2013年江苏省高考数学试卷及答案(Word解析版)
2013年普通高等学校招生全国统一考试江苏卷数学试题(2013年江苏省高考数学)

2013年普通高等学校招生全国统一考试江苏卷数学试题 数学Ⅰ试题参考公式:样本数据x 1,x 2,…,x n 的方差s 2=1n ∑i =1n (x i ﹣x )2,其中x =1n ∑i =1nx i .棱锥的体积公式:V =13Sh ,其中S 是锥体的底面积,h 为高.棱柱的体积公式:V =Sh ,其中S 是柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上..........1.函数y =3sin (2x +π4)的最小正周期为__________. 答案:π解析:函数y =3sin (2x +π4)的最小正周期T =2π2=π.2.设z =(2﹣i)2(i 为虚数单位),则复数z 的模为__________.答案:5解析:|z|=|(2﹣i)2|=|4﹣4i +i 2|=|3﹣4i |=√32+(﹣4)2=5.3.双曲线x 216−y 29=1的两条渐近线的方程为__________.答案:y =±3x解析:由题意可知所求双曲线的渐近线方程为y =±34x.4.集合{﹣1,0,1}共有__________个子集. 答案:8解析:由于集合{﹣1,0,1}有3个元素,故其子集个数为23=8. 5.下图是一个算法的流程图,则输出的n 的值是__________.答案:3解析:第一次循环后:a ←8,n ←2;第二次循环后:a ←26,n ←3; 由于26>20,跳出循环, 输出n =3.6.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为__________. 答案:2解析:由题中数据可得x 甲=90,x 乙=90.于是s 甲2=15[(87﹣90)2+(91﹣90)2+(90﹣90)2+(89﹣90)2+(93﹣90)2]=4,s 乙2=15[(89﹣90)2+(90﹣90)2+(91﹣90)2+(88﹣90)2+(92﹣90)2]=2,由s 甲2>s 乙2,可知乙运动员成绩稳定.故应填2.7.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________. 答案:2063解析:由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若m =1时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7×9=63种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.8.如图,在三棱柱A 1B 1C 1﹣ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F ﹣ADE 的体积为V 1,三棱柱A 1B 1C 1﹣ABC 的体积为V 2,则V 1∶V 2=__________.答案:1∶24解析:由题意可知点F 到面ABC 的距离与点A 1到面ABC 的距离之比为1∶2,S ∶ADE ∶S ∶ABC =1∶4.因此V 1∶V 2=13AF ·S △AED2AF ·S △ABC=1∶24. 9.抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是__________. 答案:[﹣2,12]解析:由题意可知抛物线y =x 2在x =1处的切线方程为y =2x ﹣1.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线x +2y =0平移到过点A (12,0)时,x +2y 取得最大值12. 当直线x +2y =0平移到过点B (0,﹣1)时,x +2y 取得最小值﹣2. 因此所求的x +2y 的取值范围为[﹣2,12].10.设D ,E 分别是∶ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为__________. 答案:12解析:由题意作图如图.∶在∶ABC 中,DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=﹣16AB⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ ,∶λ1=﹣16,λ2=23. 故λ1+λ2=12.11.已知f (x )是定义在R 上的奇函数,当x>0时,f (x )=x 2﹣4x ,则不等式f (x )>x 的解集用区间表示为__________.答案:(﹣5,0)∶(5,+∞)解析:∶函数f(x)为奇函数,且x>0时,f(x)=x 2﹣4x ,则f(x)={x 2﹣4x ,x >0,0,x =0,﹣x 2﹣4x ,x <0,∴∶原不等式等价于{x >0,x 2﹣4x >x ,或{x <0,﹣x 2﹣4x >x .由此可解得x>5或﹣5<x<0. 故应填(﹣5,0)∶(5,+∞). 12.在平面直角坐标系xOy 中,椭圆C的标准方程为x 2a 2+y 2b2=1(a>0,b>0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若d 2=√6d 1,则椭圆C 的离心率为__________. 答案:√33解析:设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为xc +yb =1,即bx +cy ﹣bc =0.于是可知d 1=√b +c 2bc a ,d 2=a 2c ﹣c =a 2﹣c 2c =b 2c . ∶d 2=√6d 1,∶b 2c =√6bca ,即ab =√6c 2.∶a2(a2﹣c2)=6c4.∶6e4+e2﹣1=0.∶e2=13.∶e=√33.13.在平面直角坐标系xOy中,设定点A(a,a),P是函数y=1x(x>0)图象上一动点.若点P,A之间的最短距离为2√2,则满足条件的实数a的所有值为__________.答案:﹣1,√10解析:设P点的坐标为(x,1x ),则|PA|2=(x﹣a)2+(1x﹣a)2=(x2+1x2)﹣2a(x+1x)+2a2.令t=x+1x≥2,则|PA|2=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2(t≥2).结合题意可知(1)当a≤2,t=2时,|PA|2取得最小值.此时(2﹣a)2+a2﹣2=8,解得a=﹣1,a=3(舍去).(2)当a>2,t=a时,|PA|2取得最小值.此时a2﹣2=8,解得a=√10,a=﹣√10(舍去).故满足条件的实数a的所有值为√10,﹣1.14.在正项等比数列{a n}中,a5=12,a6+a7=3.则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为__________.答案:12解析:设正项等比数列{a n}的公比为q,则由a5=12,a6+a7=a5(q+q2)=3可得q=2,于是a n=2n﹣6,则a1+a2+…+a n=132(1﹣2n)1﹣2=2n﹣5﹣132.∶a5=12,q=2,∶a6=1,a1a11=a2a10=…=a62=1.∶a1a2…a11=1.当n取12时,a1+a2+…+a12=27﹣132>a1a2…a11a12=a12=26成立;当n取13时,a1+a2+…+a13=28﹣132∴<a1a2…a11a12a13=a12a13=26·27=213.当n>13时,随着n增大a1+a2+…+a n将恒小于a1a2…a n.因此所求n的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知a=(cosα,sinα),b=(cosβ,sinβ),0<β<α<π.(1)若|a﹣b|=√2,求证:a∶b;(2)设c=(0,1),若a﹣b=c,求α,β的值.(1)证明:由题意得|a﹣b|2=2,即(a﹣b)2=a2﹣2a·b+b2=2.又因为a2=b2=|a|2=|b|2=1,所以2﹣2a·b=2,即a·b=0.故a∶B.(2)解:因为a+b=(cosα+cosβ,sinα+sinβ)=(0,1),所以{cosα+cosβ=0,sinα+sinβ=1,由此得cos α=cos (π﹣β).由0<β<π,得0<π﹣β<π,又0<α<π,故α=π﹣β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.16.(本小题满分14分)如图,在三棱锥S ﹣ABC 中,平面SAB∶平面SBC ,AB∶BC ,AS =AB .过A 作AF∶SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG∶平面ABC; (2)BC∶SA .证明:(1)因为AS =AB ,AF∶SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF∶AB .因为EF∶平面ABC ,AB∶平面ABC , 所以EF∶平面ABC .同理EG∶平面ABC .又EF∩EG =E , 所以平面EFG∶平面ABC .(2)因为平面SAB∶平面SBC ,且交线为SB ,又AF∶平面SAB ,AF∶SB ,所以AF∶平面SBC .因为BC∶平面SBC ,所以AF∶BC .又因为AB∶BC ,AF∩AB =A ,AF ,AB∶平面SAB ,所以BC∶平面SAB . 因为SA∶平面SAB ,所以BC∶SA . 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点A(0,3),直线l :y =2x ﹣4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x ﹣1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x ﹣4和y =x ﹣1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =kx +3,由题意,√k +1=1,解得k =0或﹣34,故所求切线方程为y =3或3x +4y ﹣12=0.(2)因为圆心在直线y =2x ﹣4上,所以圆C 的方程为(x ﹣a)2+[y ﹣2(a ﹣2)]2=1. 设点M(x ,y),因为MA =2MO ,所以√x 2+(y ﹣3)2=2√x 2+y 2,化简得x 2+y 2+2y ﹣3=0,即x 2+(y +1)2=4,所以点M 在以D(0,﹣1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点,则|2﹣1|≤CD≤2+1,即1≤√a 2+(2a ﹣3)2≤3. 由5a 2﹣12a +8≥0,得a ∶R ;由5a 2﹣12a≤0,得0≤a≤125.所以点C 的横坐标a 的取值范围为[0,125]. 18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min ,在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 解:(1)在∶ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π﹣(A +C)]=sin (A +C)=sin A cos C +cos A sin C =513×35+1213×45=6365. 由正弦定理AB sinC =ACsinB,得AB =AC sinB×sin C =12606365×45=1040(m ).所以索道AB 的长为1040m .(2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t)m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×1213=200(37t 2﹣70t +50), 因0≤t≤1040130,即0≤t≤8,故当t =3537(min )时,甲、乙两游客距离最短. (3)由正弦定理BCsinA =ACsinB ,得BC =ACsinB ×sin A =12606365×513=500(m ).乙从B 出发时,甲已走了50×(2+8+1)=550(m ),还需走710m 才能到达C . 设乙步行的速度为v m/min ,由题意得﹣3≤500v −71050≤3,解得125043≤v≤62514,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在[125043,62514](单位:m/min )范围内. 19.(本小题满分16分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记b n =nS nn 2+c,n ∶N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∶N *); (2)若{b n }是等差数列,证明:c =0. 证明:由题设,S n =na +n (n ﹣1)2D . (1)由c =0,得b n =Snn =a +n ﹣12D .又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(a +d 2)2=a (a +32d),化简得d 2﹣2ad =0.因为d≠0,所以d =2A .因此,对于所有的m ∶N *,有S m =m 2A .从而对于所有的k ,n ∶N *,有S nk =(nk )2a =n 2k 2a =n 2S k . (2)设数列{b n }的公差是d 1,则b n =b 1+(n ﹣1)d 1,即nS n n 2+c =b 1+(n ﹣1)d 1,n ∶N *,代入S n 的表达式,整理得,对于所有的n ∶N *,有(d 1﹣12d)n 3+(b 1﹣d 1﹣a +12d)n 2+cd 1n =c (d 1﹣b 1).令A =d 1﹣12d ,B =b 1﹣d 1﹣a +12d ,D =c (d 1﹣b 1),则对于所有的n ∶N *,有An 3+Bn 2+cd 1n =D .(*) 在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1, 从而有{7A +3B +cd 1=0,19A +5B +cd 1=0,21A +5B +cd 1=0,①②③由②,③得A =0,cd 1=﹣5B ,代入方程①,得B =0,从而cd 1=0. 即d 1﹣12d =0,b 1﹣d 1﹣a +12d =0,cd 1=0.若d 1=0,则由d 1﹣12d =0,得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0.20.(本小题满分16分)设函数f(x)=ln x ﹣ax ,g (x )=e x ﹣ax ,其中a 为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a 的取值范围; (2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论. 解:(1)令f'(x)=1x﹣a =1﹣axx <0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a ﹣1,即f(x)在(a ﹣1,+∞)上是单调减函数.同理,f(x)在(0,a ﹣1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)∶(a ﹣1,+∞),从而a ﹣1≤1,即a≥1.令g'(x)=e x ﹣a =0,得x =ln A .当x<ln a 时,g'(x )<0;当x>ln a 时,g'(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e .综上,有a∶(e ,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令g'(x)=e x ﹣a>0,解得a<e x ,即x>ln A .因为g(x)在(﹣1,+∞)上是单调增函数,类似(1)有ln a≤﹣1,即0<a≤e ﹣1.结合上述两种情况,有a≤e ﹣1.①当a =0时,由f(1)=0以及f'(x)=1x >0,得f(x)存在唯一的零点;②当a<0时,由于f(e a )=a ﹣a e a =a(1﹣e a )<0,f(1)=﹣a>0,且函数f(x)在[e a ,1]上的图象不间断,所以f(x)在(e a ,1)上存在零点.另外,当x>0时,f'(x)=1x ﹣a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点. ③当0<a≤e ﹣1时,令f'(x)=1x ﹣a =0,解得x =a ﹣1.当0<x<a﹣1时,f'(x)>0,当x>a﹣1时,f'(x)<0,所以,x =a﹣1是f(x)的最大值点,且最大值为f(a ﹣1)=﹣ln a ﹣1.当﹣ln a ﹣1=0,即a =e ﹣1时,f(x)有一个零点x =e .当﹣ln a ﹣1>0,即0<a<e ﹣1时,f(x)有两个零点.实际上,对于0<a<e ﹣1,由于f(e ﹣1)=﹣1﹣a e ﹣1<0,f(a ﹣1)>0,且函数f(x)在[e ﹣1,a ﹣1]上的图象不间断,所以f(x)在(e ﹣1,a ﹣1)上存在零点.另外,当x∶(0,a﹣1)时,f'(x)=1x﹣a>0,故f(x)在(0,a﹣1)上是单调增函数,所以f(x)在(0,a﹣1)上只有一个零点.下面考虑f(x)在(a﹣1,+∞)上的情况.先证f(e a﹣1)=a(a﹣2﹣e a﹣1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x﹣x2,则h'(x)=e x﹣2x,再设l(x)=h'(x)=e x﹣2x,则l'(x)=e x﹣2.当x>1时,l'(x)=e x﹣2>e﹣2>0,所以l(x)=h'(x)在(1,+∞)上是单调增函数.故当x>2时,h'(x)=e x﹣2x>h'(2)=e2﹣4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x﹣x2>h(e)=e e﹣e2>0.即当x>e时,e x>x2.当0<a<e﹣1,即a﹣1>e时,f(e a﹣1)=a﹣1﹣a e a﹣1=a(a﹣2﹣e a﹣1)<0,又f(a﹣1)>0,且函数f(x)在[a﹣1,e a﹣1]上的图象不间断,所以f(x)在(a﹣1,e a﹣1)上存在零点.又当x>a﹣1时,f'(x)=1x﹣a<0,故f(x)在(a﹣1,+∞)上是单调减函数,所以f(x)在(a﹣1,+∞)上只有一个零点.综合①,②,③,当a≤0或a=e﹣1时,f(x)的零点个数为1,当0<a<e﹣1时,f(x)的零点个数为2.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.A.[选修4﹣1:几何证明选讲](本小题满分10分)如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.证明:连结OD.因为AB和BC分别与圆O相切于点D,C,所以∶ADO=∶ACB=90°.又因为∶A=∶A,所以Rt∶ADO∶Rt∶ACB.所以BCOD =ACAD.又BC=2OC=2OD,故AC=2AD.B.[选修4﹣2:矩阵与变换](本小题满分10分)已知矩阵A=[﹣1002],B=[1206],求矩阵A﹣1B.解:设矩阵A的逆矩阵为[a bc d],则[﹣1002][a bc d]=[1001],即[﹣a﹣b2c2d]=[1001],故a =﹣1,b =0,c =0,d =1,从而A 的逆矩阵为A ﹣1=[﹣1 0 012],所以A ﹣1B =[﹣1 0 0 12][1 20 6]=[﹣1﹣20 3]. C .[选修4﹣4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为{x =t +1,y =2t (t 为参数),曲线C 的参数方程为{x =2tan 2θ,y =2tanθ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标. 解:因为直线l 的参数方程为{x =t +1,y =2t(t 为参数),由x =t +1得t =x ﹣1,代入y =2t ,得到直线l 的普通方程为2x ﹣y ﹣2=0.同理得到曲线C 的普通方程为y 2=2x.联立方程组{y =2(x ﹣1),y 2=2x ,解得公共点的坐标为(2,2),(12,﹣1).D .[选修4﹣5:不等式选讲](本小题满分10分)已知a≥b>0,求证:2a 3﹣b 3≥2ab 2﹣a 2B . 证明:2a 3﹣b 3﹣(2ab 2﹣a 2b)=2a(a 2﹣b 2)+b(a 2﹣b 2)=(a 2﹣b 2)(2a +b)=(a ﹣b)(a +b)(2a +b).因为a≥b>0,所以a ﹣b≥0,a +b>0,2a +b>0, 从而(a ﹣b)(a +b)(2a +b)≥0,即2a 3﹣b 3≥2ab 2﹣a 2B .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直三棱柱A 1B 1C 1﹣ABC 中,AB∶AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A ﹣xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B ⃗⃗⃗⃗⃗⃗⃗ =(2,0,﹣4),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(1,﹣1,﹣4).因为cos <A 1B ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗|A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗ |=√20×√183√1010,所以异面直线A 1B 与C 1D 所成角的余弦值为3√1010. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD ⃗⃗⃗⃗⃗ =(1,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,4),所以n 1·AD ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0,即x +y =0且y +2z =0,取z =1,得x =2,y =﹣2,所以,n 1=(2,﹣2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=|n 1·n 2|n 1||n 2||√9×√123,得sin θ=√53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为√5.23.(本小题满分10分)设数列{a n }:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,(﹣1)k ﹣1k ,…,(﹣1)k ﹣1k ⏞k 个,…,即当(k ﹣1)k 2<n ≤k (k +1)2(k ∶N *)时,a n=(﹣1)k ﹣1k.记S n =a 1+a 2+…+a n (n ∶N *).对于l ∶N *,定义集合P l ={n|S n是a n 的整数倍,n ∶N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2000中元素的个数.解:(1)由数列{a n }的定义得a 1=1,a 2=﹣2,a 3=﹣2,a 4=3,a 5=3,a 6=3,a 7=﹣4,a 8=﹣4,a 9=﹣4,a 10=﹣4,a 11=5,所以S 1=1,S 2=﹣1,S 3=﹣3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=﹣2,S 9=﹣6,S 10=﹣10,S 11=﹣5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=﹣a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=﹣i (2i +1)(i ∶N *).事实上,①当i =1时,S i(2i +1)=S 3=﹣3,﹣i(2i +1)=﹣3,故原等式成立;②假设i =m 时成立,即S m(2m +1)=﹣m(2m +1),则i =m +1时,S (m +1)(2m +3)=S m(2m +1)+(2m +1)2﹣(2m +2)2=﹣m(2m +1)﹣4m ﹣3=﹣(2m 2+5m +3)=﹣(m +1)(2m +3).综合①②可得S i(2i +1)=﹣i(2i +1).于是S (i +1)(2i +1)=S i(2i +1)+(2i +1)2=﹣i(2i +1)+(2i +1)2=(2i +1)(i +1).由上可知S i(2i +1)是2i +1的倍数,而a i(2i +1)+j =2i +1(j =1,2,…,2i +1),所以S i(2i +1)+j =S i(2i +1)+j(2i +1)是a i(2i +1)+j (j =1,2,…,2i +1)的倍数.又S (i +1)(2i +1)=(i +1)(2i +1)不是2i +2的倍数,而a (i +1)(2i +1)+j =﹣(2i +2)(j =1,2,…,2i +2),所以S (i +1)(2i +1)+j =S (i +1)(2i +1)﹣j(2i +2)=(2i +1)(i +1)﹣j(2i +2)不是a (i +1)(2i +1)+j (j =1,2,…,2i +2)的倍数,故当l =i(2i +1)时,集合P l 中元素的个数为1+3+…+(2i ﹣1)=i 2,于是,当l =i(2i +1)+j(1≤j≤2i +1)时,集合P l 中元素的个数为i 2+j.又2000=31×(2×31+1)+47,故集合P 2000中元素的个数为312+47=1008.。
高考理科数学江苏卷试题与答案word解析版 (2)

2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+⎪⎝⎭的最小正周期为__________. 2.(2013江苏,2)设z =(2-i)2(i 为虚数单位),则复数z 的模为__________.3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________. 4.(2013江苏,4)集合{-1,0,1}共有__________个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.6.(2013江苏,6)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:7.(2013江苏,7)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=__________.9.(2013江苏,9)抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是__________.10.(2013江苏,10)设D ,E 分别是△ABC 的边AB ,BC 上的点,1=2AD AB ,2=3BE BC .若12DE AB AC λλ=+u u u r u u u r u u u r(λ1,λ2为实数),则λ1+λ2的值为__________.11.(2013江苏,11)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________.12.(2013江苏,12)在平面直角坐标系xOy 中,椭圆C 的标准方程为2222=1x y a b+(a >0,b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若21d ,则椭圆C 的离心率为__________.13.(2013江苏,13)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数1y x=(x >0)图象上一动点.若点P,A之间的最短距离为a的所有值为__________.14.(2013江苏,14)在正项等比数列{a n}中,51 2a ,a6+a7=3.则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为__________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(2013江苏,15)(本小题满分14分)已知a=(cos α,sin α),b=(cos β,sin β),0<β<α<π.(1)若|a-b|a⊥b;(2)设c=(0,1),若a-b=c,求α,β的值.16.(2013江苏,16)(本小题满分14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(2013江苏,19)(本小题满分16分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记2n n nS b n c=+,n ∈N *,其中c 为实数. (1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0.20.(2013江苏,20)(本小题满分16分)设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数. (1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围; (2)若g (x )在(-1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21.(2013江苏,21)A .[选修4-1:几何证明选讲](本小题满分10分) 如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = 1 00 2-⎡⎤⎢⎥⎣⎦,B =1 20 6⎡⎤⎢⎥⎣⎦,求矩阵A -1B .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为1,2x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.D .[选修4-5:不等式选讲](本小题满分10分)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(2013江苏,22)(本小题满分10分)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.23.(2013江苏,23)(本小题满分10分)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1),,(1)k k k k k ----644474448L 个,…,即当1122k k k k n (-)(+)<≤(k ∈N *)时,a n =(-1)k -1k .记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2 000中元素的个数.2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.答案:π解析:函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==. 2.答案:5解析:|z |=|(2-i)2|=|4-4i +i 2|=|3-4i|5==5.3.答案:34y x =±解析:由题意可知所求双曲线的渐近线方程为34y x =±. 4.答案:8解析:由于集合{-1,0,1}有3个元素,故其子集个数为23=8. 5.答案:3解析:第一次循环后:a ←8,n ←2; 第二次循环后:a ←26,n ←3; 由于26>20,跳出循环, 输出n =3. 6.答案:2解析:由题中数据可得=90x 甲,=90x 乙. 于是2s 甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,2s 乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2,由22>s s 乙甲,可知乙运动员成绩稳定.故应填2.7.答案:2063解析:由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若m =1时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7×9=63种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063. 8.答案:1∶24解析:由题意可知点F 到面ABC 的距离与点A 1到面ABC 的距离之比为1∶2,S △ADE ∶S △ABC =1∶4.因此V 1∶V 2=132AEDABCAF S AF S ∆∆⋅⋅=1∶24.9.答案:12,2⎡⎤-⎢⎥⎣⎦解析:由题意可知抛物线y =x 2在x =1处的切线方程为y =2x -1.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线x +2y =0平移到过点A 1,02⎛⎫⎪⎝⎭时,x +2y 取得最大值12.当直线x +2y =0平移到过点B (0,-1)时,x +2y 取得最小值-2. 因此所求的x +2y 的取值范围为12,2⎡⎤-⎢⎥⎣⎦.10.答案:12解析:由题意作图如图.∵在△ABC 中,1223DE DB BE AB BC =+=+u u u r u u u r u u u r u u u r u u u r 12()23AB AC AB =+-u u u r u u u r u u u r121263AB AC AB AC λλ=-+=+u u u r u u u r u u u r u u u r ,∴λ1=16-,λ2=23.故λ1+λ2=12.11.答案:(-5,0)∪(5,+∞)解析:∵函数f (x )为奇函数,且x >0时,f (x )=x 2-4x ,则f (x )=224,0,0,0,4,0,x x x x x x x ⎧->⎪=⎨⎪--<⎩∴原不等式等价于20,4,x x x x >⎧⎨->⎩或20,4,x x x x <⎧⎨-->⎩由此可解得x >5或-5<x <0. 故应填(-5,0)∪(5,+∞). 12.答案:3解析:设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为=1x yc b+,即bx +cy -bc =0.于是可知1bcd a ==,22222a a c b d c c c c -=-==.∵21d =,∴2b c =,即2ab =. ∴a 2(a 2-c 2)=6c 4.∴6e 4+e 2-1=0.∴e 2=13.∴3e =.13.答案:-1解析:设P 点的坐标为1,x x ⎛⎫⎪⎝⎭,则|PA |2=22222111()=2=2x a a x a x a x x x ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令12t x x =+≥,则|PA |2=t 2-2at +2a 2-2=(t -a )2+a 2-2(t ≥2).结合题意可知(1)当a ≤2,t =2时,|PA |2取得最小值.此时(2-a )2+a 2-2=8,解得a =-1,a =3(舍去).(2)当a >2,t =a 时,|PA |2取得最小值.此时a 2-2=8,解得aa=舍去).故满足条件的实数a1. 14.答案:12解析:设正项等比数列{a n }的公比为q ,则由⊂,a 6+a 7=a 5(q +q 2)=3可得q =2,于是a n =2n -6,则a 1+a 2+…+a n =51(12)13221232n n --=--.∵512a =,q =2,∴a 6=1,a 1a 11=a 2a 10=…=26a =1.∴a 1a 2…a 11=1.当n 取12时,a 1+a 2+…+a 12=27-132>a 1a 2…a 11a 12=a 12=26成立;当n 取13时,a 1+a 2+…+a 13=28-132<a 1a 2…a 11a 12a 13=a 12a 13=26·27=213.当n >13时,随着n 增大a 1+a 2+…+a n 将恒小于a 1a 2…a n .因此所求n 的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a·b +b 2=2.又因为a 2=b 2=|a|2=|b|2=1, 所以2-2a·b =2,即a·b =0. 故a ⊥b .(2)解:因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以cos cos 0,sin sin 1,αβαβ+=⎧⎨+=⎩由此得cos α=cos(π-β).由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sinα+sin β=1,得sin α=sin β=12,而α>β,所以5π6α=,π6β=. 16.证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF ∥AB .因为EF 平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .同理EG ∥平面ABC .又EF ∩EG =E , 所以平面EFG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF ⊥BC .又因为AB ⊥BC ,AF ∩AB =A ,AF ,AB ⊂平面SAB ,所以BC ⊥平面SAB . 因为SA ⊂平面SAB ,所以BC ⊥SA .17.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在. 设过A (0,3)的圆C 的切线方程为y =kx +3, 21k +=1,解得k =0或34-, 故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,22223=2x y x y +(-)+化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1, 即221233a a ≤+(-)≤.由5a -12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. 18.解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =531246313513565⨯⨯⨯=.由正弦定理sin sin AB AC C B =,得12604sin 63sin 565AC AB C B =⨯=⨯=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t ) m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50), 因0≤t ≤1040130,即0≤t ≤8,故当3537t =(min)时,甲、乙两游客距离最短. (3)由正弦定理sin sin BC AC A B =,得BC =12605sin 63sin 1365AC A B ⨯=⨯=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内. 19.证明:由题设,(1)2n n n S na d -=+.(1)由c =0,得12n n S n b a d n -==+.又因为b 1,b 2,b 4成等比数列,所以22b =b 1b 4,即23=22d a a a d ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,化简得d 2-2ad =0.因为d ≠0,所以d =2a .因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .(2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1,即2n nS n c+=b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于所有的n ∈N *,有3211111122d d n b d a d n cd n ⎛⎫⎛⎫-+--++ ⎪ ⎪⎝⎭⎝⎭=c (d 1-b 1).令A =112d d -,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n =D .(*)在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1,从而有111730,1950,2150,A B cd A B cd A B cd ++=⎧⎪++=⎨⎪++=⎩①②③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.即112d d -=0,b 1-d 1-a +12d =0,cd 1=0. 若d 1=0,则由112d d -=0,得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0. 20.解:(1)令f ′(x )=11axa x x--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x-a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1.结合上述两种情况,有a ≤e -1. ①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点; ②当a <0时,由于f (e a)=a -a e a=a (1-e a)<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x -a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点. ③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1.当-ln a-1=0,即a=e-1时,f(x)有一个零点x=e.当-ln a-1>0,即0<a<e-1时,f(x)有两个零点.实际上,对于0<a<e-1,由于f(e-1)=-1-a e-1<0,f(a-1)>0,且函数f(x)在[e-1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.另外,当x∈(0,a-1)时,f′(x)=1x-a>0,故f(x)在(0,a-1)上是单调增函数,所以f(x)在(0,a-1)上只有一个零点.下面考虑f(x)在(a-1,+∞)上的情况.先证f(e a-1)=a(a-2-e a-1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x-x2,则h′(x)=e x-2x,再设l(x)=h′(x)=e x-2x,则l′(x)=e x-2.当x>1时,l′(x)=e x-2>e-2>0,所以l(x)=h′(x)在(1,+∞)上是单调增函数.故当x>2时,h′(x)=e x-2x>h′(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x-x2>h(e)=e e-e2>0.即当x>e时,e x>x2.当0<a<e-1,即a-1>e时,f(e a-1)=a-1-a e a-1=a(a-2-e a-1)<0,又f(a-1)>0,且函数f(x)在[a-1,e a-1]上的图象不间断,所以f(x)在(a-1,e a-1)上存在零点.又当x>a-1时,f′(x)=1x-a<0,故f(x)在(a-1,+∞)上是单调减函数,所以f(x)在(a-1,+∞)上只有一个零点.综合①,②,③,当a≤0或a=e-1时,f(x)的零点个数为1,当 0<a<e-1时,f(x)的零点个数为2.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.证明:连结OD.因为AB和BC分别与圆O相切于点D,C,所以∠ADO=∠ACB=90°.又因为∠A=∠A,所以Rt△ADO∽Rt△ACB.所以BC AC OD AD=.又BC=2OC=2OD,故AC=2AD.B.[选修4-2:矩阵与变换]解:设矩阵A的逆矩阵为a bc d⎡⎤⎢⎥⎣⎦,则1 00 2-⎡⎤⎢⎥⎣⎦a bc d⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,即2 2a bc d--⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,故a =-1,b =0,c =0,12d =,从而A 的逆矩阵为A -1= 1 010 2-⎡⎤⎢⎥⎢⎥⎣⎦, 所以A -1B = 1 010 2-⎡⎤⎢⎥⎢⎥⎣⎦1 20 6⎡⎤⎢⎥⎣⎦= 1 20 3--⎡⎤⎢⎥⎣⎦. C .解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0. 同理得到曲线C 的普通方程为y 2=2x .联立方程组221,2,y x y x =(-)⎧⎨=⎩解得公共点的坐标为(2,2),1,12⎛⎫- ⎪⎝⎭.D .证明:2a 3-b 3-(2ab 2-a 2b )=2a (a 2-b 2)+b (a 2-b 2)=(a 2-b 2)(2a +b )=(a -b )(a +b )(2a +b ).因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a -b )(a +b )(2a +b )≥0,即2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B u u u r =(2,0,-4),1C D u u u u r=(1,-1,-4).因为cos 〈1A B u u u r ,1C D u u u u r 〉=1111A B C DA B C D⋅u u u r u u u u ru u u r u u u u r10=, 所以异面直线A 1B 与C 1D. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD u u u r =(1,1,0),1AC u u u u r =(0,2,4),所以n 1·AD u u u r=0,n 1·1AC u u u u r =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=12122||||3⋅==n n n n ,得sin θ=3. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为3. 23.解:(1)由数列{a n }的定义得a 1=1,a 2=-2,a 3=-2,a 4=3,a 5=3,a 6=3,a 7=-4,a 8=-4,a 9=-4,a 10=-4,a 11=5,所以S 1=1,S 2=-1,S 3=-3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=-2,S 9=-6,S 10=-10,S 11=-5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=-a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=-i (2i +1)(i ∈N *).事实上,①当i =1时,S i (2i +1)=S 3=-3,-i (2i +1)=-3,故原等式成立;②假设i =m 时成立,即S m (2m +1)=-m (2m +1),则i =m +1时,S (m +1)(2m +3)=S m (2m +1)+(2m +1)2-(2m +2)2=-m (2m +1)-4m -3=-(2m 2+5m +3)=-(m +1)(2m +3).综合①②可得S i (2i +1)=-i (2i +1).于是S (i +1)(2i +1)=S i (2i +1)+(2i +1)2=-i (2i +1)+(2i +1)2=(2i +1)(i +1).由上可知S i (2i +1)是2i +1的倍数,而a i (2i +1)+j =2i +1(j =1,2,…,2i +1),所以S i (2i +1)+j =S i (2i +1)+j (2i +1)是a i (2i +1)+j (j =1,2,…,2i +1)的倍数.又S (i +1)(2i +1)=(i +1)(2i +1)不是2i +2的倍数,而a (i +1)(2i +1)+j =-(2i +2)(j =1,2,…,2i +2),所以S (i +1)(2i +1)+j =S (i +1)(2i +1)-j (2i +2)=(2i +1)(i +1)-j (2i +2)不是a (i +1)(2i +1)+j (j =1,2,…,2i +2)的倍数,故当l =i (2i +1)时,集合P l 中元素的个数为1+3+…+(2i -1)=i 2,于是,当l =i (2i +1)+j (1≤j ≤2i +1)时,集合P l 中元素的个数为i 2+j .又2 000=31×(2×31+1)+47,故集合P 2 000中元素的个数为312+47=1 008.。
2013江苏省高考数学真题(含答案)

2013年普通高等学校统一考试试题(江苏卷)、填空题:本大题共 14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数y 3sin (2x)的最小正周期为 ______________ 42•设z (2 i )2 (i 为虚数单位),则复数z 的模为 _________________2 23 .双曲线-— 1的两条渐近线的方程为169(第5题)6 •抽样统计甲、乙两位设计运动员的 5此训练成绩(单位:环),结果如运动员 第一次 第二次 第三次 第四次第五次 甲 87 91 90 89 93 乙8990918892方差为:S2 2 2 2 2(89 90) (90 90)(91 90)(88 90) (92 90)25.7•现在某类病毒记作 X m Y n ,其中正整数 m , n ( m 7 , n 9)可以任意选取,则m , n都取到奇数的概率为 ______________ .8 .如图,在三棱柱A 1B 1C 1 ABC 中,D , E , F 分别是AB , AC , AA 的中点,设三棱锥 F ADE 的体积为 V ,三棱柱 A 1B 1C 1 ABC 的体积为 V 2,则 V , :V 2 __________9 •抛物线y x 2在x 1处的切线与两坐标轴围成三角形区域为 D (包含三角形内部和边界)•若4 .集合{ 1,0,1}共有 ____________ 个子集.5•右图是一个算法的流程图,则输出的n 的值是 _____________点P(x, y)是区域D内的任意一点,贝U x 2y的取值范围是________10•设D , E 分别是 ABC 的边AB , BC 上的点,集用区间表示为16. (本小题满分14分)如图,在三棱锥 S ABC 中,平面 SAB 平面SBC ,AB BC ,AS AB ,过A 作AF SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点•求证:(1) 平面EFG//平面ABC ; (2)BC SA .若 DE 1AB 2AC (2为实数),则12的值为11.已知f (x)是定义在R 上的奇函数。
2013江苏省高考数学真题含答案清晰版

2013高考数学试卷参考公式: 样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。
DE AB AC λλ=+(λ、11、已知()f x 是定义在R12n n a a a a ++>的最大正整数内作答,解答时应写出文字说明、证明或演.(本小题满分14分)已知向量(cos ,sin ),(cos ,sin ),0a b ααββ==(1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值。
16、(本小题满分14分)如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。
过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。
求证:(1)平面EFG//平面ABC ;(2)BC SA ⊥。
如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。
(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA=2MO ,求圆心C 的横坐标a 的取值范围。
18、(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C 。
现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50米/分钟。
在甲出发2分钟后,乙从A 乘坐缆车到B ,在B 处停留1分钟后,再从B 匀速步行到C 。
假设缆车速度为130米/分钟,山路AC 的长为1260米,经测量,123cos ,cos 135A C ==。
2013江苏高考数学试卷含答案(校正精确版)

2013江苏一、 填空题1.函数y =3sin(2x +π4)的最小正周期为 .【解】利用函数y =A sin(ωx +φ)的周期公式求解.函数y =3sin(2x +π4)的最小正周期为T =2π2=π.2.设z =(2-i)2(i 为虚数单位),则复数z 的模为 .【解】z =3-4i ,|z |=53.双曲线x 216-y 29=1的两条渐近线的方程为 .【解】y =±34x4.集合{-1,0,1}共有 个子集.【解】23=8(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲【解】经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ .【解】易知均值都是90,乙方差较小,2222222111()[(8990)(9090)(9190)(8890)(9290)]25n i i s x x n ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ .【解】m 可以取的值有:1,2,3,4,5,6,7共7个,n 可以取的值有:1,2,3,4,5,6,7,8,9共9个,故总共有7×9=63种可能,符合题意的m 可以取1,3,5,7共4个,符合题意的n 可以取1,3,5,7,9共5个,故总共有4×5=20种可能符合题意,故符合题意的概率为2063. 8.如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2= .【解】设三棱柱A 1B 1C 1-ABC 的高为h ,底面三角形ABC 的面积为S ,则V 1=13×14S ×12h =124Sh =124V 2,即V 1∶V 2=1∶24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .【解】易知切线方程为:y =2x -1,故与两坐标轴围成的三角形区域三个点为(0,0)A ,(0.5,0)B ,(0,1)C -,易知过C 点时有最小值-2,过B 点时有最大值0.510.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE ―→=λ1AB ―→+λ2AC ―→(λ1,λ2为实数),则λ1+λ2的值为 .【解】DE ―→=DB ―→+BE ―→=12AB ―→+23BC ―→=12AB ―→+23(BA ―→+AC ―→)=-16AB ―→+23AC ―→,所以λ1=-16,λ2=23,即λ1+λ2=12. 11.已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为 ▲ .【解】由于f (x )为R 上的奇函数,所以当x =0时,f (0)=0;当x <0时,-x >0,所以f (-x )=x 2+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎨⎧x 2-4x >x ,x >0或⎩⎨⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞). 12.在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ .【解】由题意知2212,bc a b d d c a c c ==-=,故有2b c =,两边平方得到2246a b c =,即42246a a c c -=,两边同除以4a 得到2416e e -=,解得213e =,即e =ABC1ADE F1B1C13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ .【解】由题意设0001(,)(0)P x x x >,则有22220002000111()()2(+)PA x a a x a x x x x =-+-=+-+2220000112(+)2(+)22a x a x a x x =-+-,令001(2)x t t x +=≥,则222()222(2)PA f t t at a t ==-+-≥,对称轴t a =,1.2a ≤时,222min (2)242,2428PA f a a a a ==-+∴-+=,1a =-,3a =(舍去) 2.2a >时,222min()2,28PAf a a a ==-∴-=,a =,a =(舍去)综上1a =-或a =14.在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n的值为 .【解】a 5=12,a 6+a 7=3,故a 5q +a 5q 2=3,q 2+q -6=0,q >0,故q =2,故a n =2n -6,因a 1+a 2+…+a n >a 1a 2…a n ,故2n -5-2-5>2n 2-11n2,2n -5-2n 2-11n2>2-5>0,n -5>12(n 2-11n ),故13-1292<n <13+1292,因n ∈N *,故1≤n ≤12,n ∈N *,又n =12时符合题意,故n 的最大值为12.设数列{a n }的公比为q (q >0),由已知得,12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去),a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n 2-11n2,由2n -5-2-5>2n 2-11n2,可求得n 的最大值为12,而当n =13时,28-2-5<213,故n 的最大值为12. 二、解答题15.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. ⑴.若|a -b |=2,求证:a ⊥b ;⑵.设c =(0,1),若a +b =c ,求α,β的值.【解】⑴.由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b ;⑵.因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得cos α=cos(π-β).由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin α+sin β=1,可得sin β=12.∴sin α=12,而α>β,所以α=5π6,β=π6.16.如图,在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =.过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:⑴.平面EFG //平面ABC ; ⑵.BC SA ⊥.【解】⑴.,E G Q 分别是侧棱,SA SC 的中点,EG AC ∴∥,AC Q 在平面ABC 中,EG 在平面外,EG ∴∥平面ABC ,,AS AB AF SB =Q ⊥,F ∴为SB 中点,EF AB ∴∥,Q AB 在平面ABC 中,EF 在平面外,EF ∴∥平面ABC ,Q EF 与EG 相交于E ,,EF EG 在平面EFG 中,∴平面EFG //平面ABC⑵.Q 平面SAB ⊥平面SBC ,SB 为交线,Q AF 在SAB 中,AF SB ⊥,AF ∴⊥平面SBC ,AF BC ∴⊥,BC AB Q ⊥,AF 与AB 相交于A ,,AF AB 在平面SAB 中,BC ∴⊥平面SAB ,BC SA ∴⊥17.如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.⑴.若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; ⑵.若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.【解】⑴.由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.⑵.因为圆心在直线y =2x -4上,故圆C 的方程为(x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为MA =2MO ,故x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,故点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,故圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.整理得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.故点C 的横坐标a 的取值范围是⎣⎡⎦⎤0,125. 18.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min .在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.⑴.求索道AB 的长;⑵.问乙出发多少分钟后,乙在缆车上与甲的距离最短?⑶.为使两位游客在C 处相互等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 【解】(1)在△ABC 中,因为cos A =1213,cos C =35,故sin A =513,sin C =45.从而sin B =sin[π-(A+C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =ACsin B ,得AB =AC sin B ·sin C =1 2606365×45=1 040(m).故索道AB 的长为1 040 m . (2)设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,故由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ·sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,故为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.19.设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c,n ∈N *,其中c 为实数.⑴.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); ⑵.若{b n }是等差数列,证明:c =0.【解】⑴.由题设,S n =na +n (n -1)2d .(1)由c =0,得b n =S n n =a +n -12d .又b 1,b 2,b 4成等比数列,故b 22=b 1b 4,即⎝⎛⎭⎫a +d 22=a ⎝⎛⎭⎫a +32d ,化简得d 2-2ad =0.因为d ≠0,故d =2a .因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .⑵.设数列{b n }的公差为d 1,则b n =b 1+(n -1)d 1,即nS nn 2+c =b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于所有的n ∈N *,有⎝⎛⎭⎫d 1-12d n 3+(b 1-d 1-a +12d )n 2+cd 1n =c (d 1-b 1).令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n =D (*).在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1,从而有⎩⎪⎨⎪⎧7A +3B +cd 1=0,①19A +5B +cd 1=0,②21A +5B +cd 1=0,③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.即d 1-12d =0,b 1-d 1-a +12d =0,cd 1=0.若d 1=0,则由d 1-12d =0,得d =0,与题设矛盾,故d 1≠0.又cd 1=0,故c =0.20.设函数f (x )=ln x -ax ,g (x )=e x -ax ,其中a 为实数.⑴.若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围; ⑵.若g (x )在(-1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.【解】⑴.令f ′(x )=1x -a =1-ax x <0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(1a ,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(1a ,+∞),从而1a ≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x<ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,故ln a >1,即a >e .综上,a 的取值范围为(e ,+∞).⑵.当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a ,因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤1e.综合上述两种情况,有a ≤1e.(ⅰ)当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点.(ⅱ)当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a ,1]上的图像不间断,故f (x )在(e a ,1)上存在零点.另外,当x >0时,f ′(x )=1x -a >0,故f (x )在(0,+∞)上是单调增函数,故f (x )只有一个零点.(ⅲ)当0<a ≤1e 时,令f ′(x )=1x -a =0,解得x =1a .当0<x <1a 时,f ′(x )>0,当x >1a 时,f ′(x )<0,故,x =1a 是f (x )的最大值点,且最大值为f (1a)=-1-ln a .①.当-1-ln a =0,即a =1e 时,f (x )有一个零点x =e .②.当-1-ln a >0,即0<a <1e时,f (x )有两个零点.实际上,对于0<a <1e ,由于f (1e )=-1-a e <0,f (1a )>0,且函数f (x )在[1e ,1a ]上的图像不间断,故f (x )在(1e ,1a )上存在零点.另外,当x ∈(0,1a )时,f ′(x )=1x -a >0,故f (x )在(0,1a )上是单调增函数,故f (x )在(0,1a)上只有一个零点.下面考虑f (x )在(1a ,+∞)上的情况.先证f (e 1a )=a (1a2-e 1a )<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2.当x >1时,l ′(x )=e x -2>e -2>0,故l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时,h (x )=e x -x 2>h (e)=e e -e 2>0,即当x >e 时,ex>x 2.当0<a <1e ,即1a >e 时,f (e 1a )=a (1a 2-e 1a )<0,又f (1a)>0,且函数f (x )在[1a ,e 1a ]上的图像不间断,故f (x )在(1a ,e 1a )上存在零点.又当x >1a 时,f ′(x )=1x -a <0,故f (x )在(1a ,+∞)上是单调减函数,故f (x )在(1a,+∞)上只有一个零点. 综合(ⅰ)(ⅱ)(ⅲ),当a ≤0或a =1e 时,f (x )的零点个数为1,当0<a <1e 时,f (x )的零点个数为2.B .已知矩阵A =⎣⎢⎡⎦⎥⎤-10 0 2,B =⎣⎢⎡⎦⎥⎤1 20 6,求矩阵A -1B .【解】设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-1 0 02⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012,故A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3.C .在平面直角坐标系xoy 中,直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标. 解:因为直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),由1x t =+得,1t x =-,代入2y t =得,直线l 的普通方程为220x y --=,同理得曲线C 的普通方程为22y x =,联立方程组22(1),2y x y x =-⎧⎨=⎩,解得公共点的坐标为(2,2),1(,1)2-.22.如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点. ⑴.求异面直线A 1B 与C 1D 所成角的余弦值; ⑵.求平面ADC 1与平面ABA 1所成二面角的正弦值.解:⑴.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B ―→=(2,0,-4),C 1D ―→=(1,-1,-4).因为cos 〈A 1B ―→,C 1D ―→〉=A 1B ―→·C 1D ―→| A 1B ―→||C 1D ―→|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010; ⑵.设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD ―→=(1,1,0),AC 1―→=(0,2,4),所以n 1·AD ―→=0,n 1·AC 1―→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=|n 1·n 2||n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 23.设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1)(1)k k k k k 644474448---,,-,,个……即当(k -1)k 2<n ≤k (k +1)2(k ∈N *)时,a n =(-1)k -1k ,记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }. (1)求集合P 11中元素的个数; (2)求集合P 2000中元素的个数.解 (1)由数列{a n }的定义得a 1=1,a 2=-2,a 3=-2,a 4=3,a 5=3,a 6=3,a 7=-4,a 8=-4,a 9=-4,a 10=-4,a 11=5,所以S 1=1,S 2=-1,S 3=-3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=-2,S 9=-6,S 10=-10,S 11=-5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=-a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=-i (2i +1)(i ∈N *).事实上,①当i =1时,S i (2i +1)=S 3=-3,-i (2i +1)=-3,故原等式成立;②假设i=m时成立,即S m(2m+1)=-m(2m+1),则i=m+1时,S(m+1)(2m+3)=S m(2m+1)+(2m+1)2-(2m+2)2=-m(2m+1)-4m-3=-(2m2+5m+3)=-(m+1)(2m+3).综合①②可得S i(2i+1)=-i(2i+1).于是S(i+1)(2i+1)=S i(2i+1)+(2i+1)2=-i(2i+1)+(2i+1)2=(2i+1)(i+1).由上可知S i(2i+1)是2i+1的倍数,而a i(2i+1)+j=2i+1(j=1,2,…,2i+1),所以S i(2i+1)+j=S i(2i+1)+j(2i+1)是a i(2i+1)+j(j=1,2,…,2i+1)的倍数.又S(i+1)(2i+1)=(i+1)(2i+1)不是2i+2的倍数,而a(i+=-(2i+2)(j=1,2,…,2i+2),所以S(i+1)(2i+1)+j=S(i+1)(2i+1)-j(2i+2)=(2i+1)(i+1)-j(2i+1)(2i+1)+j2)不是a(i+1)(2i+1)+j(j=1,2,…,2i+2)的倍数,故当l=i(2i+1)时,集合P l中元素的个数为1+3+…+(2i-1)=i2,于是,当l=i(2i+1)+j(1≤j≤2i+1)时,集合P l中元素的个数为i2+j.又2000=31×(2×31+1)+47,故集合P2000中元素的个数为312+47=1008.。
2013年江苏省 高考数学试卷 (真题与答案解析)-推荐下载

3.(2013 江苏,3)双曲线 x2 y2 =1 的两条渐近线的方程为__________. 16 9
4.(2013 江苏,4)集合{-1,0,1}共有__________个子集.
5.(2013 江苏,5)下图是一个算法的流程图,则输出的 n 的值是__________.
6.(2013 江苏,6)抽样统计甲、乙两位射击运动员的 5 次训练成绩(单位:环),
9.(2013 江苏,9)抛物线 y=x2 在 x=1 处的切线与两坐标轴围成三角形区域为 D(包含三角形内部和 边界).若点 P(x,y)是区域 D 内的任意一点,则 x+2y 的取值范围是__________.
1
2
10.(2013 江苏,10)设 D,E 分别是△ABC 的边 AB,BC 上的点, AD= AB , BE= BC .若
12.(2013
江苏,12)在平面直角坐标系
xOy
中,椭圆
C
的标准方程为
x2 a2
y2 b2
=1 (a>0,b>0),右
焦点为 F,右准线为 l,短轴的一个端点为 B.设原点到直线 BF 的距离为 d1,F 到 l 的距离为 d2.若
d2 6d1 ,则椭圆 C 的离心率为__________.
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2013年江苏高考数学试卷解析版
2013年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符. 4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1.函数42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:34,Z i Z =-=3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025n i i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ .解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ . 解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析: 易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ .解析:由题意知2212,bc a b d d c a c c==-=所以有2b c = 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即e = 13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ .解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭令()00t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=a = , a =(舍去)综上1a =-或a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223.....,.222222011522360022n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴-><<=>∴==n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。
2013年江苏省高考真题数学试卷及答案(理科)
A BC1A DEF 1B 1C ABCSGFE2013年普通高等学校统一考试数学试题卷Ⅰ 必做题部分一.填空题1.函数)42sin(3p+=x y 的最小正周期为的最小正周期为 。
2.设2)2(i z -=(i 为虚数单位),则复数z 的模为的模为 。
3.双曲线191622=-y x 的两条渐近线的方程为的两条渐近线的方程为 。
4.集合}1,0,1{-共有共有 个子集。
个子集。
个子集。
5.下图是一个算法的流程图,则输出的n 的值是的值是 。
6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:,结果如下:运动员运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙 89 90 91 88 92则成绩较为稳定(方差较小)的那位运动员成绩的方差为则成绩较为稳定(方差较小)的那位运动员成绩的方差为 。
7.现在某类病毒记作n m Y X ,其中正整数m ,n (7£m ,9£n )可以任意选取,则n m ,都取到奇数的概率为的概率为 。
8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABCC B A -111的体积为2V , 则=21:V V 。
9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三(包含三角形内部与边界)。
若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范的取值范 围是围是 。
1010..设E D ,分别是ABC D 的边BC AB ,上的点,AB AD 21=,BCBE 32=,若ACAB DE 21l l +=(21l l ,为实数),则21l l +的值为的值为 。
1111.已知.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为表示为 。
2013年江苏高考数学试卷解析版
2013年普通高等学校招生全国统一考试(卷)数学I注意事项绝密★启用前考生在答題前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题〜第20题,共20题).本卷满分为160分.考试时间为120分钟•考试结束后,请将本试卷和答题卡一并交回.2.答題前,请您务必将自己的、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的、号与您本人是否相符.4.作答试题必须用0. 5亳米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.函数y = 3sin(2x-彳)的最小正周期为 _____ .解析:T= — =^22.设z = (2-z)2(i为虚数单位),则复数z的模为▲解析:Z = 3-4/,|Z| = ^32+(-4)2=52 23•双曲线2_一2_ = 1的两条渐近线的方程为▲・16 9 ------------3解析:y=±—x44.集合{-1,0,1}共有▲个子集.解析:23=8 (个)5•右图是一个算法的流程图,则输出的八的值是______ ▲解析:经过了两次循环,n值变为3n <—La<-2H + 1J V IA<-3<7+2I N/输点n /「结束〕(第5题)6 •抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为▲.解析:易知均值都是90,乙方差较小,252=丄乞(兀一可=|((89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2) = 27•现有某类病毒记作X in Y lt ,其中正整数mji(m<7y n<9)可以任意选取,则加,n都取到奇数的概率为▲.解析:加可以取的值有:1,2,3,4,567共7个可以取的值有:1,2,3,4,567,8,9共9个所以总共有7x9 = 63种可能符合题意的加可以取1,3,5,7共4个符合题意的n可以取1,3,5,7,9共5个所以总共有4 x5 = 2O种可能符合題意所以符合題意的概率为竺638•如图,在三棱柱AdG—ABC中,D£F分别是AB.AC.AA】的中点,设三棱锥F-ADE的体积为三棱柱A^q-ABC的体积为匕,则只:匕= ▲解析:V =Ls.n/h=L x Ls uiC x-h1=—V11 3 1 3 4 做2 224 2所以V.:K= —1・249•抛物线y = x2在x = l处的切线与两坐标轴围成三角形区域为D (包含三角形部和边界).若点P(x,y)是区域D的任意一点,则x+2y的取值围是▲.解析:易知切线方程为:y = 2x-l 所以与两坐标轴围成的三角形区域三个点为A(0,0)B(0・5,0)C(0,—1) 易知过C点时有最小值一2,过B点时有最大值0.51 210•设D、E分别是AABC的边AB.BC上的点,AD = -AB , BE = -BC•若2 3DE=\AB+A Q AC(\^1为实数),则人+人的值为▲•解析:易知DE =-AB+-BC =-AB+-(AC-AB]=--AB+-AC2 3 2 3、7 6 3所以 =—11•已知/(力是定义在R上的奇函数•当x>0时,/(X)= X2-4X,则不等式/(x)>X的解集用区间表示为▲解析:因为/(x)是定义在R 上的奇函数,所以易知xS0时,/(X ) = -X 2-4X 解不等式得到/(x) > x 的解集用区间表示为(_5,0)U(5,+S )12•在平面直角坐标系xOy 中,椭圆C 的标准方程为务+壬=1@>0丄>0),右焦点为F,右准线为/,短轴的一个端点为B,设原点到直线的距离为F 到/的距离为〃2•若= 则椭圆的离心率为 _____ A 解析:由题意知〃]=—,d^ = — — c =— a " c c 所以有 冬=点竺两边平方得到a 2b 2= 6c 4 ,即a 4-a 2c 2=6c 4c a两边同除必得到—几解得宀+®冲13 •平面直角坐标系xOv 中,设定点A(a.a). P 是函数『=丄(x>0)图像上一动点,若点之x间最短距离为2",则满足条件的实数d 的所有值为 解析:令 x 0+ —= r(t>2)x o则 PA 2=f(t)=t 2-2cit + 2cr -2(/ >2)对称轴t=aPA 2nm =f(2) = 2a 2-4a + 2 :.2a 2 -4a+ 2 = 8a = -\ t a = 3 (舍去)PA\,n =f(a) = a 2-2 :.a 2-2 = Sa = >/To , a = -VTo (舍去)综上a = -\ 或6/ = \/10\ 1・21 c 一兀 + . / 、1 无+ +2a 2= f \2-2a'1'兀)+— \ x o 丿1 xoxo\xo+ 2/—2PA 2=(x 0-a)2+1. a <2 时,2. a >2 时,14.在正项等比数列{勺}中,a5 =-,绻+①=3.则满足⑷+a2 +a3+...+a… > a x a2a3...a n的最大2正整数"的值为▲.解析:1 Q=亍兔+如=3乙*. gq + gq = 3q2 +g_6 = 0.y >0••0 = 2% = 2"•• q +偽+© +・・・ + % > a}a^a3...a nn2-l br・・ 2心一2~5 > 2~^~n2-l In2n"5-2_2_ >2'5>0u n2 -1 \nn-5 > -------213-7129 13 + 7129-------- <n<2:A<n<\ 2, n G W又H = 12时符合题意,所以打的最大值为12二.解答题:本大題共6小题,共计90分。
2013年高考数学真题江苏卷(百分百精确校对+逐字排版)
2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数3sin (2)4y x π=+的最小正周期为 .【答案】π【解析】T =|2πω |=|2π2|=π.2.设2(2)z i =-(i 为虚数单位),则复数z 的模为 . 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线221169xy-=的两条渐近线的方程为 .【答案】x y 43±=【解析】令:091622=-yx,得x x y 431692±=±=.4.集合{1,0,1}-共有 个子集. 【答案】8 【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是 . 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4.6.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S.7.现在某类病毒记作m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 . 【答案】6320(第5题)【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯.8.如图,在三棱柱111A B C A B C -中,,,D E F 分别是1,,A B A C A A 的中点,设三棱锥F AD E -的体积为1V ,三棱柱111A B C A B C -的体积为2V ,则12:V V = .【答案】1:24【解析】三棱锥F AD E -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是 . 【答案】[—2,12]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 .画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12.10.设,D E 分别是A B C ∆的边,A B B C 上的点,12A D AB =,23B E BC =.若12D E A B A C λλ=+(12,λλ为实数),则12λλ+的值为 . 【答案】12【解析】)(32213221AC BA AB BC AB BE DB DE ++=+=+=ABD 1B1A1CCF EAC AB AC AB 213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12.11.已知()f x 是定义在R 上的奇函数.当0x >时,2()4f x x x =-,则不等式()f x x > 的解集用区间表示为 . 【答案】(﹣5,0) ∪(5,﹢∞)【解析】做出x x x f 4)(2-= (0>x )的图像,如下图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 2013年普通高等学校统一考试试题(江苏卷) 一、填空题:本大题共14小题,每小题5分,共计70分。请把答案填写在答题卡相印位置上。
1.函数)42sin(3xy的最小正周期为 . 【答案】π 【解析】T=|2πω |=|2π2 |=π.
2.设2)2(iz(i为虚数单位),则复数z的模为 . 【答案】5 【解析】z=3-4i,i2=-1,| z |==5.
3.双曲线191622yx的两条渐近线的方程为 . 【答案】xy43 【解析】令:091622yx,得xxy431692. 4.集合}1,0,1{共有 个子集. 【答案】8 【解析】23=8. 5.右图是一个算法的流程图,则输出的n的值是 . 【答案】3 【解析】n=1,a=2,a=4,n=2;a=10,n=3;a=28,n=4. 6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下: 运动员 第一次 第二次 第三次 第四次 第五次 甲 87 91 90 89 93 乙 89 90 91 88 92 则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 【答案】2
【解析】易得乙较为稳定,乙的平均值为:9059288919089x.
方差为:25)9092()9088()9091()9090()9089(222222S. 7.现在某类病毒记作nmYX,其中正整数m,n(7m,9n)可以任意选取,则nm, 都取到奇数的概率为 . - 2 -
【答案】6320 【解析】m取到奇数的有1,3,5,7共4种情况;n取到奇数的有1,3,5,7,9共5种情况,则nm,都取到奇数的概率为63209754.
8.如图,在三棱柱ABCCBA111中,FED,,分别是1AAACAB,,的中点,设三棱锥ADEF的体积为1V,三棱柱ABCCBA111的体积为2V,则21:VV .
【答案】1:24 【解析】三棱锥ADEF与三棱锥ABCA1的相似比为1:2,
故体积之比为1:8. 又因三棱锥ABCA1与三棱柱ABCCBA111的体积之比为
1:3.所以,三棱锥ADEF与三棱柱ABCCBA111的体积
之比为1:24. 9.抛物线2xy在1x处的切线与两坐标轴围成三角形区域
为D(包含三角形内部和边界) .若点),(yxP是区域D内的任意一点,则yx2的取值范围是 . 【答案】[—2,12 ]
【解析】抛物线2xy在1x处的切线易得为y=2x—1,令z=yx2,y=—12 x+z2 . 画出可行域如下,易得过点(0,—1)时,zmin=—2,过点(12 ,0)时,zmax=12 .
10.设ED,分别是ABC的边BCAB,上的点,ABAD21,BCBE32, 若ACABDE21(21,为实数),则21的值为 . 【答案】12
y x O y=2x—1
y=—12 x
A B C 1A D E F 1B 1C - 3 - y
x l B F O c b a
【解析】)(32213221ACBAABBCABBEDBDE ACABACAB213261 所以,611,322,2112 . 11.已知)(xf是定义在R上的奇函数。当0x时,xxxf4)(2,则不等式xxf)( 的解集用区间表示为 . 【答案】(﹣5,0) ∪(5,﹢∞)
【解析】做出xxxf4)(2 (0x)的图像,如下图所示。由于)(xf是定义在R上的奇函
数,利用奇函数图像关于原点对称做出x<0的图像。不等式xxf)(,表示函数y=)(xf的图像在y=x的上方,观察图像易得:解集为(﹣5,0) ∪(5,﹢∞)。
12.在平面直角坐标系xOy中,椭圆C的标准方程为)0,0(12222babyax,右焦点为 F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为1d,F到l的距离
为2d,若126dd,则椭圆C的离心率为 .
【答案】33 【解析】如图,l:x=ca2,2d=ca2-c=cb2,由等面积得:1d=abc。若126dd,则c
b2
=6abc,整理得:06622baba,两边同除以:2a,得:0662abab,
x y y=x y=x2—4 x
P(5,5)
Q(﹣5, ﹣5) - 4 -
解之得:ab=36,所以,离心率为:331e2ab. 13.在平面直角坐标系xOy中,设定点),(aaA,P是函数xy1(0x)图象上一动点, 若点AP,之间的最短距离为22,则满足条件的实数a的所有值为 . 【答案】1或10 【解析】 14.在正项等比数列}{na中,215a,376aa,则满足nnaaaaaa2121的 最大正整数n的值为 . 【答案】12
【解析】设正项等比数列}{na首项为a1,公比为q,则:3)1(215141qqaqa,得:a1=132 ,
q=2,an=26-n.记521212nnnaaaT,2)1(212nnnnaaa.nnT,则2)1(52212nnn,化简得:5211212212nnn,当5211212nnn时,12212113n.当n=12时,1212T,当n=13时,1313T,故nmax=12.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin,(cos)sin,(cosba,=,0.
(1)若2||ba,求证:ba;
(2)设)1,0(c,若cba,求,的值. 解:(1)a-b=(cosα-cosβ,sinα-sinβ), |a-b|2=(cosα-cosβ)2+(sinα-sinβ)2=2-2(cosα·cosβ+sinα·sinβ)=2, 所以,cosα·cosβ+sinα·sinβ=0, 所以,ba.
(2)②1sinsin①0coscos,①2+②2得:cos(α-β)=-12 . - 5 -
所以,α-β=32,α=32+β, 带入②得:sin(32+β)+sinβ=23cosβ+12 sinβ=sin(3+β)=1, 所以,3+β=2. 所以,α=65,β=6. 16.(本小题满分14分) 如图,在三棱锥ABCS中,平面SAB平面SBC,BCAB,ABAS,过A作SBAF,垂足为F,点GE,分别是棱SCSA,的中点.求证:
(1)平面//EFG平面ABC; (2)SABC. 证:(1)因为SA=AB且AF⊥SB, 所以F为SB的中点. 又E,G分别为SA,SC的中点, 所以,EF∥AB,EG∥AC. 又AB∩AC=A,AB面SBC,AC面ABC, 所以,平面//EFG平面ABC. (2)因为平面SAB⊥平面SBC,平面SAB∩平面SBC=BC, AF平面ASB,AF⊥SB. 所以,AF⊥平面SBC. 又BC平面SBC, 所以,AF⊥BC. 又AB⊥BC,AF∩AB=A, 所以,BC⊥平面SAB. 又SA平面SAB, 所以,SABC. 17.(本小题满分14分)
如图,在平面直角坐标系xOy中,点)3,0(A,直线42:xyl. 设圆C的半径为1,圆心在l上. (1)若圆心C也在直线1xy上,过点A作圆C的切线, 求切线的方程; (2)若圆C上存在点M,使MOMA2,求圆心C的横坐 标a的取值范围.
解:(1)联立:421xyxy,得圆心为:C(3,2).
设切线为:3kxy,
A B
C
S G F E
x y A l
O - 6 -
d=11|233|2rkk,得:430kork. 故所求切线为:3430xyory. (2)设点M(x,y),由MOMA2,知:22222)3(yxyx, 化简得:4)1(22yx, 即:点M的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D. 又因为点M在圆C上,故圆C圆D的关系为相交或相切.
故:1≤|CD|≤3,其中22)32(aaCD.
解之得:0≤a≤125 . 18.(本小题满分16分) 如图,游客从某旅游景区的景点A处下山至C处有两种路径。一种是从A沿直线步行 到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两 位游客从A处下山,甲沿AC匀速步行,速度为min/50m.在甲出发min2后,乙从 A乘缆车到B,在B处停留min1后,再从匀速步行到C.假设缆车匀速直线运动的
速度为min/130m,山路AC长为m1260,经测量,1312cosA,53cosC. (1)求索道AB的长; (2)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在C处互相等待的时间不超过3分钟, 乙步行的速度应控制在什么范围内? 解:(1)如图作BD⊥CA于点D, 设BD=20k,则DC=25k,AD=48k, AB=52k,由AC=63k=1260m, 知:AB=52k=1040m. (2)设乙出发x分钟后到达点M, 此时甲到达N点,如图所示. 则:AM=130x,AN=50(x+2), 由余弦定理得:MN2=AM2+AN2-2 AM·ANcosA=7400 x2-14000 x+10000,
其中0≤x≤8,当x=3537 (min)时,MN最小,此时乙在缆车上与甲的距离最短.
(3)由(1)知:BC=500m,甲到C用时:126050 =1265 (min). 若甲等乙3分钟,则乙到C用时:1265 +3=1415 (min),在BC上用时:865 (min) . 此时乙的速度最小,且为:500÷865 =125043 m/min. 若乙等甲3分钟,则乙到C用时:1265 -3=1115 (min),在BC上用时:565 (min) .
C B A D M
N