七年级(下)期末数学试卷(3)

合集下载

2023-2024学年北京市朝阳区七年级(下)期末数学试卷+答案解析

2023-2024学年北京市朝阳区七年级(下)期末数学试卷+答案解析

2023-2024学年北京市朝阳区七年级(下)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.9的算术平方根为()A.3B.C.D.812.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与数轴交于点A,则点A表示的数是()A. B. C. D.4.如图,三角形ABC中,,于点在线段AC,AB,BC,CD中,长度最短的是()A.线段ABB.线段ACC.线段BCD.线段CD5.若,则下列结论正确的是()A. B. C. D.6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放厚度忽略不计,若,则的度数为()A.B.C.D.7.经调查,七年级某班学生上学所用的交通工具中,自行车占,公交车占,私家车占,其他占如果用扇形图描述以上数据,下列说法正确的是()A.“自行车”对应扇形的圆心角为B.“公交车”对应扇形的圆心角为C.“私家车”对应扇形的圆心角为D.“其他”对应扇形的圆心角为8.已知,,,给出下面3个结论:①当时,;②M的最小值是18;③M的最大值是上述结论中,所有正确结论的序号为()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。

9.的相反数是______.10.比较大小:4__________填“>”或“<”11.“a与2的差大于“用不等式表示为______.12.不等式的正整数解是______.13.有如下调查:①调查某批次汽车的抗撞击能力;②了解某班学生的视力情况;③选出某班长跑最快的学生参加全校比赛以上调查,适宜抽样调查的是______填写序号14.图中显示了15名七年级学生国家安全知识竞赛成绩和航天知识竞赛成绩单位:分例如:甲同学的国家安全知识竞赛成绩为40分,航天知识竞赛成绩为70分这15名学生中,国家安全知识竞赛成绩与航天知识竞赛成绩相等的有______人.15.如图,第一象限内有两个点,,将线段AB平移,使点A,B平移后的对应点分别同时落在两条坐标轴上,则点A平移后的对应点的坐标为______写出一个即可16.某校为提高校园足球质量和水平,让学生在参与校园足球运动中享受乐趣、增强体质、健全人格、锤炼意志,实现德智体美劳全面发展,举办了校园足球联赛.根据赛事安排,每队均需参赛19场,记分办法如下:胜1场得3分,平1场得1分,负1场得0分.在这次足球联赛中,若某队得13分,则该队可能负______场;写出一种情况即可在这次足球联赛中,若甲、乙两队都得33分,甲队所有比赛都没有踢平,甲、乙两队负场数不同,则乙队最多胜______场.三、计算题:本大题共1小题,共5分。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

华师版初中数学七年级下册期末测试题及答案(3套)

华师版初中数学七年级下册期末测试题及答案(3套)

华师版初中数学七年级下册期末测试题(一)一、选择题:本大题共小题,在每小题给出的四个选项中,只有一项是符合题目要求的.下列方程中,解为x=的是()A x=B x﹣=C x﹣=D x-=不等式x£在数轴上表示正确的是()A B C D小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A正五边形B正六边形C正八边形D正十边形下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A. B.C D.一个三角形的两边长分别是和,则它的第三边长可能是()A B C D下列不等式组中,无解的是()Axx<ìí<-îBxx<ìí>-îCxx>ìí>-îDxx>ìí<-î若xy=-ìí=î是关于x,y的二元一次方程k=x y的一个解,则k的值()A B C D明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时斤=两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A x﹣=x﹣B x x+-=C x=x Dx x-+=如右图,五边形A B C D E的一个内角∠A D,则∠∠∠∠等于A DB DCD D D若关于x,y的二元一次方程组a xb ya xb y+=-ìí-=î的解为xy=-ìí=î则方程组a xb ya xb y+=-ìí-=î的解为()Axy=-ìí=îBxy=-ìí=îCxyì=ïïíï=ïîDxyì=-ïïíï=ïî二、填空题:本大题共个小题已知a>b,则﹣a___﹣b(填“>”、“<”或“=”号).由x y=,得到用x表示y的式子为y=________.为建设书香校园,某中学的图书馆藏书量增加后达到万册,则该校图书馆原来图书有_____万册.如图,A B C E D C△≌△,∠C=D,点D在线段A C上,点E在线段C B延长线上,则∠∠E=_____D.如图,A B C沿着射线B C的方向平移到D E F的位置,若点E是B C的中点,B F=c m,则平移的距离为___c m.如图,在A B C中,点D在B C边上,∠B A C=D,∠A B C=D,射线D C绕点D逆时针旋转一定角度α,交A C于点E,∠A B C的平分线与∠A D E的平分线交于点P.下列结论:①∠C=D;②∠P=∠B A D;③α=∠P﹣∠B A D;④若∠A D E=∠A E D,则∠B A D=α.其中正确的是______.(写出所有正确结论的序号)三、解答题:本大题共个小题,解答应写出文字说明、证明过程或演算步骤.解方程组:x yx y+=ìí+=î.解不等式组:xx x->-ìï+-í-£ïî.若代数式x﹣与x﹣的值互为相反数,求x的值.作图:在如图所示的方格纸中,每个小方格都是边长为个单位的正方形.按要求画出下列图形:()将△A B C向右平移个单位得到△A′B′C′;()将△A′B′C′绕点A′顺时针旋转D得到△A′D E;()连结E C′,则△A′E C′是三角形.如图,在A B C中,∠A=D,∠A B C=D.()求∠C的度数;()若B D是A C边上的高,D E∥B C交A B于点E,求∠B D E的度数.如图,在四边形A B C D中,∠D=D,E是B C边上一点,E F⊥A E,交C D于点F.()若∠E A D=D,求∠D F E的度数;()若∠A E B=∠C E F,A E平分∠B A D,试说明:∠B=∠C.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n元,月份购进台A型空调和台B型空调共元;月份购进台A型空调和台B型空调共元.()求m,n的值;()月份该商场计划购进这两种型号空调共元,其中B型空调的数量不少于台,试问有哪几种进货方案?已知x,y同时满足x y=﹣a,x﹣y=a.()当a=时,求x﹣y的值;()试说明对于任意给定的数a,x y的值始终不变;()若y>﹣m,x﹣6m,且x只能取两个整数,求m的取值范围.阅读理解:如图,在A B C 中,D 是B C 边上一点,且B D m D C n=,试说明A B D A C D S m S n =△△.解:过点A 作B C 边上的高A H ,∵A B D S B D A H =×△,A C D S D C A H =×△,∴A B D A C D B D A HS B DS C D D C A H×==×△△,又∵B D m D C n=,∴A B D A C D Sm S n =△△.根据以上结论解决下列问题:如图,在A B C 中,D 是A B 边上一点,且C D ⊥A B ,将A C D 沿直线A C 翻折得到A C E ,点D 的对应点为E ,A E ,B C 的延长线交于点F ,A B =,A F =.()若C D =,求A C F 的面积;()设△A B F 的面积为m ,点P ,M 分别在线段A C ,A F 上.①求P F P M 的最小值(用含m 的代数式表示);②已知A M M F =,当P F P M 取得最小值时,求四边形P C F M 的面积(用含m 的代数式表示).参考答案一、选择题:C D B B C:D A D B D二、填空题<﹣x ①③④三、解答题x y x y +=ìí+=î①②,①﹣②,得y =,把y =代入②,得x =,解得x =﹣,故方程组的解为:x y =-ìí=î.xx x ->-ìïí+--£ïî①②,解不等式①,得x >﹣,解不等式②,得x 5,故不等式组的解集为:﹣<x 5.根据题意得:x ﹣x ﹣=,移项合并得:x =,解得:x =.()如图,将A 、B 、C 三点向右平移个单位,得到A ′、B ′、C ′,连接A ′、B ′、C ′,△A ′B ′C ′为所作;()如图,将△A′B′C′绕点A′顺时针旋转D得到△A′D E,△A′D E为所作;()连结E C′,如图,∵△A′B′C′绕点A′顺时针旋转D得到△A′D E,∴A′E=A′C′,∠E A′C′=D,∴△A′E C′是等腰直角三角形.故答案为:等腰直角()∵∠A∠A B C∠C=D,∴∠C=D﹣D﹣D=D.()∵B D⊥A C,∴∠B D C=D,∴∠D B C=D﹣∠C=D,∵D E∥B C,∴∠B D E=∠C B D=D.()解:∵E F⊥A E,∴∠A E F=°,四边形A E F D的内角和是°,∵∠D=°,∠E A D=°,∴∠D F E=°﹣∠D﹣∠E A D﹣∠A E F=°;()证明:∵四边形A E F D的内角和是°,∠A E F=°,∠D=°,∴∠E A D∠D F E=°,∵∠D F E∠C F E=°,∴∠E A D=∠C F E,∵A E平分∠B A D,∴∠B A E=∠E A D,∴∠B A E=∠C F E,∵∠B∠B A E∠A E B=°,∠C∠C F E∠C E F=°,∠A E B=∠C E F,∴∠B=∠C.()依题意得:m nm n+=ìí+=î,解得:mn=ìí=î.答:m的值为,n的值为.()设购进B型空调x台,则购进A型空调x-=(﹣x)台,依题意得:xx³ìïí->ïî,解得:5x<.又∵x,(﹣x)均为整数,∴x为的倍数,∴x可以取,,,∴该商场共有种进货方案,方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台.()∵x,y同时满足x y=﹣a,x﹣y=a.∴两式相加得:x﹣y=+a,∴x﹣y=+a,当a=时,x﹣y的值为;()若x y=﹣a①,x﹣y=a②.则①’②得到:x y=,∴x y=,∴不论a取什么实数,x y的值始终不变.()∵x y=,∴y=﹣x,∵y>﹣m,x﹣6m,∴x mx m->-ìí->î整理得x mmx+ìï+í³ïî<,∵x只能取两个整数,故令整数的值为n,n,有:n﹣<m+5n,n<m5n.故n m nn m n-£ìí-£-î<<,∴n﹣<n﹣且n﹣<n,∴<n<,∴n=,∴mm£ìí£î<<,∴<m5.()∵C D⊥A B,∴∠A D C=D,由翻折得,C E=C D=,∠A E C=∠A D C=D,∴C E⊥A F,∵A F=,∴S△A C F=A F•C E=’’=.()①如图,作M N⊥A C于点O,交A B于点N,连接F N、P N ,,由翻折得,∠O A M=∠O A N,∵A O =A O ,∠A O M =∠A O N =D ,∴△A O M ≌△A O N (A S A ),∴O M =O N ,A M =A N ,∴A C 垂直平分M N ,∴P M =P N ,∴P F P M =P F P N 6F N ,∴当点P 落在F N 上且F N ⊥A B 时,P F P M 的值最小,为此时F N 的长;如图,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,由S △A B F =A B •F N =m ,得’F N =m ,解得,F N =m ,此时P F P M =F N =m ,∴P F P M 的最小值为m .②如图,当P F P M 取最小值时,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,设C D =C E =a ,P M =P N =x ,∵A B =,A F =,∴A B C A F Ca S Sa´==´,∴S △A F C =S △A B F =m ;∵A M M F =,∴A M =A F =’=,∴A N =A M =,∴B N ===,∴A F NB F NS S==,∴S △A F N =S △A B F =m ,由S △A P M =’x ,S △A P N =’x ,得S △A P M =S △A P N ,设S △A P M =S △A P N =n ,∵A P M F P MS A M SM F ==,∴S △F P M =n ,由S △A P N S △A P M S △F P M =S △A F N =m ,得n n n =m ,∴n =m ,∴S △A P M =n =m ,∴S 四边形P C F M =m m =m .华师版初中数学七年级下册期末测试题(二)一、选择题(每小题只有一个正确答案,请将你所选择的答案所对应的序号填入下面答题表内.本大题共个小题,每小题分,共分)下列方程中,是一元一次方程的是()A x +B a b +=C x x-=D x -=下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D 若方程(a )x y 是二元一次方程,则a 必须满足()A a ¹B a ¹-C a =D a ¹语句“x 的与x 的和不超过”可以表示为()A xx +£B xx +³C x £+D xx +=已知三条线段长分别为c m 、c m 、a ,若这三条线段首尾顺次联结能围成一个三角形,那么a 的取值可以是()A c mB c mC c mD c m一份数学试卷共道选择题,每道题都给出了个答案,其中只有一个正确选项,每道题选对得分,不选或错选倒扣分,已知小丽得了分,设小丽做对了x 道题,则下列所列方程正确的是.()A x x --=B x x +-=C x x+-=D x x-+=已知x y x y +=ìí+=î,则x y +等于()AB C D 已知实数a ,b 满足a +>b +,则下列选项错误的为()A a >bB a +>b +C ﹣a <﹣bD a >b《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文为:现有一些人共同购买一个物品,每人出元,还盈余元;每人出元,还差元,问共有多少人?这个物品的价格是多少?设共同购买物品的有x 人,该物品的价格为y 元,则根据题意,列出的方程组为()Ax yx y-=ìí-=-îBx yx y-=ìí-=îCy xy x-=ìí-=îDy xy x-=-ìí-=-î如图,已知△A B C≌△C D E,其中A B=C D,那么下列结论中,不正确的是()A A C=C E B∠B A C=∠EC DC∠A C B=∠E C D D∠B=∠D小明要从甲地到乙地,两地相距千米.已知他步行的平均速度为米分,跑步的平均速度为米分,若他要在不超过分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A x(﹣x)6B x(﹣x)5C x(﹣x)6D x(﹣x)5如图,∠A B C=∠A C B,B D、C D分别平分△A B C的内角∠A B C、外角∠A C P,B E平分外角∠M B C 交D C的延长线于点E.以下结论:①∠B D E=∠B A C;②D B⊥B E;③∠B D C+∠A B C=D;④∠B A C +∠B E C=D.其中正确的结论有()A个B个C个D个二、填空题(本大题共个小题,每小题分,共分)若单项式x m﹣y与单项式x y n是同类项,则m﹣n=___.已知xy=ìí=î是关于x,y的二元一次方程m x y+=-的一个解,则m的值为__________.内角和为°的多边形是__________边形.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这是根据____.若一个正多边形的每个外角都等于D,则用这种多边形能铺满地面吗?(填“能”或“不能”)答:________.关于x的不等式组x b ax a b-ìí-î><的解集为﹣<x<,则a b=___.三、解答题(本大题共个小题,共分)解方程:x x---=-.解方程组:x y x y-=ìí+=î解不等式组:xx x-£ìï-íïî<,把它的解集在数轴上表示出来,并求出它的所有整数解的和.按下列要求在网格中作图:()将图①中的图形先向右平移格,再向上平移格,画出两次平移后的图形;()将图②中的图形绕点O旋转D,画出旋转后的图形;()画出图③关于直线A B的轴对称图形.列一元一次方程解应用题:随着天气寒冷,为预防新冠病毒卷土重来,某社区组织志愿者到各个街道进行“少出门,少聚集”的安全知识宣传.原计划在甲街道安排个志愿者,在乙街道安排个志愿者,但到现场后发现任务较重,决定增派名志愿者去支援两个街道,增派后甲街道的志愿者人数是乙街道志愿者人数的倍,请问新增派的志愿者中有多少名去支援甲街道?如图,A D为△A B C的中线,B E为△A B D的中线,过点E作E F⊥B C,垂足为点F.()∠A B C=D,∠E B D=D,∠B A D=D,求∠B E D的度数;()若△A B C的面积为,E F=,求C D.某商店需要购进甲、乙两种商品共件其进价和售价如表:(注:获利售价进价)()若商店计划销售完这批商品后能获利元,问甲、乙两种商品应分别购进多少件?()若商店计划投入资金少于元,且销售完这批商品后获利多于元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案已知A B∥C D,点E、F分别在直线A B、C D上,P F交A B于点G.()如图,直接写出∠P、∠P E B与∠P F D之间的数量关系:;()如图,E Q、F Q分别为∠P E B与∠P F D的平分线,且交于点Q,试说明∠P=∠Q;()如图,若∠Q E B=∠P E B,∠Q F D=∠P F D,()中的结论还成立吗?若成立,请说明理由;若不成立,请求出∠P与∠Q的数量关系;()在()的条件下,若∠C F P=D,当点E在A、B之间运动时,是否存在P E∥F Q?若存在,请求出∠Q的度数;若不存在,请说明理由.参考答案一、选择题:D D A A CA B D A CA D二、填空题七三角形具有稳定性不能三、解答题去分母,得:(x ﹣)﹣(x ﹣)﹣,去括号:x ﹣﹣x ﹣,移项、合并,得:﹣x ﹣,解得:x ,∴原方程的解为x .x y x y -=ìí+=î①②由①得:x y =+③把③代入②得:()y y ++=y \=-y \=-把y =-代入③得:x =所以方程组的解是:x y =ìí=-î.不等式组x x x -£ìïí-ïî①<②,解①得:x ≤,解②得:x >,∴不等式组的解集为<x ≤,解集表示在数轴上为:它的整数解为和,所有整数解的和为.()如图①即为两次平移后的图形;()如图②即为旋转后的图形;()如图③即为关于直线A B的轴对称图形.设新增派的志愿者中有x 名去支援甲街道,则有(x 名去支援乙街道.根据题意可列方程:x x+=´+-,解得:x =.故新增派的志愿者中有名去支援甲街道.()∵∠A B C =D ,∠B A D =D ,∠A B C ∠B A D ∠A D B =D ,∴∠A D B D ﹣D ﹣D D ,∵∠E B D ∠A D B ∠B E D °,∠E B D D ,∴∠B E D D ﹣D ﹣D D ;()∵A D 为△A B C 的中线,B E 为△A B D 的中线,△A B C 的面积为,∴A B DS=´=,B D ES =,B D C D ,∵E F ⊥B C ,E F ,∴B D E S B D =´×,解得:B D ,即C D .()设甲种商品应购进x 件,乙种商品应购进y 件根据题意得:x y x y +=ìí+=î,解得:x y=ìí=î答:甲种商品购进件,乙种商品购进件;()设甲种商品购进a 件,则乙种商品购进()a -件根据题意得:a a a a +-<ìí+->î解不等式组,得:a <<∵a 为非负整数,∴a 取,,∴a -相应取,,方案一:甲种商品购进件,乙种商品购进件方案二:甲种商品购进件,乙种商品购进件方案三:甲种商品购进件,乙种商品购进件答:有三种购货方案,其中获利最大的是方案一故答案为()甲种商品购进件,乙种商品购进件()有三种购货方案,见解析,其中获利最大的是方案一()如图,∵A B ∥C D ,∴∠P F D ∠A G F ,∵∠A G F ∠P ∠P E B ,∴∠P ∠P E B ∠P F D ;()如图,∵A B ∥C D ,∴∠Q F D ∠A K F ,∵∠A K F ∠Q ∠Q E B ,∴∠Q ∠Q E B ∠Q F D ,∵E Q 、F Q 分别为∠P E B 与∠P F D 的平分线,∴∠Q E B =∠P E B ,∠Q F D =∠P F D∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知,∠P∠P E B∠P F D,∴∠P∠Q;()()中的结论不成立,∠P∠Q,理由为:由()中知,∠Q∠Q E B∠Q F D,∵∠Q E B=∠P E B,∠Q F D=∠P F D,∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知∠P∠P E B∠P F D,∴∠P∠Q;()存在P E F Q,此时∠P∠P F Q,∵∠C F P D,∴∠P F D D﹣∠C F P D﹣D D,∵∠D F Q=∠P F D,∴∠D F Q’D D,∴∠P F Q∠P F D﹣∠D F Q D﹣D°,∴∠P D,由()知∠P∠Q,∴∠Q’D D.华师版初中数学七年级下册期末测试题(三)一、选择题(每小题分,共分)若x y =ìí=î是方程a x y -=的一个解,则a 的值是()A B C -D -我国已经进入G 时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A BC D 若a >b ,则下列不等式变形不正确的是()A ﹣a <﹣b B a m <b mC a ﹣>b ﹣D a >b 方程x y =有几组正整数解?()A 组B 组C 组D 组《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《磁不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出钱,会多出钱;每人出钱,又差钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是()A.xy x y +=ìí-=î B.xy x y -=ìí+=î C.xy x y +=ìí+=î D.xy x y-=ìí-=î如图,将△A O B绕点O按逆时针方向旋转D后得到△C O D,若∠A O B=D,则∠A O D的度数是()A DB DCD D D若关于x的不等式x﹣a5只有个正整数解,则a的取值范围是()A<a<B5a<C5a5D<a5多边形的边数由增加到时,其外角和的度数()A增加B减少C不变D不能确定商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.种B.种C.种D.种如图,△A B C的面积为.第一次操作:分别延长A B,B C,C A至点A,B,C,使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C.第二次操作:分别延长A B,B C,C A至点A,B,C;使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C,…按此规律,要使得到的三角形的面积超过,最少经过()次操作.A. B. C. D.二、填空题(每小题分,共分)三角形三边长分别为,a,,则a的取值范围是_____.如果一个多边形的内角和等于它的外角和的倍,那么这个多边形是___边形.如图,将透明直尺叠放在正五边形之上,若正五边形有两个顶点在直尺的边上,且有一边与直尺的边垂直.则a Ð=_______°.规定一种新运算:a b =a ﹣b ,若[(﹣x )]=,则x 的值为_____.在一个三角形中,如果一个角是另一个角的倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为D ,D ,D 的三角形是“灵动三角形”.如图,∠M O N =D ,在射线O M 上找一点A ,过点A 作A B ⊥O M 交O N 于点B ,以A 为端点作射线A D ,交线段O B 于点C (规定D <∠O A C <D ).当△A B C 为“灵动三角形”时,则∠O A C的度数为____________.三、解答题(共个小题,满分分)解不等式组x x x x -£-ìí>-î①②,请按照下列步骤完成解答:()解不等式①,得;()解不等式②,得;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为.如图,已知△A B C≌△D E F,∠A=D,∠B=D,B F=.求∠D F E的度数和E C的长.如图,在正方形网格中,△A B C是格点三角形.()画出△A B C,使得△A B C和△A B C关于直线l对称;()过点C画线段C D,使得C D A B,且C D=A B;()直接写出以A、B、C、D为顶点的四边形的面积为.整式m x n的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:x﹣﹣m x n﹣﹣﹣求关于x的方程﹣m x n=的解.已知关于x、y的二元一次方程组x y mx y m-=ìí+=-+î的解满足x y>﹣,求m的取值范围.如图,在A B C 中,A D 是角平分线,E 为边A B 上一点,连接D E ,E A D E D A Ð=Ð,过点E 作E F B C ^,垂足为F .()D E 与A C 平行吗?请说明理由;()若B A C Ð=°,B Ð=°,求D E F Ð的度数.为进一步提升摩托车、电动自行车骑乘人员和汽车驾乘人员安全防护水平,公安部交通管理局部署在全国开展“一盔一带”安全守护行动.某商店销售A ,B 两种头盔,批发价和零售价格如表所示,请解答下列问题.名称A 种头盔B 种头盔批发价(元个)零售价(元个)()第一次,该商店批发A ,B 两种头盔共个,用去元钱,求A ,B 两种头盔各批发了多少个?()第二次,该商店用元钱仍然批发这两种头盔(批发价和零售价不变),要想将第二次批发的两种头盔全部售完后,所获利润不低于元,则该超市第二次至少批发A 种头盔多少个?如图,将一副直角三角板放在同一条直线A B上,其中∠O N M=D,∠O C D=D()观察猜想将图中的三角尺O C D沿A B的方向平移至图②的位置,使得点O与点N重合,C D与M N相交于点E,则∠C E N=度.()操作探究将图中的三角尺O C D绕点O按顺时针方向旋转,使一边O D在∠M O N的内部,如图,且O D恰好平分∠M O N,C D与N M相交于点E,求∠C E N的度数;()深化拓展将图中的三角尺O C D绕点O按沿顺时针方向旋转一周,在旋转的过程中,若边C D恰好与边M N平行,请你求出此时旋转的角度.参考答案一、选择题:B C B B B:B B C C C二、填空题<a<六DD或D三、解答题-£-()解不等式①,x x-£-去括号:x x移项,合并同类项:x£得:x5;>-()解不等式②,x x移项,合并同类项得:x>﹣得:x>﹣;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为﹣<x5.故答案为:x5,x>﹣,﹣<x5.∵∠A=D,∠B=D,∴∠A C B=D﹣∠A﹣∠B=D﹣D﹣D=D,∵△A B C≌△D E F,∴∠D F E=∠A C B=D,E F=B C,∴E F﹣C F=B C﹣C F,即E C=B F=.()如图,△A B C为所作;()如图,C D或C D′为所作;()以A、B、C、D为顶点的四边形的面积=´-´´-´´-´´-´´=.故答案为.由题意可得:当x=时,m x n=﹣,∴m’n=﹣,解得:n=﹣,当x=时,m x n=,∴m’﹣=,解得:m=,∴关于x的方程﹣m x n=为﹣x﹣=,解得:x=﹣.方程组x y mx y m-=ìí+=-+î①②,①②得:x=m,解得:x=m,把x=m代入①得:m﹣y=m,解得:y=﹣m,∴方程组的解为x my m=+ìí=-+î,代入x y>﹣得:﹣m>﹣,解得:m<.()D E A C,理由如下:A D 是B AC Ð的角平分线B A DC A D\Ð=ÐE A D E D AÐ=Ð E D A C A D\Ð=ÐD E A C \;(2) B A C Ð=°,B Ð=°C B A C B \Ð=°-Ð-Ð=°D E A CE DF C \Ð=Ð=°E F B C^ D E F E D F \Ð=°-Ð=°.()设第一次A 种头盔批发了x 个,B 种头盔批发了y 个.根据题意,得x y x y +ìí+î==,解得:x yìíî==,答:第一次A 种头盔批发了个,B 种头盔批发了个.()设第二次批发A 种头盔a 个,则批发B 种头盔a -个.由题意,得()()a a --+-´³,解得:a ³,答:第二次该商店至少批发个A 种头盔.()∵∠E C N =D ,∠E N C =D ,∴∠C E N =o o D .故答案为D .()∵O D 平分∠M O N ,∴∠D O N =∠M P N =’D =D ,∴∠D O N =∠D =D ,∴C D ∥A B ,∴∠C E N =D ﹣∠M N O =D ﹣D =D ;()如图,C D在A B上方时,设O M与C D相交于F,∵C D∥M N,∴∠O F D=∠M=D,在△O D F中,∠M O D=D﹣∠D﹣∠O F D,=D﹣D﹣D,=D,当C D在A B的下方时,设直线O M与C D相交于F,∵C D∥M N,∴∠D F O=∠M=D,在△D O F中,∠D O F=D﹣∠D﹣∠D F O=D﹣D﹣D=D,∴旋转角为D D=D,综上所述,旋转的角度为D或D时,边C D恰好与边M N平行.故答案为o或o.。

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷及答案解析

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷及答案解析

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列四个实数中,是无理数的为()A.0B.C.﹣D.﹣22.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.3.(3分)一粒米的质量约0.000022千克,数据0.000022用科学记数法表示为()A.0.22×10﹣4B.2.2×10﹣5C.22×10﹣4D.2.2×10﹣44.(3分)下列说法正确的是()A.的平方根是B.﹣25的算术平方根是5C.(﹣5)2的平方根是﹣5D.0的平方根和算术平方根都是05.(3分)△ABC中,∠A、∠B、∠C的对边分别记为a、b、c,由下列条件不能判定△ABC为直角三角形的是()A.∠A﹣∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a2:b2:c2=3:4:56.(3分)如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD7.(3分)已知长方形的周长为16cm,其中一边长为x cm,面积为y cm2,则这个长方形的面积y与边长x之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)8.(3分)如图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为()A.20°B.25°C.22.5°D.30°9.(3分)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A.B.C.D.10.(3分)如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°二、填空题(本题共5小题,每小题3分,共15分)11.(3分).(填“>”、“<”或“=”)12.(3分)若a+b=3,ab=1,则a2+b2=.13.(3分)一个等腰三角形的两边长分别是3cm和7cm,则它的周长是cm.14.(3分)如图,∠ABC=∠CAD=90°,AC=AD,若AB=2,则△BAD的面积为.15.(3分)如图,一个三棱柱盒子底面三边长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A沿盒子的表面爬行一周到盒顶的点B,蚂蚁要爬行的最短路程是cm.三、解答题(本大题共7小题,共55分)16.(8分)计算:(1)x3•x5﹣(2x4)2+x10÷x2;(2).17.(6分)先化简,再求值:(a﹣b)(a+b)﹣b(2a﹣b),其中a=2,b=3.18.(6分)如图,在方格纸中,△PQR的三个顶点及A、B、C、D、E五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等19.(7分)如图,现有一个可以自由转动的转盘(转盘被等分成8个扇形),每个扇形区域内分别标有1,2,3,4,5,6,7,8这八个数字,转动转盘,停止转动后,指针指向的数字即为转出的数字,请回答下列问题:(1)转出的数字是1是,转出的数字是9是;(从“随机事件”,“必然事件”,“不可能事件”中选一个填空)(2)转动转盘,转出的数字是奇数的概率是.(3)现有两张分别写有2和5的卡片,随机转动转盘,转盘停止转动后,记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.这三条线段能构成三角形的概率是.20.(8分)图中所示的是空军某部一架空中加油机给另一架正在飞行的战斗机进行空中加油的场景(加油机飞行不会消耗自身加油箱内的油),在加油过程中,设战斗机的油箱中的油量为Q1吨,加油机的加油箱中的油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油之前,加油机的加油油箱中装载了吨油;这些油全部加给战斗机需分钟;(2)战斗机每分钟的飞行油耗是多少?(3)战斗机加完油后,加速飞行,加速后每分钟油耗为加油时的三倍,请问战斗机最多还能飞行多少分钟?21.(10分)如图,在△ABC中,点D是边AB上一点,点E是边AC的中点,作CF∥AB交DE延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠ABC=∠ACB,CE=3,CF=4,求DB的长.22.(10分)在四边形ABDE中,点C是BD边的中点,AB=2,ED=5,BD=6,AC平分∠BAE,EC平分∠AED.(1)如图1,若∠ACE=90°,则线段AE的长度为;(2)如图2,若∠ACE=120°,则线段AE的长度是多少?写出结论并证明;(3)若∠ACE=135°,其他条件不变,则线段AE的长度为.2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A.0是整数,属于有理数,故本选项不符合题意;B.是分数,属于有理数,故本选项不符合题意;C.﹣是分数,属于有理数,故本选项不合题意;D.﹣2是无理数,故本选项符合题意.故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项A、B、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.选项C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据科学记数法的方法进行解题即可.【解答】解:0.000022=2.2×10﹣5.故选:B.【点评】本题主要考查了科学记数法,科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数.4.【分析】根据平方根的定义对A选项和C选项进行判断;根据算术平方根的定义对B选项进行判断;根据0的平方根为0和算术平方根为0对D选项进行判断.【解答】解:A.的平方根为±,所以A选项不符合题意;B.﹣25没有算术平方根,所以B选项不符合题意;C.(﹣5)2=25,25的平方根为±5,所以C选项不符合题意;D.0的平方根为0,0的算术平方根为0,所以D选项符合题意.故选:D.【点评】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根.也考查了平方根.5.【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A﹣∠B=∠C,∠A=90°,是直角三角形,不符合题意;B、∵∠A:∠B:∠C=1:2:3,∴∠C=90°,是直角三角形,不符合题意;C、a2=c2﹣b2,a2+b2=c2,是直角三角形,不符合题意;D、∵设a2=3x,b2=4x,c2=5x,3x+4x≠5x,∴a2+b2≠c2,不是直角三角形,符合题意;故选:D.【点评】本题考查了勾股定理的逆定理和三角形的内角和定理,注意:①如果一个三角形的两边a、b 的平方和等于第三边c的平方,那么这个三角形是直角三角形,②三角形的内角和等于180°.6.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选:D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.【分析】直接利用长方形面积求法得出答案.【解答】解:∵长方形的周长为16cm,其中一边长为x cm,∴另一边长为:(8﹣x)cm,故y=(8﹣x)x.故选:C.【点评】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.8.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB,再根据等边对等角可得∠A=∠DBA,然后在Rt△ABC中,根据三角形的内角和列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故选:C.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,以及直角三角形两锐角互余的性质,熟记性质并列出方程是解题的关键.9.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,每一段h随t的增大而增大,增大的速度是先快后慢.故选:C.【点评】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.【分析】作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',推出四边形DEMN的周长最小时,点M与M'重合,点N与点N'重合,再求出∠DN'M+∠EM'N即可解决问题.【解答】解:作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',则ME=ME',ND=ND',∴四边形DEMN的周长=DE+ME+MN+ND=DE+ME'+MN+ND'≥DE+D'E',∵DE长固定,∴点M与M'重合,点N与点N'重合时,四边形DEMN的周长最小,此时∠DNM+∠EMN=∠DN'M+∠EM'N,由对称性和三角形外角性质可知:∠DN'M=∠N'DD'+∠N'D'D=2∠N'D'D,∠EM'N=∠M'EE'+∠M'E'E =2∠M'E'E,∴∠DN'M+∠EM'N=2∠N'D'D+2∠M'E'E=2(180°﹣∠D'DE'),设DD'与BC交于点H,∵AB=AC,∠A=90°,∴∠BDH=45°,∴∠D'DE'=180°﹣45°=135°,∴∠DN'M+∠EM'N=2(180°﹣135°)=90°,即当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是90°,故选:B.【点评】本题考查轴对称﹣最短路线问题,解答中涉及两点之间线段最短,三角形内角和定理,三角形外角性质,等腰三角形的性质,能用一条线段表示出三条线段的和的最小值,并确定最小时M,N的位置是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.【分析】求出>2,不等式的两边都减1得出﹣1>1,不等式的两边都除以2即可得出答案.【解答】解:∵>2,∴﹣1>2﹣1,∴﹣1>1∴>.故答案为:>.【点评】本题考查了不等式的性质和实数的大小比较的应用,解此题的关键是求出的范围,题目比较好,难度不大.12.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=9﹣2=7.故答案为:7.【点评】本题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.13.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】过点D作DE⊥BA交BA的延长线于E,证△ABC和△DEA全等得AB=DE=2,再根据三角形的面积公式即可求出△BAD的面积.【解答】解:过点D作DE⊥BA交BA的延长线于E,如图所示:∵∠ABC=∠CAD=90°,∴∠ABC=∠DEA=90°,∠1+∠2=90°,∠C+∠2=90°,∴∠C=∠1,在△ABC和△DEA中,,∴△ABC≌△DEA(AAS),∴AB=DE=2,=AB•DE=×2×2=2.∴S△BAD故答案为:2.【点评】此题主要考查了全等三角形的判定和性质,三角形的面积,熟练掌握全等三角形的判定和性质是解决问题的关键,正确地作出辅助线构造全等三角形是解决问题的难点.15.【分析】将三棱柱侧面展开得出矩形,求出矩形对角线的长度即可.【解答】解:如图,右侧为三棱柱的侧面展开图,AA′=3+4+5=12cm,A′B=9cm,∠AA′B=90°,∴AB===15cm,故答案为:15.【点评】本题考查了三棱柱的侧面展开图,两点之间线段最短,勾股定理,画出三棱柱的侧面展开图,运用勾股定理是解题关键.三、解答题(本大题共7小题,共55分)16.【分析】(1)利用同底数幂乘法及除法法则,幂的乘方与积的乘方法则计算即可;(2)利用零指数幂及二次根式的运算法则计算即可.【解答】解:(1)原式=x8﹣4x8+x8=﹣2x8;(2)原式=2﹣+1=+1.【点评】本题考查实数的运算及整式的混合运算,熟练掌握相关运算法则是解题的关键.17.【分析】利用整式的相应的法则对式子进行化简,再代入相应的值运算即可.【解答】解:(a+b)(a﹣b)﹣b(2a﹣b)=a2﹣b2﹣2ab+b2=a2﹣2ab,当a=2,b=3时,原式=22﹣2×2×3=4﹣12=﹣8.【点评】本题主要考查整式的混合运算—化简求值,解答的关键是对相应的运算法则的掌握.18.【分析】(1)过A作AE∥PQ,过E作EB∥PR,再顺次连接A、E、B,此题答案不唯一,符合要求即可;(2)△PQR面积是:×QR×PQ=6,连接BA,BA长为3,再连接AD、BD,三角形的面积也是6,但是两个三角形不全等.【解答】解:(1)如图所示:;(2)如图所示:【点评】此题主要考查了作图,关键是掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;三角形面积的计算公式:S=×底×高.19.【分析】(1)根据确定性事件和不确定性事件的概念判断可得;(2)转盘共有8种可能结果,奇数的结果有4种,由概率公式解答即可;(3)先求出第三条线段取值范围,再判断即可.【解答】解:(1)转出的数字是1是随机事件,转出的数字是9是不可能事件;故答案为:随机事件;不可能事件;(2)∵转盘转到每个数字的可能性相等,共有8种可能结果,奇数的结果有4种,∴转出的数字是奇数的概率是=,故答案为:;(3)①5﹣2=3,5+2=7,∴第三条线段可以是4,5,6,转动转盘停止后,指针指向的数字有8种情况,其中能构成三角形的有3种,所以这三条线段能构成三角形的概率是,故答案为:.【点评】本题主要考查了概率公式,随机事件,解题的关键是熟练掌握概率公式,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A 发生的概率为P(A)=且0≤P(A)≤1.20.【分析】(1)根据自变量的值求函数值,根据函数值求自变量值;(2)根据“耗油量÷时间=单位时间耗油量”计算;(3)根据“时间=油量÷单位时间耗油量”求解.【解答】解:(1)当t=0时,Q2=50,Q2=0时,t=20,故答案为:50,20;(2)∵战斗机在20分钟时间内,加油69﹣20=49吨,但加油飞机消耗了50吨,所以说20分钟内战斗机耗油量为1吨,∴战斗机每分钟耗油量为1÷20=0.05吨;(3)由(2)知战斗机每小时耗油量为0.05×3=0.15吨,∴69÷0.15=460(分钟),答:战斗机最多还能飞行460分钟.【点评】本题考查了一次函数的应用,理解数形结合思想是解题的关键.21.【分析】(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)利用全等三角形的性质求出AD,AB即可解决问题;【解答】(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵△ADE≌△CFE,CF=4,∴CF=AD=4,又∵∠B=∠ACB,∴AB=AC,∵E是边AC的中点,CE=3,∴AC=2CE=6.∴AB=6,∴DB=AB﹣AD=6﹣4=2.【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)在AE上取一点F,使AF=AB,连接CF,即可以得出△ACB≌△ACF,就可以得出BC =FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF =CG,△CFG是等边三角形,就有FG=CF=3,进而得出结论;(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF =CG,△CFG是等腰直角三角形,就有FG=CG=,进而得出结论.【解答】解:(1)如图1,在AE上取一点F,使AF=AB=2,连接CF,∵AC平分∠BAE,∴∠BAC=∠FAC,在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF,∵C是BD边的中点,∴BC=CD,∴CF=CD,∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°,∴∠ECF=∠ECD,在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED=5,∵AE=AF+EF,∴AE=2+5=7,故答案为:7;(2)AE=11,理由如下:如图2,在AE上取点F,点G,使AF=AB=2,EG=DE=5,连接CF,CG,同理得:△ACB≌△ACF(SAS),△DCE≌△GCE(SAS),∴BC=FC=3=DC=CG,∠ACB=∠ACF,∠DCE=∠GCE,∵∠ACE=120°,∴∠ACB+∠DCE=180°﹣120°=60°,∴∠ACF+∠ECG=60°,∴∠FCG=60°,∴△CFG是等边三角形,∴FG=CF=3,∴AE=2+3+5=10;(3)如图3,在AE上取点F,点G,使AF=AB=2,EG=DE=5,连接CF,CG,同理得:△ACB≌△ACF(SAS),△DCE≌△GCE(SAS),∴BC=FC=3=DC=CG,∠ACB=∠ACF,∠DCE=∠GCE,∵∠ACE=135°,∴∠ACB+∠DCE=180°﹣135°=45°,∴∠ACF+∠ECG=45°,∴∠FCG=90°,∴△CFG是等腰直角三角形,∴FG=CG=,∴AE=2++5=7+3.故答案为:7+3.【点评】本题考查了角平分线的定义的运用,全等三角形的判定及性质的运用,等边三角形的判定与性质的运用和等腰直角三角形的判定与性质的运用,解答时证明三角形全等是关键。

2023-2024学年重庆市渝北区七年级(下)期末数学试卷及答案解析.

2023-2024学年重庆市渝北区七年级(下)期末数学试卷及答案解析.

2023-2024学年重庆市渝北区七年级(下)期末数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案。

其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(4分)下列实数中为无理数的是()A.B.0.13C.D.2.(4分)已知a<b,下面四个不等式中不正确的是()A.3a<3b B.a+3<b+3C.﹣3a<﹣3b D.a﹣3<b﹣33.(4分)在平面直角坐标系中,点A(2,﹣3)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)如图,能判定AB∥DC的是()A.∠1=∠2B.∠1=∠3C.∠3=∠4D.∠D+∠BCD=180°5.(4分)下列命题是真命题的是()A.垂直于同一条直线的两直线垂直B.相等的角是对顶角C.过直线外一点,有且只有一条直线与已知直线平行D.内错角相等6.(4分)如图,已知点O在直线MN上,OA平分∠PON,OB平分∠POM,则∠AOB的度数为()A.90°B.60°C.45°D.无法确定7.(4分)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.(4分)一副三角板按如图放置,其中∠CAB=∠DAE=90°,∠B=45°,∠D=30°,若∠CAD=155°,则∠1的度数是()A.20°B.25°C.35°D.45°9.(4分)某车间有18名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓40只或螺母100只,要求一个螺栓配两个螺母,应怎样分配工人才能使每天生产的螺栓和螺母恰好配套?设分配x人生产螺栓,y人生产螺母,则下列方程组正确的是()A.B.C.D.10.(4分)若关于x的方程4(2﹣x)+x=ax的解为正整数,且关于y的不等式组有解,则满足条件的所有整数a的值之积是()A.0B.2C.﹣2D.﹣3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上。

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2024年济南高新区七年级下学期数学期末考试试题(含答案)

济南高新区2023-2024 学年第二学期七年级学业质量抽测数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共5页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一.选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( )A. B. C. D.2.如图,AB∥CD,若∠1=125°,则∠2的度数为( )A.35°B.45°C.55°D.125°3.要画一个面积为30cm2长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量分别为( )A.常量为30,变量为x、yB.常量为30、y,变量为xC.常量为30、x,变量为yD.常量为x、y,变量为304.下列诗句所描述的事件中,属于必然事件的是( )A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直5.下列运算正确的是( )A.a2+a3=a5B.a2·a3=a5C.(a2)3=a5D.(2a)3=6a36.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠CB.∠A-∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C7.在学校科技宣传活动中,某科技活动小组从“北斗”“天眼”“高铁”“人工智能”4个内容中,随机选择一个进行介绍.科技活动小组恰好选中“高铁”的概率为( )A.16B.14C.13D.128.碳酸钠的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法正确的是( )A.当温度为60℃时,碳酸钠的溶解度为49gB.碳酸钠的溶解度随着温度的升高而增大C.当温度为40℃时,碳酸钠的溶解度最大D.要使碳酸钠的溶解度大于43.6g,温度只能控制在40~80℃(第8题图)(第9题图)(第10题图)9.如图,小李用若干长方体小木块,分别垒了两堵与地面垂直的木块墙,其中木块墙AD=24cm,CE=12cm.木块墙之间刚好可以放进一个等腰直角三角板,点B在DE上,点A和C分别与木块墙的顶端重合,则两堵木块墙之间的距离DE为( )A.48cmB.42cmC.38cmD.36cm10.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为( )米.A.0.9B.1.3C.1.5D.1.611.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )A.3 cm2B.4 cm2C.6 cm2D.12 cm2(第11题图)(第12题图)12.有两个正方形A、B,将A、B并列放置后构造新的图形,分别得到长方形图甲与正方形图乙.若图甲、图乙中阴影的面积分别为12与30,则正方形B的面积为( )A.3B.4C.5D.6第Ⅱ卷(非选择题共102分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2m(m+n)= .14.如果所示的地板由15块方砖组成,每一块方砖除颜色外完全相同,小球自由滚动,随机停在黑色方砖的概率为.(第14题图) (第15题图) (第16题图) (第18题图)15.有一个英语单词,其四个字母都关于直线l对称,如图是该单词各字母的一部分,请写出补全后的单词所指的物品.16.如图,△ABC的顶点均在正方形网格的格点上,则∠ABC+∠ACB的度数等于.17.我国首辆火星车正式被命名为“祝融”,为应对极限温度环境,火星车使用的是新型隔温材料纳米气凝胶,该材料导热率K(W/m·K)与温度T(℃)的关系如表:根据表格中两者的对应关系,若导热率为0.5W/m·K,则温度为℃.18.如图,△ABC中,∠B=30°,∠C=50°,点D为边BC上一点,将△ABD沿直线AD折叠后,点B落到点B’处,恰有B’D∥AC,则∠ADB的度数为.三.解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣a)2·a4+(2a3)2.20.(本题4分)计算:(3x﹣1)(x+2).21.(本题4分)根据条件画图,并回答问题:(1)画一个锐角△ABC;(2)画出BC边上的中线AE和AB边上的高CD.22.(本题5分)请完善下列题目的解答过程,并在括号内填写相应的理论依据.已知:如图,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC,BC⊥CD∴∠ABC=∠BCD=90°()∴∠1+∠EBC=90°,∠2+()=90°又∵∠1=∠2(已知)∴∠EBC= ()∴BE∥CF()23.(本题5分)如图,在△ABC 中,∠ABC=80°,∠ACB=50°,BP 平分∠ABC ,CP 平分∠ACB ,求∠BPC 的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵ (已知),∴∠PBC=12∠=40°∴∠PBC=12∠ABC=12×80°=40°同理可得∠PCB= .∵∠BPC+∠PBC+∠PCB=180( )∴∠BPC=180°﹣∠PBC ﹣∠PCB (等式的性质)∴∠BPC= °24.(本题6分)先化简,再求值:(x ﹣2y)2﹣(2x ﹣y)(2x+y)﹣5y 2,其中x=1,y=﹣12.25.(本题6分)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF ,求证:∠B=∠E .26.(本题6分)甲袋中有红球8个、白球5个和黑球12个;乙袋中有红球18个、白球9个和黑球23个.(每个球除颜色外都相同)“从乙袋中取出10个红球后,乙袋中的红球个数和甲袋中红球个数一样多,所以此时若从中任意摸出一个球是红球,选甲、乙两袋成功的机会相同”.你认为这种说法正确吗?为什么?27.(本题8分)为了解某种品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如下数据:(1)该轿车油箱的容量为L,行驶150km时,油箱剩余油量为L.(2)根据上表中的数据,直接写出油箱剩余油量Q(L)与轿车行驶的路程s(km)之间的关系式.(3)某人将油箱加满后,驾驶该汽车从A地前往B地,到达B地时油箱剩余油量为10L,求A、B两地之间的距离.28.(本题8分)“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节,某校八年级(1)班的小明学习了“勾股定理”之后,为了测得风筝的垂直高度CE(如图1),进行了如下操作:①牵线放风筝的小明手抓线的地方与地面的距离AB为1.5米;②根据手中剩余线的长度计算出风筝线CB的长为17米;③测得小明手抓线的地方与风筝的水平距离BD的长为8米.(1)求风筝的垂直高度CE;(2)如图2,小明想让风筝沿CD方向下降9米到点M处,则他应该往回收线多少米?29.(本题10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,猜想DE、BD、CE之间的数量关系为;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m 上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问(1)中结论是否仍然成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.30.(本题12分)读材料,解答下列问题:若(x﹣1)(5﹣x)=3 ,求(x﹣1)2+(5﹣x)2的值.小亮的解题方法如下:设x﹣1=a,5﹣x=b则(x﹣1)(5﹣x)=ab=3,a+b=x﹣1+5﹣x=4∴(x﹣1)2+(5﹣x)2=a2+b2=(a+b)2﹣2ab=42﹣2×3=10(1)运用材料中的方法解答:若(10﹣x)2+(x﹣8)2=124,求(10﹣x)(x﹣8)的值;(2)如图1,长方形ABCD空地,AB=15米,BC=12米,在中间长方形EFGH上安放雕塑,四周剩余的宽度相同,设该宽度为x米,长方形EFGH中EF= 米,FG= 米.(用含x 代数式表示)(3)在(2)的条件下,如图2,以长方形EFGH四边为直径在形外做半圆,在四个半圆里种花,若长方形EFGH的面积为30平方米,求种花的面积.(结果保留π)答案一.选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( D )A. B. C. D.2.如图,AB∥CD,若∠1=125°,则∠2的度数为( C )A.35°B.45°C.55°D.125°3.要画一个面积为30cm2长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量分别为( A )A.常量为30,变量为x、yB.常量为30、y,变量为xC.常量为30、x,变量为yD.常量为x、y,变量为304.下列诗句所描述的事件中,属于必然事件的是( A )A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直5.下列运算正确的是( B )A.a2+a3=a5B.a2·a3=a5C.(a2)3=a5D.(2a)3=6a36.具备下列条件的△ABC中,不是直角三角形的是( D )A.∠A+∠B=∠CB.∠A-∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C7.在学校科技宣传活动中,某科技活动小组从“北斗”“天眼”“高铁”“人工智能”4个内容中,随机选择一个进行介绍.科技活动小组恰好选中“高铁”的概率为( B )A.16B.14C.13D.128.碳酸钠的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法正确的是( C )A.当温度为60℃时,碳酸钠的溶解度为49gB.碳酸钠的溶解度随着温度的升高而增大C.当温度为40℃时,碳酸钠的溶解度最大D.要使碳酸钠的溶解度大于43.6g,温度只能控制在40~80℃(第8题图)(第9题图)(第10题图)9.如图,小李用若干长方体小木块,分别垒了两堵与地面垂直的木块墙,其中木块墙AD=24cm,CE=12cm.木块墙之间刚好可以放进一个等腰直角三角板,点B在DE上,点A和C分别与木块墙的顶端重合,则两堵木块墙之间的距离DE为( D )A.48cmB.42cmC.38cmD.36cm10.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为( D )米.A.0.9B.1.3C.1.5D.1.611.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( C )A.3 cm2B.4 cm2C.6 cm2D.12 cm2(第11题图)(第12题图)12.有两个正方形A、B,将A、B并列放置后构造新的图形,分别得到长方形图甲与正方形图乙.若图甲、图乙中阴影的面积分别为12与30,则正方形B的面积为( A )A.3B.4C.5D.6第Ⅱ卷(非选择题共102分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2m(m+n)= 2m2+2mn .14.如果所示的地板由15块方砖组成,每一块方砖除颜色外完全相同,小球自由滚动,随机.停在黑色方砖的概率为13(第14题图) (第15题图) (第16题图) (第18题图)15.有一个英语单词,其四个字母都关于直线l对称,如图是该单词各字母的一部分,请写出补全后的单词所指的物品书.16.如图,△ABC的顶点均在正方形网格的格点上,则∠ABC+∠ACB的度数等于45°.17.我国首辆火星车正式被命名为“祝融”,为应对极限温度环境,火星车使用的是新型隔温材料纳米气凝胶,该材料导热率K(W/m·K)与温度T(℃)的关系如表:根据表格中两者的对应关系,若导热率为0.5W/m·K,则温度为450 ℃.18.如图,△ABC中,∠B=30°,∠C=50°,点D为边BC上一点,将△ABD沿直线AD折叠后,点B落到点B’处,恰有B’D∥AC,则∠ADB的度数为115°.三.解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣a)2·a4+(2a3)2.解:原式=x6+4x6=5x620.(本题4分)计算:(3x﹣1)(x+2).解:原式=3x2﹣x+6x﹣2=3x2+5x﹣221.(本题4分)根据条件画图,并回答问题:(1)画一个锐角△ABC;(2)画出BC边上的中线AE和AB边上的高CD.略22.(本题5分)请完善下列题目的解答过程,并在括号内填写相应的理论依据.已知:如图,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC,BC⊥CD∴∠ABC=∠BCD=90°(垂直的定义)∴∠1+∠EBC=90°,∠2+(∠BCF )=90°又∵∠1=∠2(已知)∴∠EBC= ∠BCF (等角的余角相等)∴BE∥CF(内错角相等,两直线平行)23.(本题5分)如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵ BP 平分∠ABC (已知),∴∠PBC=12∠ ABC=40°∴∠PBC=12∠ABC=12×80°=40°同理可得∠PCB= 25° .∵∠BPC+∠PBC+∠PCB=180( 三角形内角和是180° )∴∠BPC=180°﹣∠PBC ﹣∠PCB (等式的性质)∴∠BPC= 115° °24.(本题6分)先化简,再求值:(x ﹣2y)2﹣(2x ﹣y)(2x+y)﹣5y 2,其中x=1,y=﹣12.解:原式=x 2﹣4xy+4y 2﹣4x 2+y 2﹣5y 2=﹣3x 2﹣4xy当x=1,y=﹣12时,原式=﹣3×12﹣4×1×(﹣12)=﹣3+2=﹣125.(本题6分)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF ,求证:∠B=∠E .证明:∵AD=CF∴AD+DC=CF+DC∴AC=DF在△ABC 和△DEF 中{AB =DE AC =DF BC =EF ∴△ABC ≌DEF(SSS)∴∠B=∠E26.(本题6分)甲袋中有红球8个、白球5个和黑球12个;乙袋中有红球18个、白球9个和黑球23个.(每个球除颜色外都相同)“从乙袋中取出10个红球后,乙袋中的红球个数和甲袋中红球个数一样多,所以此时若从中任意摸出一个球是红球,选甲、乙两袋成功的机会相同”.你认为这种说法正确吗?为什么?解:说法不正确从甲袋中摸到红球的可能性为P 甲=85+8+12=825从乙袋中取出10个红球后,从乙袋中摸到红球的可能性为P 乙=89+8+23=840=15∵825≠15所以选甲、乙两袋成功的机会不相同,故说法不正确.27.(本题8分)为了解某种品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如下数据:(1)该轿车油箱的容量为 L ,行驶150km 时,油箱剩余油量为 L .(2)根据上表中的数据,直接写出油箱剩余油量Q(L)与轿车行驶的路程s(km)之间的关系式.(3)某人将油箱加满后,驾驶该汽车从A 地前往B 地,到达B 地时油箱剩余油量为10L ,求A 、B 两地之间的距离.解:(1)该轿车油箱的容量为50L 行驶150km ,剩余油量为 38(2)Q=50﹣0.08s(3)(3)令Q=10,即50﹣0.08s=10解得:s=500A 、B 两地之间的距离为500km28.(本题8分)“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节,某校八年级(1)班的小明学习了“勾股定理”之后,为了测得风筝的垂直高度CE (如图1),进行了如下操作:①牵线放风筝的小明手抓线的地方与地面的距离AB 为1.5米;②根据手中剩余线的长度计算出风筝线CB 的长为17米;③测得小明手抓线的地方与风筝的水平距离BD 的长为8米.(1)求风筝的垂直高度CE ;(2)如图2,小明想让风筝沿CD 方向下降9米到点M 处,则他应该往回收线多少米?解:(1)在Rt △CDB 中,CD=15(米)∵DE=AB=1.5米∴CE=CD+DE=15+1.5=16.5(米)答:风筝的高度CE为16.5米(2)由题意得,CM=9米,∴DM=CD﹣CM=15﹣9=6(米)在Rt△BDM中,由勾股定理得:BM=10(米)∴BC﹣BM=17﹣10=7(米)答:小明应该往回收线7米29.(本题10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,猜想DE、BD、CE之间的数量关系为;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m 上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问(1)中结论是否仍然成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.(1)DE=BD+CE(2)解:结论仍然成立∵∠BDA=∠AEC=∠BAC=α∴∠DBA+∠BAD=∠BAD+∠CAE=180﹣α∴∠CAE=∠ABD在△ADB和△CEA中{∠ABD=∠CAE∠BDA=∠CEAAB=AC∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC∴∠CAE=∠ABD在△ABD和△CEA中{∠ABD=∠CAE∠BDA=∠CEAAB=AC∴△ADB≌△CEA(AAS)S△ABD=S△CEA设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为hS △ABC =12BC ·h=12,S △ACF =12CF ·h=12∵BC=2CF∵S △ACF =6∴S △ACF =S △CEF +S △CEA =S △CEF +S △ABD =6∴△ABD 与△CEF 的面积之和为630.(本题12分)读材料,解答下列问题:若(x ﹣1)(5﹣x)=3 ,求(x ﹣1)2+(5﹣x)2的值.小亮的解题方法如下:设x ﹣1=a ,5﹣x=b则(x ﹣1)(5﹣x)=ab=3,a+b=x ﹣1+5﹣x=4∴(x ﹣1)2+(5﹣x)2=a 2+b 2=(a+b )2﹣2ab=42﹣2×3=10(1)运用材料中的方法解答:若(10﹣x)2+(x ﹣8)2=124,求(10﹣x)(x ﹣8)的值;(2)如图1,长方形ABCD 空地,AB=15米,BC=12米,在中间长方形EFGH 上安放雕塑,四周剩余的宽度相同,设该宽度为x 米,长方形EFGH 中EF= 米,FG= 米.(用含x 代数式表示)(3)在(2)的条件下,如图2,以长方形EFGH 四边为直径在形外做半圆,在四个半圆里种花,若长方形EFGH 的面积为30平方米,求种花的面积.(结果保留π)解:(1)设10﹣x=a ,x ﹣8=b则有(10﹣x)2+(x ﹣8)2=a 2+b 2=124∴a+b=2,(10﹣x)(x ﹣8)=ab∴(10﹣x)(x ﹣8)=ab=12(22﹣124)=﹣60即(10﹣x)(x ﹣8)=﹣60(2)由题意得:EF=AB ﹣x ﹣x=(15﹣2x)米,FG=BC ﹣x ﹣x=(12﹣2x)米(3) 长方形EFGH 的面积为30平方米∴(15﹣2x)(12﹣2x)=30(15﹣2x)2+(12﹣2x)2=32+2×30=69∴种花的面积=π(15﹣2x 2)2+π(12﹣2x 2)2=π4×69=69π4m 2。

广东省深圳市光明区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年下学期学业水平调研测试七年级数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.全卷共6页.考试时间90分钟,满分100分.3.作答选择题1-10,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.下列图形不是轴对称图形的是()A .B .C .D .2.如图,已知直线,,则( )A .40°B .50°C .60°D .130°3.下列各组边长能组成三角形的是( )A .7,8,15B .5,5,11C .3,4,5D .2,9,124.下列各式计算正确的是( )A .B .C .D .5.对某品种的麦粒在相同条件下进行发芽试验,结果如下表所示:试验的麦粒数n 200500100020005000发芽的粒数m 19147395419064748发芽的频率0.9550.9460.9540.9530.9496根据上表,在这批麦粒中任取一粒,估计它能发芽的概率为( )A .0.92B .0.95C .0.97D .0.986.如图,已知,,添加下列哪个条件不一定能使得的是()a b 150∠=︒2∠=23a a a -⋅=-()2236b b =824y y y ÷=()326x x -=m nAB AD =BAD CAE ∠=∠ABC ADE ≌△△A .B .C .D .7.如图,可以近似地刻画下列哪种实际情境中的变化关系()A .一杯越晾越凉的水(水温与时间的关系)B .一面冉冉上升的旗子(高度与时间的关系)C .足球守门员大脚开出去的球(高度与时间的关系)D .匀速行驶的汽车(速度与时间的关系)8.下列说法正确的是( )A .相等的角是对顶角B .三角分别相等的两个三角形全等C .角是轴对称图形,角的平分线是它的对称轴D .若满足,则是锐角三角形9.如图,在中,点D 是BC 边上的中点,若和的周长分别为16和11,则的值为()A .5B .11C .16D .2710.如图,在等腰三角形ABC 中,,,点D 为垂足,E 、F 分别是AD 、AB 上的动点.若,的面积为12,则的最小值是()A .2B .4C .6D .8第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11.数据0.000012可用科学记数法表示为________.B D ∠=∠C E ∠=∠AC AE =BC DE=ABC △::3:4:5A B C ∠∠∠=ABC △ABC △ABD △ACD △AB AC -AB AC =AD BC ⊥6AB =ABC △BE EF +12.已知,,则.13.如图,当时要保持弯形管道所在直线AB 和CD 平行,________°.14.如图,在中,,利用尺规作图,得到直线DE 和射线AF .若,则________°.15.如图,在中,,过点B 作,且使得,连接AD .若,则的面积为________.三、解答题(本大题共7小题,共55分)16.(8分)计算:(1);(2).17.(6分)先化简再求值:,其中,.18.(6分)某路口南北方向红绿灯的设置时间为:红灯30秒,绿灯若干秒,黄灯3秒.小明的爸爸随机地由南往北开车到达该路口.(1)如果绿灯时长为70秒,那么他遇到绿灯的概率________遇到红灯的概率(填“>”“<”或“=”);(2)若他遇到红灯的概率为,求每次绿灯时长为多少秒?19.(7分)如图,在中,BC 边上的高是定值.当三角形的顶点C 沿底边所在直线由点B 向右运动时,三角形的面积随之发生变化.设底边长,三角形面积为,变化情况如下表所示:102m =103n =10________m n+=60BCD ∠=︒ABC ∠=ABC △56C ∠=︒22EAF ∠=︒B ∠=Rt ABC △90BAC ∠=︒BD BC ⊥BD BC =4AB =ABD △()()220240113π2-⎛⎫+--- ⎪⎝⎭()()2x y x y +-()()()22x y y x y x y ⎡⎤-+-+÷⎣⎦1x =-1y =1031ABC △cm BC x =2cm y底边长x (cm )12三角形面积36(1)在这个变化过程中,自变量是________,因变量是________;(2)由上表可知,BC 边上的高为________cm ;(3)y 与x 的关系式可以表示为________;(4)当底边长由3cm 变化到12cm 时,三角形的面积从________变化到________.20.(9分)如图,点B ,D ,C ,F 在同一直线上,,,,求证:.请将下面的证明过程补充完整:证明:因为(已知),所以(①).因为(已知),所以,即.在与中,因为所以( ⑥ ),所以( ⑧),所以( ⑨ ).21.(9分)阅读理解:整体思想是一种重要的数学思想,它是通过观察和分析问题的整体结构,发现其整体结构特征并把握它们之间的联系,然后把某些式子或图形看成一个整体,从而达到简化问题,解决问题的目的.在《整式的乘除》一章中,我们学习了完全平方公式:,它可以恒等变换()2cmy 2cm 2cm ABEF AB EF =BD FC =AC ED ABEF B F ∠=∠BD FC =BD FC +=+②③BC FD =ABC △EFD △,B FBC FD =⎧⎪∠=∠⎨⎪=⎩④⑤ABC EFD ≌△△ACB ∠=⑦ACED ()2222a b a ab b ±=±+为:,等.我们可以利用它解决一些问题,例如:已知,求的值.解:令,,则,.所以,即.所以.问题1:已知,请你仿照上例,求的值;问题2:已知,求的值;问题3:如图,已知长方形ABCD 的面积为3,延长BC 到点P ,使得,以CP 为边向上作正方形CPMN ,再分别以BC 、CD 为边作正方形BCGH 、正方形CDEF .若,则阴影部分的面积是多少?22.(10分)在学习《生活中的轴对称》时,我们探究了两个重要结论:结论1:线段垂直平分线上的点到这条线段两个端点的距离相等.如图,当,时,则有:.结论2:角平分线上的点到这个角的两边的距离相等.如图,当OC 平分∠AOB ,,时,则有:.请利用上述结论,解决下列问题:如图1,在中,,,BD 是∠ABC 的平分线,,垂足为点E ,点P 为线段BD 上一动点.(1)若,则PC =________;(2)①若点P 为线段BC 的垂直平分线与BD 的交点,求∠CPE 的度数;②如图2,连接CE ,若点P 为∠BCE 的平分线与BD 的交点,则________°;(3)若为等腰三角形,则________.()2222a b a b ab +=+-()2222a b a b ab +=-+()()321x x +-=()()2232x x ++-3a x =+2b x =-1ab =5a b -=()225a b -=22225a b ab +-=()()22223225227x x a b ab ++-=+=+=()()213x x +-=()()2221x x ++-()()9202420172m m --+=()()2220242017m m -+-+5BP =1DN =AO BO =CO AB ⊥CA CB =CD OA ⊥CE OB ⊥CD CE =Rt ABC △90ACB ∠=︒50A ∠=︒DE AB ⊥5PE =CPE ∠=PED △BEP ∠=2023-2024学年下学期期末学业水平调研测试七年级数学 参考答案与评分标准一、选择题(本大题共10小题,每小题3分,共30分。

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。

江西省吉安县立中学2023-2024学年七年级下学期期末数学试题(含详细答案)

2023~2024学年度第二学期期末质量检测七年级数学试卷说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6小题,每题3分,共18分)1. 下列事件中,是必然事件的是( )A. 两条线段可以组成一个三角形B. 400人中有两个人的生日在同一天C. 早上的太阳从西方升起D. 打开电视机,它正在播放动画片2. 据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到.已知,则用科学记数法表示为是( )m .A. B. C. D. 3. 如图,下列条件中,不能判断直线的是( )A. B. C. D. 4. 小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A. B.C. D.5. 如图,点,分别是,平分线上的点,于点,于点,14nm 91nm 10m -=14nm 91410-⨯101410-⨯101.410-⨯81.410-⨯12l l ∥13∠=∠23∠∠=45∠=∠24180∠+∠=︒A B NOP ∠MOP ∠AB OP ⊥E BC MN ⊥C于点,则以下结论错误的是( )A. B. C. 与相等的角只有 D. 6. 如图,在和中,与相交于点,与相交于点,与相交于点,,,.给出下列结论:①;②;③;④.其中正确结论是( )A. ①③④B. ①②③④C. ①②③D. ①②④二、填空题(本大题共6小题,每题3分,共18分)7. 计算:_____________.8. 在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.9. 如图,直线,直线与直线相交于点A ,与直线相交于点,且,若,则____.10. 如图,在中,,,,是边上的动点,且点从点向点A运动.若设,的面积为,则与之间的关系式为_____________(不写的取值范围)的AD MN ⊥D AD BC AB+=90AOB ∠∠= CBO ∠EBO ∠OC OD=Rt AEB Rt AFC △BE AC M CF D AB CF N 90E F ∠∠==︒EAC FAB ∠∠=AE AF =B C ∠=∠CD DN =BE CF =ACN ABM ≅ ()224a b ab ⨯-=a b l a b B AC l ⊥155∠=︒2∠=︒Rt ABC △90C ∠=o 4BC =6AC =D AC D C CD x =ABD △y y x x11. 如图,在中,,,,点,分别在,上,且与关于对称,则的周长为_____________.12. 在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”,例如:三个内角分别为,,的三角形是“灵动三角形”.如图,,在射线上找一点,过点作交于点,以为端点作射线,交线段于点(规定).当为“灵动三角形”时,则的度数为_____________.三、解答题(本大题共5小题,每题6分,共30分)13. (1)计算:;(2)如图,已知,,,试说明.ABC 8cm AB =4cm AC =5cm =BC D E AC AB BCD △BED BD ADE V cm 120︒40︒20︒60MON ∠=︒OM A A AB OM ⊥ON B A AD OB C 090OAC <∠<︒︒ABC OAC ∠()()()2311x x x +-+-BAC DAE ∠=∠12∠=∠AD AE =AB AC =14. 先化简,再求值:,其中,.15. 如图,点为边上一点,过作,交于,且平分,那么有.请你完善下面的推理过程,推理过程如下:∵(已知),(两直线平行,内错角相等)()平分() (角平分线的定义)( )即:.16. 在正方形网格上有一个.(1)画关于直线的对称图形(不写画法);(2)在直线上找一点,使最短;(3)若网格上的每个小正方形的边长为1,则的面积为 .17. 如图,直线与分别是边和的垂直平分线,与分别交边于点和点.的()()()()22432x y x y x y x ⎡⎤+-++÷⎣⎦2x =-2y =E ABC AB E EF AC ∥BC F EF BED ∠EGA A ∠=∠EF AC ∥1∴∠=BEF ∠=EF BED ∠2∴∠=1A ∴∠=∠EGA A ∠∠=ABC ABC MN A B C ''' MN P PA PB +A B C ''' l m ABC AC BC l m AB D E(1)若,求的周长是多少?(2)若,问是什么三角形?说明理由.四、解答题(本大题共3小题,每题8分,共24分)18. 如图1、2均是一个均匀的可以自由转动的转盘,图1被平均分成8等份,分别标有1、2、3、4、5、6、7、8这8个数字,转动转盘,当转盘停止后,指针指向的数字即为转出的数字,图2被涂上红色与绿色,转动转盘,当转盘停止后,指针指向的颜色即为转出的颜色,小明转动图1的转盘,小亮转动图2的转盘.(1)小明转出来的数字是3的倍数的概率是;(2)小亮转出的颜色是绿色的概率是 ;(3)小颖认为,小明转出来的数字是偶数的概率与小亮转出的颜色是红色的概率相同,她的看法对吗?为什么?19. 测得一弹簧的长度与悬挂的质量有下面几组对应值:悬挂物质量()01234…弹簧的长度8910…(1)用代数式表示悬挂质量为的物体时的弹簧长度;(2)所挂物体质量为时,弹簧长度是多少?(3)若测得弹簧长度为,则所挂物体质量是多少千克?12AB =CDE 135ACB ∠= CDE ()cm y ()kg x xkg y ()cm 8.59.5()kg x ()cm y 9kg 17cm20. 如图所示的两个长方形用不同形式拼成图1和图2两个图形.(1)若图1中的阴影部分面积为;则图2中的阴影部分面积为.(用含字母的代数式表示)(2)由(1)你可以得到等式 ;(3)根据你所得到的等式解决下面的问题:①计算:;②解方程:.五、(本大题共2小题,每题9分,共18分)21. 甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙离A 点的距离分别为、,与行驶的时间为之间的关系如图所示.(1)①经______小时,甲到达终点.②经______小时,甲、乙两人相遇,此时距地距离为______.③经______小时,乙到达终点.(2)A 、B 两地之间的路程为______;(3)求甲、乙各自的速度;(4)甲出发______后甲、乙两人相距.22. 已知直线,直线和直线交于点和,点是直线上一动点.的22a b -a b 、2277.7522.25-()()2212214a a +--=-S 甲(km)S 乙(h)t B km km h 180km 12L L ∥3L 12L L 、C D P 3L(1)如图①,当点在线段上运动时,①若,,则 ;②问,,之间存在什么数量关系?请你猜想结论并说明理由.(2)当点在两点的外侧运动时(点与点不重合,如图②和图③),上述(1)中的结论是否还成立?若不成立,写出,,之间的数量关系,并选择其中一种情况说明理由.六、(本大题共1小题,12分)23. 如图,在中,,,为直线上一动点,连接.在直线的右侧作,且.观察发现:(1)如图①,当点在线段上时,过点作的垂线,垂足为,判断线段与之间的关系,并说明理由;探究迁移:(2)将如图①中,连接,交直线于点,我们很容易发现.如图②,当点在线段的延长线上时,连接交直线于点,线段和线段之间的关系有没有变化?此时吗?说说理由.拓展应用:(3)如图③,当点在线段延长线上时,当,时,求和的面积.的的P CD 36PAC ∠=︒29PBD ∠=︒APB ∠=PAC ∠APB ∠PBD ∠P C D 、P C D 、PAC ∠APB ∠PBD ∠ABC 90C ∠=o BC AC =D BC AD AC AE AD ⊥AE AD =D BC E AC N EN BC B E AC M MN MC =D BC BE CA M EN BC MN MC =D CB 7AC =2CM =ABD △ABE参考答案一、选择题(本大题共6小题,每题3分,共18分)1. 解:A. 两条线段可以组成一个三角形是不可能事件,故错误,不符合题意;B. 400人中有两个人的生日在同一天是必然事件,故正确,符合题意;C. 早上的太阳从西方升起是不可能事件,故错误,不符合题意;D. 打开电视机,它正在播放动画片是随机事件,故错误,不符合题意;故选B .2.解:由题可得,故选:D .3. 解:A 、,,故不符合题意;B 、当时,无法判断,故符合题意;C 、∵,∴,故不符合题意;D 、∵,∴,故不符合题意;故选:B .4. 解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分钟,路程600米,s 从0增加到600米,t 从0到10分,对应图像为在凉亭休息10分钟,t 从10分到20分,s 保持600米不变,对应图像为从凉亭到公园,用时间10分钟,路程600米,t 从20分到30分,s 从600米增加到1200米,对应图像为9814nm=1410m 1.410m --⨯=⨯13∠=∠ ∴12l l ∥23∠∠=12l l ∥45∠=∠12l l ∥24180∠+∠=︒12l l ∥故选:A .5. 解:∵A ,B 分别是,平分线上的点,∴,,∵,∴,故选项A 结论正确,在和中,,∴,∴,,同理可得,,∴,故B 选项结论正确,∵,∴,∵A ,B 分别是,平分线上的点,∴,,∴,,∴,∵于点C ,于点D ,∴,,∴,,与互余的角有,,,共4个,故选项C 结论错误∵,故选项D 结论正确.故选:C .6. 解:∵,∴,NOP ∠MOP ∠AD AE =BC BE =AB AE BE =+AB AD BC =+Rt AOD Rt AOE △AO AO AD AE =⎧⎨=⎩()Rt Rt HL AOD AOE ≌OD OE =AOE AOD ∠=∠OC OE =BOC BOE Ð=Ð1180902AOB ∠=⨯︒=︒BC MN ⊥90CBO COB ∠+∠=︒NOP ∠MOP ∠COB EOB ∠=∠AOD AOE ∠=∠90BOE AOE ∠+∠=︒90EOB AOE ∠+∠=︒90CBO EOB ∠+∠=︒BC MN ⊥AD MN ⊥90AOE OAD ∠+∠=︒90AOD OAE ∠+∠=︒90CBO OAD ∠+∠=︒90CBO OAE ∠+∠=︒CBO ∠COB ∠EOB ∠OAD ∠OAE ∠OC OD OE ==EAC FAB ∠=∠EAB FAC ∠=∠在和中,,∴,∴,∴①③都正确,在中,,∴,故④正确,根据已知条件无法证明②是否正确,故①③④正确,故选:A .二、填空题(本大题共6小题,每题3分,共18分)7. 解:,故答案为:.8. 解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为;故答案为.9.解:∵,∴,∵,∴,EAB FAC 90E F AE AFEAB FAC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ASA EAB FAC ≌,,B C BE CF AB AC ∠=∠==ACN ABM △和△B C AB ACCAN BAM ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ACN ABM ≌()224a b ab ⨯-()211124a b ++=⨯-328a b =-328a b -1414a b 2901180∠+︒+∠=︒155∠= 2180905535∠=︒-︒-︒=︒故答案为:35.10. 解:∵,,∴,∵,∴,∴,故答案为:.11.解:∵与关于对称,∴,∵,,∴,∴,故答案为:7.12.解:,,,,当时,,,,,当时,,当时,6AC =CD x =6AD x =-4BC =()116422ABD S AD BC x =⨯⨯=-⨯△122y x =-122y x =-BCD △BED BD ,CD DE BC BE ==8cm AB =5cm =BC 3cm AE AB BE AB BC =-=-=7cm ADE C AD DE AE AD DC AE AC AE =++=++=+= ⊥ AB OM 90OAB ︒∴∠=60MON ︒∠= 30ABO ∴∠=︒3ACB ABC ∠=∠30ABO ∠=︒ 90ACB ∴∠=︒60CAB ∴∠=︒30OAC ∴∠=︒3ABC CAB ∠=∠30,ABO ∠=︒ 10,CAB ∴∠︒=90,OAB ∠=︒ 80OAC ∴∠=︒3ACB CAB ∠=∠30,ABO ∠=︒,综上所述,的度数为或或,故答案为:或或三、解答题(本大题共5小题,每题6分,共30分)13.解:(1) ;(2) ,,,在与中,,,.14. 解:[(x +2y )2−(x +4y )(3x +y )]÷(2x )=[x 2+4xy +4y 2−3x 2−xy−12xy−4y 2]÷(2x )=[−2x 2−9xy]÷(2x )=−x−y ,当x =−2,y =2是,原式=−(−2)−×2=−7.15. 证明:∵(已知),(两直线平行,内错角相等)(两直线平行,同位角相等)418030150,CAB ∴∠=-︒=︒︒37.5,CAB ∠=︒∴9037.552.5OAC ︒∴∠=︒-︒=OAC ∠80︒52.5︒30︒80︒52.5︒30︒()()()2311x x x +-+-()22691x x x =++--22691x x x =++-+610x =+BAC DAE ∠=∠ BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∴∠=∠ABD △ACE △12BAD CAE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD ACE ∴≅ AB AC ∴=9292EF AC ∥1∴∠=2∠BEF ∠=A ∠平分(已知)(角平分线的定义)(等量代换)即.故答案为:; ; 同两直线平行,同位角相等; 已知; (或者填); 等量代换16.解:(1)关于直线的对称图形如图:(2)如图,点P 为所求:(3)的面积,故答案为:;17. 解:(1)直线与分别是边和的垂直平分线,,,;(2)解:,,,,,,,EF BED ∠2∴∠=3∠1A ∴∠=∠EGA A ∠=∠2∠A ∠3∠BEF ∠ABC MN A B C ''' 1115232131122222=⨯-⨯⨯-⨯⨯-⨯⨯=52l m ABC AC BC DA DC ∴=EC EB =12CDE C DC DE CE AD DE EB AB ∴=++=++== DA DC =Q EC EB =A ACD ∠∠∴=B BCE ∠∠=135ACB ∠=︒ 18013545ACD BCE A B ∠∠∠∠∴+=+=︒-︒=︒()1354590DCE ACB ACD BCE ∠∠∠∠∴=-+=︒-︒=︒是直角三角形.四、解答题(本大题共3小题,每题8分,共24分)18.解:(1)图1的转盘被平均分成8等份,转到每个数字的可能性相等,共有8种可能结果,数字是3的倍数的结果有2种,转出来的数字是3的倍数的概率是.故答案为;(2)图2的转盘被涂上红色与绿色,其中绿色部分所在扇形圆心角的度数是,转出的颜色是绿色的概率是.故答案为;(3)她的看法错误.理由如下:小明转出来的数字是偶数的概率是,小亮转出的颜色是红色的概率是,,小颖的看法错误.19. 解:(1)由表可得,悬挂质量每增加1千克,弹簧长度增加,∵弹簧原来的长度为,∴弹簧的长度与增加的质量关系为:;(2)解:所挂物体质量为时,此时;(3)解:若测得弹簧长度为,此时,解得:,即若测得弹簧长度为,则所挂物体质量是18千克.20. 解:(1)图2中的阴影部分面积为;故答案为:;(2)由(1)你可以得到的等式是:;故答案为:;CDE ∴ ∴2184=14120︒∴12013603=134182=12133-=1223≠∴0.5cm 8cm 80.5y x =+9kg 80.5912.5cm y =+⨯=17cm 80.517y x =+=18x =17cm ()()a b a b +-()()a b a b +-22()()a b a b a b -=+-22()()a b a b a b -=+-(3)①;②,,,.五、(本大题共2小题,每题9分,共18分)21. 解:(1)根据函数图象知,①经6小时,甲到达终点.②经2小时,甲、乙两人相遇,因为乙的速度,此时距地的距离为.③经3小时,乙到达终点.故答案为:6;2;160;3;(2)根据函数图象知,A 、B 两地之间的路程为;故答案为:240;(3)甲的速度为,乙的速度;(4)设甲出发后甲、乙两人相距,相遇前,由题意得,解得;相遇后,由题意得,解得,不合题意,舍去;乙到达终点后,由题意得,解得;综上,甲出发或后甲、乙两人相距.故答案为:或.2277.7522.25-(77.7522.25)(77.7522.25)=+-10055.5=⨯5550=()()2212214a a +--=-(1221)(1221)4a a a a ∴++-+-+=-84a ∴=-12a ∴=-()h 240803km /=B ()280=160km ⨯240km ()h 240406km /=()h 240803km /=h x 180km 4080180240x x ++=0.5x =4080180240x x +-=3.5x =40180x =4.5x =0.5 4.5h 180km 0.5 4.5h22.解:(1)①∵,,∴,∵,,∴,∵,∴,∴,∵,∴.②解:猜想:.理由:由上可得,,∴,∵,∴,∴,化简可得.(2)不成立,如图:,理由:过点作,∴,∵,∴,∴,180PBD PDB BPD ∠+∠+∠=︒180APC ACP PAC ∠+∠+∠=︒360PBD PDB BPD APC ACP PAC ∠+∠+∠+∠+∠+∠=︒36PAC ∠=︒29PBD ∠=︒295PDB BPD APC ACP ∠+∠+∠+∠=︒12L L ∥180PDB ACP ∠+∠=︒295180115BPD APC ∠+∠=︒-︒=︒180BPD APC APB ∠+∠+∠=︒18011565APB ∠=︒-︒=︒APB PAC PBD ∠=∠+∠360PBD PDB BPD APC ACP PAC ∠+∠+∠+∠+∠+∠=︒180PDB ACP ∠+∠=︒360180180PBD BPD APC PAC ∠+∠+∠+∠=︒-︒=︒180BPD APC APB ∠+∠+∠=︒180BPD APC APB ∠+∠=︒-∠180180PBD APB PAC ∠+︒-∠+∠=︒APB PAC PBD ∠=∠+∠2PAC APB PBD ∠=∠+∠P 1PE L APE PAC ∠=∠12L L ∥2PE L BPE PBD ∠=∠∵,∴;如图:,理由:过点P 作,∴,∵,∴,∴,∵,∴.六、(本大题共1小题,12分)23. 解:(1) 且在与中,,APB APE BPE PAC PBD ∠=∠-∠=∠-∠PAC APB PBD ∠=∠+∠3PBD PAC APB ∠=∠+∠1PE L APE PAC ∠=∠12L L ∥2PE L BPE PBD ∠=∠APB BPE APE PBD PAC ∠=∠-∠=∠-∠PBD PAC APB ∠=∠+∠EN BC =EN BC∥90DAC CAE ∠∠+=90E CAE ∠∠+=E DAC∴∠=∠EAN ADC △90C ANE E DACAD AE ⎧∠=∠=⎪∠=∠⎨⎪=⎩()AAS EAN ADC ∴ ≌,90EN AC ENA C ∴=∠=∠=︒90ENC C ∴∠=∠=︒EN BC∴∥BC AC=(2) 它们的关系没有变化,此时,,,,在与中,,在与中(3) 由(2)可得,和仍然成立EN BC∴=MN MC =90DAC NAE ∠∠+= 90AEN NAE ∠∠+= DAC AEN ∠∠∴=EAN ADC △90ACD ANE AEN DACAD AE ⎧∠=∠=⎪∠=∠⎨⎪=⎩()AAS EAN ADC ∴ ≌EN AC ∴=90ACD ENA ∠=∠=︒EN BC∴∥BC AC= EN BC∴=MEN MBC 90BMC EMN N ACB EN BC ∠=∠⎧⎪∠=∠=⎨⎪=⎩()AAS MEN MBC ∴ ≌MN MC=EAN ADC ≌MEN MBC ≌2MC MN ∴==7AC BC EN ===1174BD AN BC =-=-=11471422ABD S BD AC ∴=⨯⨯=⨯⨯= 11119797632222ABE S AM BC AM EN =⨯⨯+⨯⨯=⨯⨯+⨯⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共4页 第1页

线


考 号
学 校
班 级
姓 名

七年级(下)期末数学试卷(3)
一、选择题
1.下列实数中,是无理数的为( )
A. B. C.π D. 2.对于图中标记的各角,下列条件能够推理得到a∥b的是( ) A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180° 3.若方程mx+ny=6的两个解是,,则m,n的值为( ) A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4 4.若点P(﹣a,4﹣a)是第二象限的点,则a的取值范围是( ) A.a<4 B.a>4 C.a<0 D.0<a<4 5.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( ) A.得分在70~80分之间的人数最多 B.该班的总人数为40 C.得分在90~100分之间的人数最少 D.及格(≥60分)人数是26 6.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点( )

A.(﹣1,1) B.(﹣2,﹣1) C.(﹣3,1) D.(1,﹣2)
7.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000
人,并进

行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌
的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这
10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y
,根据题意,

下面列出的方程组正确的是
( )

A. B.

C. D.
8.某大型超市从生产基地购进一批水果,运输过程中质量损失10%
,假设不计超

市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的
基础上应至少提高
( )
A.40% B.33.4% C.33.3% D.30%
二、填空题
9.为了解某市参加中考的32000名学生的体质情况,抽查了其中1600
名学生的

体重进行统计分析,这个问题中的样本是 .
10.若的值在两个整数a与a+1之间,则a= .
11.不等式2x+9≥3(x+2)的正整数解是 .
共4页 第2页

12.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6

解,则k﹣的算术平方根为 .
13.若关于x的不等式组无解,则a的取值范围是 .
14.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2= .

15.在平面直角坐标系中,一蚂蚁从原点O
出发,按向上、向右、向下、向右的

方向依次不断移动,每次移动1个单位,其行走路线如图.

则A20( , );点A4n的坐标为( , )
(n是正整数).
三、解答题(共75分)

16
.解不等式组.把不等式组的解集在数轴上表示出来,并写出

不等式组的非负整数解.

17.如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF

MG交CD于G,求∠MGC的度数.

18.已知关于x、y的方程组的解满足不等式x<2y﹣3,求实数a
的取

值范围.
共4页 第3页

19.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.
20.已知:如图,B、E分别是AC、DF上一点,∠1=∠2,∠C=∠D
.求证:∠

A=∠F.

21.在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A′
的坐标

是(﹣2,2),现将三角形ABC平移,使点A变换为点A′,点B′、C′分别是B、
C的对应点.
(1)请画出平移后的三角形A′B′C′(不写画法),并写出点B′、C′的坐标;
(2)求三角形ABC的面积.

22
.成都市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随

机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据
绘制了下面两幅不完整的统计图(如图).

请你根据图中提供的信息,回答下列问题:
(1)扇形统计图中a= ,该校初一学生总人数为 人;
(2)根据图中信息,补全条形统计图;
(3)扇形统计图中“活动时间为4天”的扇形所对圆心角的度数为 ;
(4)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的
大约有 人.
共4页 第4页

23.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下: 人数m 0<m≤100 100<m≤200 m>200 收费标准(元/人) 90 85 75 甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元. (1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人? 24.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090
盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每
个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:
造型花卉 甲 乙
A 80 40
B 50 70
(1)符合题意的搭配方案有几种?
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为
1500
元,试说明选用那种方案成本最低?最低成本为多少元?

相关文档
最新文档