,又a 1=1,a 2=3⇒2b 1=4⇒b 1=2,则{b n }是首项为2的等差数列.由已知得b 2=a 22b 1=92,则数列{b n }的公差d =b 2-b 1=322-2=22,所以b n =2+(n -1)·22=2(n +1)2,即b n =n +12.当n=1时,b 1=2,当n ≥2时,b n -1=n2,则a n =b n b n -1=n (n +1)2,a 1=1符合上式,所以数列{a n }的通项公式为a n =n (n +1)2.16.已知数列{a n }满足13a 1+132a 2+…+13n a n =3n +1,则a n =________,a 1+a 2+a 3+…+a n =________.答案 ⎩⎨⎧12,n =1,3n +1,n ≥2⎩⎨⎧12,n =1,3n +2-32,n ≥2解析 由题意可得,当n =1时,13a 1=4,解得a 1=12.当n ≥2时,13a 1+132a 2+…+13n -1a n -1=3n -2,所以13n a n =3,n ≥2,即a n =3n +1,n ≥2,又当n =1时,a n =3n +1不成立,所以a n =⎩⎨⎧12,n =1,3n +1,n ≥2.当n ≥2时,a 1+a 2+…+a n =12+33-3n +21-3=3n +2-32. 四、解答题17.(2020·江西省南昌市三模)已知数列{a n }中,a 1=2,a n a n +1=2pn +1(p 为常数) .(1)若-a 1,12a 2,a 4成等差数列,求p 的值;(2)是否存在p ,使得{a n }为等比数列?若存在,求{a n }的前n 项和S n ;若不存在,请说明理由.解 (1)令n =1,a 1a 2=2p +1⇒a 2=2p ,且a n +1a n +2=2pn +p +1,与已知条件相除得a n +2a n=2p ,故a 4=2p a 2=(2p )2, 而-a 1,12a 2,a 4成等差数列,则a 4-2=a 2,即(2p )2-2=2p ,解得2p =2,即p =1.(2)若{a n }是等比数列,则由a 1>0,a 2>0,知此数列首项和公比均为正数.设其公比为q ,则q =2p 2,故2p 2=a 2a 1=2p 2⇒p =2, 此时a 1=2,q =2⇒a n =2n ,故a n a n +1=22n +1, 而2pn +1=22n +1,因此p =2时,{a n }为等比数列,其前n 项和S n =2(1-2n )1-2=2n +1-2. 18.(2020·山东省威海二模)从条件①2S n =(n +1)a n ,② S n +S n -1=a n (n ≥2),③a n >0,a 2n +a n =2S n 中任选一个,补充到下面问题中,并给出解答.已知数列{a n }的前n 项和为S n ,a 1=1,________.若a 1,a k ,S k +2成等比数列,求k 的值.解 若选择①,∵2S n =(n +1)a n ,n ∈N *,∴2S n +1=(n +2)a n +1,n ∈N *.两项相减得2a n +1=(n +2)a n +1-(n +1)a n ,整理得na n +1=(n +1)a n .即a n +1n +1=a n n ,n ∈N *, ∴⎩⎨⎧⎭⎬⎫a n n 为常数列.a n n =a 11=1,∴a n =n . ⎝ ⎛⎭⎪⎫或由a n +1a n =n +1n ,利用相乘相消法,求得a n =n a k =k ,S k +2=(k +2)×1+(k +2)(k +1)2×1 =(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2, k 2-5k -6=0,解得k =6或k =-1(舍去). ∴k =6.若选择②, 由S n +S n -1=a n (n ≥2)变形得S n +S n -1=S n -S n -1, S n +S n -1=( S n +S n -1)( S n -S n -1), 易知S n >0,∴ S n -S n -1=1,{S n }为等差数列, 而S 1=a 1=1,∴ S n =n ,S n =n 2, ∴a n =S n -S n -1=2n -1(n ≥2),且n =1时也满足, ∴a n =2n -1.∵a 1,a k ,S k +2成等比数列,∴(k +2)2=(2k -1)2,∴k =3或k =-13,又k ∈N *,∴k =3.若选择③,∵a 2n +a n =2S n (n ∈N *),∴a 2n -1+a n -1=2S n -1(n ≥2).两式相减得a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n (n ≥2),整理得(a n -a n -1)(a n +a n -1)=a n +a n -1(n ≥2). ∵a n >0,∴a n -a n -1=1(n ≥2),∴{a n }是等差数列,∴a n =1+(n -1)×1=n ,S k +2=(k +2)×1+(k +2)(k +1)2×1=(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2,解得k =6或k =-1,又k ∈N *,∴k =6.19.设数列{a n }的前n 项和为S n ,且满足a n -12S n -1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +(n +2n )λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由a n -12S n -1=0(n ∈N *),可知当n =1时, a 1-12a 1-1=0,即a 1=2.又由a n -12S n -1=0(n ∈N *),可得a n +1-12S n +1-1=0,两式相减,得⎝ ⎛⎭⎪⎫a n +1-12S n +1-1-⎝ ⎛⎭⎪⎫a n -12S n -1=0, 即12a n +1-a n =0,即a n +1=2a n .所以数列{a n }是以2为首项,2为公比的等比数列, 故a n =2n (n ∈N *).(2)由(1)知,S n =a 1(1-q n )1-q=2(2n -1),所以S n+(n+2n)λ=2(2n-1)+(n+2n)λ.若数列{S n+(n+2n)λ}为等差数列,则S1+(1+2)λ,S2+(2+22)λ,S3+(3+23)λ成等差数列,即有2[S2+(2+22)λ]=[S1+(1+2)λ]+[S3+(3+23)λ],即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2.经检验λ=-2时,{S n+(n+2n)λ}成等差数列,故λ的值为-2.。

高二数学数列综合测试题(解析版)

所以 或 或 ,所以 或 或 ,所以 的最小值为 .故选:A.
7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有

等比数列基础测试题题库

一、等比数列选择题1.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .162.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8 B .8- C .16 D .16-3.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4 B .5 C .8 D .15 4.若1,a ,4成等比数列,则a =( )A .1B .2±C .2D .2-5.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭6.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*na n N n∈的最小值为( ) A .1625B .49C .12D .17.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭8.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2B .4C .8D .169.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =10.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-11.数列{}n a 满足119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,则该数列从第5项到第15项的和为( )A .2016B .1528C .1504D .99212.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .1113.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .814.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34B .35C .36D .3715.等比数列{}n a 中,1234a a a ++=,4568a a a ++=,则789a a a ++等于( ) A .16B .32C .64D .12816.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .202017.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .718..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2B .2或2-C .2-D19.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6420.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .3二、多选题21.题目文件丢失!22.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比23.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有()()()f x y f x f y +=,若112a =,()()*n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为12C .数列{}n S 递增,最小值为12D .数列{}n S 递减,最大值为124.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .113()2n n a -=⋅-B .36nn S a =+C .若数列{}n a 中存在两项p a ,s a3a =,则19p s +的最小值为83D .若1n n t S m S ≤-≤恒成立,则m t -的最小值为11625.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( ) A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++26.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -= B .{}n S 为等比数列 C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩27.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n S n +为等比数列B .数列{}n a 的通项公式为121n n a -=-C .数列{}1n a +为等比数列D .数列{}2n S 的前n 项和为2224n n n +--- 28.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 29.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1na n nb a q q =≠,则{}n b 的前n 项和可以是( )A .nB .nqC .()121n n n q nq nq q q ++---D .()21121n n n q nq nq q q ++++---30.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列 C .已知()21nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<31.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为n S ,则( )A .2qB .2nn a = C .102047S = D .12n n n a a a +++<32.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =33.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7aB .8aC .15SD .16S34.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n =+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .535.对于数列{}n a ,若存在数列{}n b 满足1n n nb a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;B .若31n a n =-,则其“倒差数列”有最大值;C .若31n a n =-,则其“倒差数列”有最小值;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.【详解】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D. 2.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 3.C 【分析】由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴27a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 4.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 5.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-, 两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 6.D 【分析】首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较()*na n N n∈相邻两项的大小,求得其最小值. 【详解】在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,所以21344a a a =+,即244q q =+,解得2q,所以12n na ,所以12n n a n n-=, 12111n n a n n a n n++=≥+,当且仅当1n =时取等号,所以当1n =或2n =时,()*na n N n∈取得最小值1, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 7.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 8.C 【分析】根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】设正数的等比数列{}n a 的公比为()0q q >,因为53134a a a =+,所以4211134a q a q a =+,则42340q q --=,解得24q =或21q =-(舍),所以2q,又等比数列{}n a 的前4项和为30,所以23111130a a q a q a q +++=,解得12a =, ∴2318a a q ==.故选:C . 9.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 10.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 11.C 【分析】利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】因为119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,所以,41049104561022222212a a a -+++=++==--,498448941112152222222212a a a -+++=++=++==--,该数列从第5项到第15项的和为10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=故选:C 【点睛】解题关键在于利用等比数列的求和公式进行求解,属于基础题 12.C 【分析】令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 13.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 14.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 15.A 【分析】由()4633512a a a a a a q +++=+,求得3q ,再由()37s 94s 6a a a a a a q ++=++求解.【详解】1234a a a ++=,4568a a a ++=.∴32q =,∴()378945616a a a a a a q ++=++=.故选:A 16.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.17.C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 18.A 【分析】由等比数列的性质可得2315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值【详解】解:因为等比数列{}n a 中,11a =,54a =,所以23154a a a =⋅=,因为110a =>,所以30a >, 所以32a =, 故选:A 19.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 20.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A.二、多选题 21.无22.BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确.故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1. 23.AC 【分析】计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =,所以1(1)2f =, 所以221(2)(1)4a f f ===, 31(3)(1)(2)8a f f f ===,……所以1()2n n a n N +=∈,所以11(1)122111212n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112S a ==, 故选:AC 【点睛】关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档题 24.ABD 【分析】根据等差中项列式求出12q =-,进而求出等比数列的通项和前n 项和,可知A ,B 正确;3a =求出15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩,可知19p s +的最小值为114,C 不正确;利用1nn y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】设等比数列{}n a 的公比为q ,由13a =,21344a a a -=+得243343q q -⨯=+⨯,解得12q =-,所以113()2n n a -=⋅-,13(1())1221()121()2n n n S --⎛⎫==-- ⎪⎝⎭--;1111361()66()63()63222n n n n n S a -⎛⎫=--=--=+⋅-=+ ⎪⎝⎭;所以A ,B 正确;3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,所以114p s q qq --=,所以6p s +=,则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩,此时19145p s +=或114或194或465;C 不正确,122,2121()2122,2nn n nn S n ⎧⎛⎫+⎪ ⎪⎪⎝⎭⎛⎫=--=⎨ ⎪⎝⎭⎛⎫⎪- ⎪⎪⎝⎭⎩为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3[,2)2n S ∈,又1n n y S S =-关于n S 单调递增,所以当n 为奇数时,138(,]23n n S S -∈,当n 为偶数时,153[,)62n n S S -∈,所以83m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题.25.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 26.ABD 【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 27.AD 【分析】由已知可得11222n n n n S n S nS n S n ++++==++,结合等比数列的定义可判断A ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由1231,1,3a a a ===可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故B 错误;由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即32211111a a a a ++≠++,故C 错; 因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD . 【点睛】本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前n 项和,考查了分组求和.28.ACD 【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD. 【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 29.BD 【分析】设等差数列{}n a 的公差为d ,根据2a ,4a ,8a 是一个等比数列中的相邻三项求得0d =或1,再分情况求解{}n b 的前n 项和n S 即可. 【详解】设等差数列{}n a 的公差为d ,又11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项∴2428a a a =,即()()()211137a d a d a d +=++,化简得:(1)0d d -=,所以0d =或1,故1n a =或n a n =,所以n b q =或nn b n q =⋅,设{}n b 的前n 项和为n S ,①当n b q =时,n S nq =;②当nn b n q =⋅时,23123n n S q q q n q =⨯+⨯+⨯+⋯⋯+⨯(1), 2341123n n qS q q q n q +=⨯+⨯+⨯+⋯⋯+⨯(2),(1)-(2)得:()()2311111n nn n n q q q S q q q q n qn q q++--=+++-⨯=-⨯-+⋅⋅,所以121122(1)(1)1(1)n n n n n n q q n q q nq nq q S q q q ++++-⨯+--=-=---,故选:BD 【点睛】本题主要考查了等差等比数列的综合运用与数列求和的问题,需要根据题意求得等差数列的公差与首项的关系,再分情况进行求和.属于中等题型. 30.BCD 【分析】根据间隔递增数列的定义求解. 【详解】 A. ()1111111n k n n n k k n a a a a qq q a q +---+=-=--,因为1q >,所以当10a <时,n k n a a +<,故错误;B. ()()244441++n kn n kn a a n k n k k n k n n k n n k n +⎛⎫⎛⎫+-⎛⎫-=++-+=-= ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;C. ()()()()()()21212111n kn nk n k n a a n k n k ++⎡⎤-=++--+-=+---⎣⎦,当n 为奇数时,()2110kk --+>,存在1k 成立,当n 为偶数时,()2110kk +-->,存在2k ≥成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确; D. 若{}n a 是间隔递增数列且最小间隔数是3,则()()()2222020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *∈N 成立,则()220k t k +->,对于3k ≥成立,且()220k t k +-≤,对于k 2≤成立即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立 所以23t -<,且22t -≥ 解得45t ≤<,故正确. 故选:BCD 【点睛】本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题. 31.ABD 【分析】由条件可得32242q q q =+,解出q ,然后依次计算验证每个选项即可.【详解】由题意32242q q q =+,得220q q --=,解得2q(负值舍去),选项A 正确;1222n n n a -=⨯=,选项B 正确;()12212221n n n S +⨯-==--,所以102046S =,选项C 错误;13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.故选:ABD 【点睛】本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 32.AC【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可.【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +===,故C 是“保等比数列函数”; 对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a q q f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”.故选:AC.【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.33.BC【分析】根据等差中项的性质和等差数列的求和公式可得出结果.【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a a S a +==为定值,但()()11616891682a a S a a +==+不是定值.故选:BC.【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题. 34.AD【分析】计算到12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,根据“谷值点”的定义依次判断每个选项得到答案.【详解】 98n a n n =+-,故12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =.故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”;67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”.故选:AD .【点睛】本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.35.ACD【分析】根据新定义进行判断.【详解】A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1110n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确; B .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2n n n b =-----, 首先函数1y x x=-在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2n n a =-∈,∴10n n n b a a =-<, 当n 为奇数时,11()2n n a =+1>,显然n a 是递减的,因此1n n n b a a =-也是递减的, 即135b b b >>>,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .【点睛】本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。

(常考题)人教版高中数学选修二第一单元《数列》测试卷(有答案解析)(5)

一、选择题1.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则201kk a=∑的值不可能是( )A .2B .4C .10D .142.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .723.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( ) A .201920212S F =+ B .201920211S F =- C .201920202S F =+D .201920201S F =-4.数列{}n a 满足1n n a a n +=+,且11a =,则8a =( ). A .29B .28C .27D .265.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .1766.已知数列{}n a 满足11a =,24a =,310a =,且{}1n n a a +-是等比数列,则81ii a==∑( ) A .376B .382C .749D .7667.已知数列{}n a 是等比数列,数列{}n b是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1b b a a +-⋅的值是( )A.B .1-C.-D8.已知等差数列{}n a 的前n 项和为n S ,若633S S =,则129SS =( ) A .43B .53C .2D .39.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12= A .40 B .60 C .32D .5010.已知数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =.数列11nn a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对一切n ∈+N 都有21n m T +>恒成立,则m 能取到的最小整数为( )A.1-B .0C .1D .211.在公差不为零的等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( ) A .nB .1n +C .21n -D .21n12.数列{}n a 中,2n ka n n=+,若对任意n ∈+N ,都有3n a a ≥成立,则实数k 的取值范围为( ) A .[]12,24B .(]12,24C .[]3,12D .[]3,12二、填空题13.数列{}n a 的前n 项和2n S n n =-+,则它的通项公式是n a =__________.14.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.15.已知数列{}n a 的前n 项和2231n S n n =-+,则n a =__________.16.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____.17.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.18.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.19.已知函数()31xf x x =+,对于数列{}n a 有()1n n a f a -=(*n N ∈且2n ≥),如果11a =,那么n a =______.20.数列{}n a 中,n S 为{}n a 的前n 项和,()()*1n n n n a a a n N+-=∈,且3aπ=,则4tan S 等于______.三、解答题21.已知数列{}n a 的前n 项和为n S ,且满足()*112n n a S n N =+∈ (1)求数列{}n a 的通项公式 (2)若2log n n b a =,21n n n c b b +=且{}n c 的前n 项和为n T ,求使得132424n k k T +<<对*n N ∈都成立的所有正整数k 的值.22.已知公比q 大于1的等比数列{}n a 满足1310a a +=,24a =. (1)求{}n a 的通项公式;(2)设n b = ,求数列{}n b 的前n 项和n S .请在①n n a ⋅;②22log 9n a -;③()()12121nnn a +++这三个条件中选择一个,补充在上面的横线上,并完成解答.23.设{}n a 是公比为正数的等比数列, 12a =,324a a =+. (1)求{}n a 的通项公式;(2)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n S .24.在①4516a a +=;②39S =;③2n S n r =+(r 为常数)这3个条件中选择1个条件,补全下列试题后完成解答.设等差数列{}n a 的前n 项和为n S ,若数列{}n a 的各项均为正整数,且满足公差1d >,______.(1)求数列{}n a 的通项公式; (2)令12n n n b a a +=,前n 项和是n T .若2221n T m m <--恒成立,求实数m 的取值范围.25.已知数列{}{},n n a b 满足1231112,1,2,,n n n n na a ab b b a n N a ++++===-=∈(1)求数列{}n b 的通项公式; (2)求证:1211111,6n n N b b b ++++<∈. 26.已知数列{}n a 的前n 项和为n S ,当2n ,*n N ∈时,112n n S a -=-,且112a =. (1)求数列{}n a 的通项公式;(2)设n n b na =,数列{}n b 的前n 项和n T ,求使得158n T <成立的n 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先由题中条件,得到21221i i i a a a +-=+,由累加法得到202211221k k a a ==-∑,根据00a =,()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.【详解】由11i i a a +=+得()2221121i i i i a a a a +=+=++,则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,……,2202022121a a a -=+,以上各式相加可得:()2112022102212 (20202)kk a a a a a a=-=+++++=∑,所以20221211220k k a a a ==--∑,又00a =,所以2120211a a a =++=,则202211221k k a a ==-∑,因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或2,所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或21±,因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,所以221122a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,170,210;则201kk a=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:求解本题的关键在于将题中条件平方后,利用累加法,得到20221211220k k a a a ==--∑,将问题转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.2.A解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.3.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和,则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.4.A解析:A 【分析】由已知得11n n n a a -=--,运用叠加法可得选项. 【详解】 解:由题意知:1n n a a n +=+,11n n a a n -∴-=-,即:211a a -=,322a a -=,,11n n n a a -=--,把上述所有式子左右叠加一起得:(1)12n n n a -=+, 88(81)1292a ⨯-∴=+=. 故选:A. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式1(1)n a a n d =+-,或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a ,是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n −1项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n −1项商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且k ≠1,k ≠0).一般化方法:设()1n n a m k a m -+=+,得到()11b b k m m k =-=-,, 可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于112(),n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,m ≠0),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;(7)1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用(6)中的方法求解即可.5.B解析:B 【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23na n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭, 所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式;对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.6.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式,求解81i i a =∑即可【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,8712818123(122)2831612i iaa a a =-=++=⨯+++-⨯=⨯--∑83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项,难度属于中档题7.A解析:A 【分析】由等比数列和等差数的性质先求出39b b +和48a a ⋅的值,从而可求出3948tan 1b b a a +-⋅的值【详解】解:因为数列{}n a 是等比数列,数列{}n b是等差数列,1611a a a ⋅⋅=-16117b b b π++=,所以36a =-,637b π=,所以6a =673b π=, 所以3961423b b b π+==,24863a a a ⋅==,所以39481473tan tan tan()tan(2)tan 113333b b a a πππππ+==-=-+=-=-⋅-,故选:A 【点睛】此题考查等差数列和等比数列的性质的应用,考查三角函数求值,属于中档题8.B解析:B 【分析】由已知条件利用等差数列前n 项和公式推导出a 1=2d ,由此能求出129S S 的值 【详解】∵等差数列{a n }的前n 项和为S n ,63S S =3, ∴1165623232a d a d⨯+=⨯+3,整理,得a 1=2d , ∴112191112111212665298936392a dS a d S a d a d ⨯++===⨯++. 故选:B . 【点睛】本题考查等差数列的前n 项和比值的求法,是基础题,解题时要注意等差数列的前n 项和公式的合理运用.9.B解析:B 【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .10.B解析:B 【分析】根据25a =,535S =求出数列的通项公式,再利用裂项相消法求出数列的和,然后由21n m T +>恒成立求解.【详解】因为数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =. 设首项为1a ,公差为d ,所以115545352a d a d +=⎧⎪⎨⨯+=⎪⎩,解得132a d =⎧⎨=⎩,故32(1)21n a n n =+-=+,所以111111()·(21)(23)22123n n a a n n n n +==-++++, 所以11111111111()()23557212323236n T n n n =-+-+⋯+-=-<+++. 因为对于一切n ∈+N 都有21n m T +>恒成立,所以1216+m ,解得512≥-m , 故m 的最小整数为0. 故选:B . 【点睛】本题主要考查数列的通项公式,裂项相消法求数列的和,还考查了运算和求解的能力,属于中档题.11.B解析:B 【分析】根据等差数列以及等比数列的性质求出首项和公差,从而求出通项公式. 【详解】由题意得,等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,故2317a a a =,则()()211126a d a a d +=+, 故12a d =,① 又数列7项和为35, 则1767352da ⨯+=,②, 联立①②解得:1d =,12a =, 故()211n a n n =+-=+, 故选:B. 【点睛】本题考查等差数列和等比数列的性质,公式,重点考查计算能力,属于基础题型.12.A解析:A 【分析】根据题意,可知当0k ≤时,数列{}n a 单调递增,不符合题意;当0k >时,对任意n ∈+N ,都有3n a a ≥成立,得出2343a a a a ≥⎧⎨≥⎩,即可求出实数k 的取值范围,再通过数列的单调性进行验证,符合题意,即可得出答案. 【详解】解:由题可知,2n ka n n=+,对任意n ∈+N ,都有3n a a ≥成立, 当0k ≤时,可知数列{}n a 单调递增,不符合题意; 当0k >时,若对任意n ∈+N ,都有3n a a ≥成立,则2343a a a a ≥⎧⎨≥⎩,即46238643k k k k ⎧+≥+⎪⎪⎨⎪+≥+⎪⎩,解得:1224k k ≥⎧⎨≤⎩,1224k ∴≤≤,此时,数列在()1,2上递减,()3,+∞上递增,或在()1,3上递减,()4,+∞上递增, 故符合题意,所以实数k 的取值范围为[]12,24. 故选:A. 【点睛】本题考查数列的恒成立问题,根据数列的单调性求参数范围,考查分析解题和运算能力.二、填空题13.【分析】依据与的关系由计算即得结果【详解】时;且时易见也适合该式故故答案为:【点睛】数列的前n 项和当已知求时按照两者关系由计算当也适合通项公式时合并作答否则写出分段形式 解析:()22n a n n N +=-+∈【分析】依据n a 与n S 的关系,由()()11,1,2n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩计算即得结果.【详解】1n =时,11110a S ==-+=;2n ≥且n ∈+N 时,()()()221112n n n a S S n n n n n -⎡⎤==-+---+-=⎣⎦-,易见,1n =也适合该式.故()22n a n n N +=-+∈. 故答案为:()22n a n n N +=-+∈. 【点睛】数列{}n a 的前n 项和n S ,当已知n S 求n a 时,按照两者关系,由()()11,1,2n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩计算,当1n =也适合通项公式时,合并作答,否则写出分段形式.14.【分析】先根据题意得由于数列是以为首项为公比的等比数列进而利用分组求和法求和即可得答案【详解】解:由等比数列的前项和公式得由于数列是以为首项为公比的等比数列设的前项和则故答案为:【点睛】本题考查等比 解析:3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n n n n a q S q -⎡⎤⎛⎫-⎢⎥⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-,由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382n n S -=-,再结合数列{}32n -是以4为首项,12为公比的等比数列,再次求和即可. 15.【解析】分析:当时求得;当时类比写出由求出再将代入检验即可求出答案详解:当时当时由得两式相减将代入上式通项公式为故答案为点睛:本题主要考查已知数列的前项和求数列的通项公式的方法其求解过程分为三步:(解析:0,145,2n n a n n =⎧=⎨-≥⎩【解析】分析:当1n =时,求得11a S =;当2n ≥时,类比写出1n S -,由1n n n a S S -=-求出n a ,再将1n =代入n a 检验,即可求出答案.详解:当1n =时,110a S ==当2n ≥时,由2231n S n n =-+,得212(1)3(1)1n S n n -=---+,两式相减,145n n n a S S n -=-=-, 将1n =代入上式,110a =-≠, ∴通项公式为0,145,2n n a n n =⎧=⎨-≥⎩故答案为0,145,2n n a n n =⎧=⎨-≥⎩.点睛:本题主要考查已知数列{}n a 的前n 项和n S ,求数列的通项公式的方法.其求解过程分为三步:(1)当1n =时, 11a S =求出1a ;(2)当2n ≥时,用1n -替换n S 中的n 得到一个新的关系,利用1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式;(3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.16.【分析】先计算第一列形成的数列再计算第20行形成的数列得到答案【详解】设第一列形成的数列为则是首项为公差为的等差数列故设第20行形成的数列为是首项为公比为的等比数列故即故答案为:【点睛】本题考查了等 解析:1952 【分析】先计算第一列形成的数列205b =,再计算第20行形成的数列201952c =,得到答案. 【详解】设第一列形成的数列为n b ,则{}n b 是首项为14,公差为14的等差数列,故4n n b =,205b =.设第20行形成的数列为n c ,{}n c 是首项为5,公比为12的等比数列,故201952c =. 即(20,20)201952a c ==. 故答案为:1952. 【点睛】本题考查了等差数列和等比数列的综合应用,意在考查学生对于数列公式方法的灵活运用.17.【分析】观察图中点数增加规律是依次增加5可得求解【详解】第一图点数是1;第二图点数;第三图是;第四图是则第个图点数故答案为:【点睛】本题考查由数列的前几项求通项公式数列的前几项求通项公式的思路方法: 解析:54n -【分析】观察图中点数增加规律是依次增加5,可得求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 等差数列与等比数列 一.选择题(5’) (1) 已知等差数列}{na中,12497,1,16aaaa则的值是 ( ) A 15 B 30 C 31 D 64 (2) 在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21,则a3+ a4+ a5=( ) A 33 B 72 C 84 D 189 (3)已知等差数列na的公差为2,若431,,aaa成等比数列, 则2a= ( ) A –4 B –6 C –8 D –10 (4) 如果数列}{na是等差数列,则 ( ) A 5481aaaa B 5481aaaa

C 5481aaaa D 5481aaaa (5) 已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则 a1·a4·a7·…·a28 = = ( ) A 25 B 210 C 215 D 220

(6) na是首项1a=1,公差为d=3的等差数列,如果na=2005,则序号n等于 ( ) A 667 B 668 C 669 D 670 (7) 数列{an}的前n项和Sn=3n-c, 则c=1是数列{an}为等比数列的 ( ) A 充分非必要条件 B 必要非充分条件 C充分必要条件 D 既非充分又非必要条件 (8) 在等比数列{an}中, a1<0, 若对正整数n都有an( ) A q>1 B 0(9) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 ( ) A 4; B 5; C 6; D 7。

(10) 已知f(x)=bx+1为x的一次函数, b为不等于1的常数, 且 g(n)=)1()]1([)0(1nngfn, 设an= g(n)-g(n-1) (n∈N※), 则数列{an}是 ( ) A 等差数列 B等比数列 C 递增数列 D 递减数列 2

二.填空题(5’) (11) 在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_____.

(12) 设数列{an}的前n项和为Sn,Sn=2)13(1na(对于所有n≥1),且a4=54,则a1的数值是_____. (13) 等差数列{an}的前m项和为30, 前2m项和为100, 则它的前3m项和为 .

(14) 设等比数列}{na的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为_________ 三.解答题

(15) 已知数列))}1({log*2Nnan为等差数列,且.9,331aa 求数列}{na的通项公式;(10’)

(16) 设数列}{na的前n项和为Sn=2n2,}{nb为等比数列,且.)(,112211baabba (Ⅰ)求数列}{na和}{nb的通项公式; (Ⅱ)设nnnbac,求数列}{nc的前n项和Tn.(15’)

(17) 已知等比数列{an}的各项都是正数, Sn=80, S2n=6560, 且在前n项中, 最大的项为54, 求n的值.(15’) 3

18) 已知{na}是公比为q的等比数列,且231,,aaa成等差数列. (Ⅰ)求q的值; (Ⅱ)设{nb}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由..(15)

(19)设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,…. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式; (Ⅲ)设cn=n(3-bn),求数列{cn}的前n项和Tn.(20’)

(20)已知{na}是公比为q的等比数列,且12,,mmmaaa成等差数列. (1)求q的值; (2)设数列}{na的前n项和为nS,试判断12,,mmmSSS是否成等差数列?说明理由.(15’) 4

参考答案 一选择题: 1.A

[解析]:已知等差数列}{na中,8,2,16889797aaaaaa又

又15,2121248aaaa 2.C [解析]:在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21 故3+3q+3q2 =21,解得q=2

因此a3+ a4+ a5=2122=84 3.B [解析]:已知等差数列na的公差为2,若431,,aaa成等比数列,

则6),4)(2()2(22222aaaa 4.B [解析]: ∵daaaaa7215481∴故选B 5.A [解析]:已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则 a2·a5·a8·…·a29= a1·a4·a7·…·a28·210 a3·a6·a9·…·a30= a1·a4·a7·…·a28·220

故 a1·a4·a7·…·a28=25 6.C

[解析]: na是首项1a=1,公差为d=3的等差数列,如果na=2005, 则1+3(n-1)=2005,故n=669 7.C [解析]:数列{an}的前n项和Sn=3n-c,

则an=)2(32)1(31nncn由等比数列的定义可知: c=1数列{an}为等比数列 8.B [解析]:在等比数列{an}中, a1<0, 若对正整数n都有an即an(1-q)<0 5

若q<0,则数列{an}为正负交错数列,上式显然不成立; 若q>0,则an<0,故1 -q>0,因此09.C

[解析]: 底层正方体的表面积为24;第2层正方体的棱长222,每个面的面积

为)21(4;第3层正方体的棱长为2)22(2,每个面的面积为2)21(4;┉,第n层正方体的棱长为1)22(2n,每个面的面积为1)21(4n; 若该塔形为n层,则它的表面积为 24+4[)21(4+2)21(4+┉+1)21(4n]=405)21(n 因为该塔形的表面积超过39,所以该塔形中正方体的个数至少是6

10.B [解析]: 已知f(x)=bx+1为x的一次函数, b为不等于1的常数, 且

g(n)=)1()]1([)0(1nngfn,

则g(1)=b+1,g(2)=b2+b+1,g(3)=b3+ b2+b+1, ┉,g(n)=nb+┉+ b2+b+1. a1=b,a2= b2,a3= b3, ┉,nnba 故数列{an} 是等比数列 二填空题: 11. 216

[解析]: 在83和272之间插入三个数,使这五个数成等比数列,

设插入三个数为a、b、c,则b2=ac=3622738 因此插入的三个数的乘积 为362166

12. 2 [解析]:设数列{an}的前n项和为Sn,Sn=2)13(1na(对于所有n≥1), 6

则a4=S4-S3111272)127(2)181(aaa,且a4=54,则a1 =2 13. 210 [解析]:∵{an}等差数列 , ∴ Sm,S2m-Sm , S3m-S2m 也成等差数列 即2(S2m-Sm)= Sm + (S3m-S2m) ∴S3m=3(S2m-Sm)=210 14. –2

[解析]:设等比数列}{na的公比为q,前n项和为Sn,且Sn+1,Sn,Sn+2成等差数列,则2Sn=Sn+1+Sn+2 (*) 若q=1, 则Sn=na1, (*)式显然不成立,

若q1,则(*)为qqaqqaqqannn1)1(1)1(1)1(221111

故212nnnqqq 即q2+q-2=0 因此q=-2 三解答题

(15)解:设等差数列)}1({log2na的公差为d.

由,8log2log)2(log29,322231daa得即d=1. 所以,)1(1)1(log2nnan即.12nna (16) (Ⅰ)当;2,111San时 ,24)1(22,2221nnnSSannnn时当 故{an}的通项公式为4,2}{,241daanann公差是即的等差数列. 设{bn}的通项公式为.41,4,,11qdbqdbq则 故.42}{,4121111nnnnnnbbqbb的通项公式为即 (II),4)12(422411nnnnnnnbac 7

]4)12(4)32(454341[4],4)12(45431[13212121nnnnnnnnTncccT



两式相减得

].54)56[(91]54)56[(314)12()4444(2131321nnnnnnnTnnT

(17) 解: 由已知an>0, 得q>0, 若q=1, 则有Sn=na1=80, S2n=2na1=160与S2n=6560矛盾, 故q≠1. ∵)2(65601)1()1(801)1(211qqaqqann, 由(2)÷(1)得qn=81 (3). ∴q>1, 此数列为一递增数列, 在前n 项中, 最大一项是an, 即an=54. 又an=a1qn-1=qa1qn=54, 且qn=81,

∴a1=8154q. 即a1=32q. 将a1=32q代入(1)得32q(1-qn)=80(1-qn), 即32q(1-81)=80(1-q), 解得q=3. 又qn=81, ∴n=4. (18) 解:(Ⅰ)由题设,2,21121213qaaqaaaa即 .012,021qqa .211或q

(Ⅱ)若.2312)1(2,12nnnnnSqn则 当.02)2)(1(,21nnSbSnnnn时 故.nnbS 若.49)21(2)1(2,212nnnnnSqn则 当,4)10)(1(,21nnSbSnnnn时 故对于.,11;,10;,92,nnnnnnbSnbSnbSnNn时当时当时当

相关文档
最新文档