2018届高三数学一轮复习: 热点探究训练1 导数应用中的高考热点问题
专题04 导数及其应用热点难点突破-2018年高考数学理考

专题04 导数及其应用(热点难点突破) 2018年高考数学(理)考纲解读与热点难点突破1.曲线f (x )=exx -1在x =0处的切线方程为( )A .x -y -1=0B .x +y +1=0C .2x -y -1=0D .2x +y +1=0解析 因为f ′(x )=e x(x -2)(x -1)2,所以f ′(0)=-2,故在x =0处的切线方程为2x +y +1=0,故选D.答案 D2.曲线f (x )=x 3+x -2在p 0处的切线平行于直线y =4x -1,则p 0点的坐标为( ) A .(1,0)B .(2,8)C .(1,0)和(-1,-4)D .(2,8)和(-1,-4)解析 设p 0(x 0,y 0),则3x 20+1=4,所以x 0=±1,所以p 0点的坐标为(1,0)和(-1,-4).故选C. 答案 C3.如图,直线y =2x 与抛物线y =3-x 2所围成的阴影部分的面积是( )A.353B .2 2C .2- 3D.323解析 S =⎠⎛-31(3-x 2-2x )d x =323,故选D.答案 D4.设a =⎠⎛01 cos x d x ,b =⎠⎛01 sin x d x ,下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =1解析 a =⎠⎛01 cos x d x =sin x ⎪⎪⎪10=sin 1,b =⎠⎛01 sin x d x =(-cos x )⎪⎪⎪10=1-cos 1,∴a =sin 1>sin π6=12, 又cos 1>cos π3=12,∴-cos 1<-12,b =1-cos 1<1-12=12,∴a >b ,选A.答案 A5.如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π3B.⎣⎢⎡⎭⎪⎫π3,π2C.⎝⎛⎦⎥⎤π2,2π3D.⎣⎢⎡⎭⎪⎫π3,π解析 由题意可设f ′(x )=a (x -1)2+3(a >0),即函数切线的斜率为k =f ′(x )=a (x -1)2+3≥3,即tan α≥3,∴π3≤α<π2,选B.答案 B6.设点P 在曲线y =12e x上,点Q 在曲线y =ln(2x )上,则|PQ |的最小值为( )A .1-ln 2 B.2(1-ln 2) C .1+ln 2D.2(1+ln 2)答案 B7.已知定义域为R 的函数f (x )满足:f (4)=-3,且对任意x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为( ) A .(-∞,4)B .(-∞,-4)C .(-∞,-4)∪(4,+∞)D .(4,+∞)解析 记g (x )=f (x )-3x +15,则g ′(x )=f ′(x )-3<0,可知g (x )在R 上为减函数.又g (4)=f (4)-3×4+15=0,所以f (x )<3x -15可化为f (x )-3x +15<0,即g (x )<g (4),结合其函数单调递减,故得x >4.答案 D8.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝ ⎛⎭⎪⎫32,+∞C.⎝⎛⎦⎥⎤-∞,32D.⎝⎛⎭⎪⎫-∞,329.已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f ⎝ ⎛⎭⎪⎫12,b =-2f (-2),c =⎝⎛⎭⎪⎫ln 12f ⎝⎛⎭⎪⎫ln 12,则a ,b ,c 的大小关系正确的是( )A .a <c <bB .b <c <aC .a <b <cD .c <a <b解析 设h (x )=xf (x ), ∴h ′(x )=f (x )+x ·f ′(x ),∵y =f (x )是定义在实数集R 上的奇函数, ∴h (x )是定义在实数集R 上的偶函数, 当x >0时,h ′(x )=f (x )+x ·f ′(x )>0, ∴此时函数h (x )单调递增.∵a =12f ⎝ ⎛⎭⎪⎫12=h ⎝ ⎛⎭⎪⎫12,b =-2f (-2)=2f (2)=h (2),c =⎝⎛⎭⎪⎫ln 12f ⎝⎛⎭⎪⎫ln 12=h ⎝⎛⎭⎪⎫ln 12=h (-ln 2)=h (ln 2),又2>ln 2>12,∴b >c >a .故选A.答案 A10.已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,f ′(x )的图象是( )解析 因为f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,所以f ′(x )=12x -sin x 为奇函数,且f ′⎝ ⎛⎭⎪⎫π6<0,故选A. 答案 A11.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π4B.⎣⎢⎡⎭⎪⎫π4,π2C.⎝⎛⎦⎥⎤π2,3π4 D.⎣⎢⎡⎭⎪⎫3π4,π解析 设曲线在点P 处的切线斜率为k , 则k =y ′=-4e x(e x +1)2=-4e x+1ex +2. 因为e x>0,所以由基本不等式可得k ≥-42e x·1ex +2=-1.又k <0,所以-1≤k <0, 即-1≤tan α<0. 所以3π4≤α<π.故选D.答案 D12.函数y =f (x )的图象如图所示,则导函数y =f ′(x )的图象的大致形状是( )解析:由f (x )图象先降再升后趋于平稳知,f ′(x )的函数值先为负,再为正,后为零.故选D. 答案:D13.曲线y =e 2x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B .4e 2 C .2e 2D .e 2解析:∵y ′=12e 2x,∴k =12e 142⨯=12e 2,∴切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,∴所求面积为S =12×2×|-e 2|=e 2.答案:D14.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时,xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞) D .(-1,0)∪(0,1)15.若函数f (x )=13x 3-⎝ ⎛⎭⎪⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则函数f (x )在R 上的极小值为( )A .2b -43B .32b -23C .0D .b 2-16b 3解析:f ′(x )=x 2-(2+b )x +2b =(x -b )(x -2),∵函数f (x )在区间[-3,1]上不是单调函数,∴-3<b <1,则由f ′(x )>0,得x <b 或x >2,由f ′(x )<0,得b <x <2,∴函数f (x )的极小值为f (2)=2b -43.答案:A16.函数f (x )=2x -ln x 的单调递增区间是________.解析:函数f (x )=2x -ln x 的定义域为(0,+∞),由f ′(x )=2-1x ≥0,解得x ≥12,所以函数f (x )=2x-ln x 的单调递增区间为⎣⎢⎡⎭⎪⎫12,+∞.答案:⎣⎢⎡⎭⎪⎫12,+∞17.已知f(x)=ax ln x+1(a∈R),x∈(0,+∞),f′(x)为f(x)的导函数,f′(1)=2,则a=________. 解析:∵f′(x)=a ln x+a,∴f′(1)=a=2.答案:218.已知函数f(x)=x3-ax2+10.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x,使得f(x)<0成立,求实数a的取值范围.解(1)当a=1时,f′(x)=3x2-2x,f(2)=14,曲线y=f(x)在点(2,f(2))处的切线斜率k=f′(2)=8,∴曲线y=f(x)在点(2,f(2))处的切线方程为y-14=8(x-2),即8x-y-2=0.19.定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;②f′(x)是偶函数;③f(x)的图象在x=0处的切线与直线y=x+2垂直.(1)求函数y=f(x)的解析式;(2)设g(x)=4ln x-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.解(1)f′(x)=3ax2+2bx+c.∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,∴f′(1)=3a+2b+c=0,(*)由f′(x)是偶函数得b=0,(ⅰ)又f(x)的图象在x=0处的切线与直线y=x+2垂直,∴f′(0)=c=-1,(ⅱ)将(ⅰ)(ⅱ)代入(*)得a =13,∴f (x )=13x 3-x +3.(2)由已知得,若存在x ∈[1,e],使4ln x -m <x 2-1,即存在x ∈[1,e],使m >(4ln x -x 2+1)min . 设M (x )=4ln x -x 2+1,x ∈[1,e], 则M ′(x )=4x -2x =4-2x2x,令M ′(x )=0,又因为x ∈[1,e],所以x = 2. 当2<x ≤e 时,M ′(x )<0, 则M (x )在(2,e]上为减函数; 当1≤x ≤2时,M ′(x )>0, 则M (x )在[1,2]上为增函数, 所以M (x )在[1,e]上有最大值. 又M (1)=0,M (e)=5-e 2<0, 所以M (x )的最小值为5-e 2. 所以m >5-e 2.故实数m 的取值范围是(5-e 2,+∞). 20.已知函数f (x )=(λx +1)ln x -x +1. (1)若λ=0,求f (x )的最大值;(2)若曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直,证明:f xx -1>0. 解析:(1)f (x )的定义域为(0,+∞), 当λ=0时,f (x )=ln x -x +1.则f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,∴f (x )在(0,1)上是增函数; 当x >1时,f ′(x )<0,∴f (x )在(1,+∞)上是减函数. 故f (x )在x =1处取得最大值f (1)=0.(2)证明:由题可得,f ′(x )=λln x +λx +1x-1.由题设条件,得f ′(1)=1,即λ=1. ∴f (x )=(x +1)ln x -x +1.由(1)知,ln x -x +1<0(x >0,且x ≠1).当0<x <1时,f (x )=(x +1)ln x -x +1=x ln x +(ln x -x +1)<0,f xx -1>0. 当x >1时,f (x )=ln x +(x ln x -x +1)=ln x -x ⎝⎛⎭⎪⎫ln 1x -1x+1>0,∴f xx -1>0.综上可知,f xx -1>0. 21.已知函数f (x )=x -2x+a (2-ln x )(a >0),求函数f (x )的单调区间与极值点.解析:f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,对于二次方程g (x )=0, 判别式Δ=a 2-8.①当Δ=a 2-8<0,即0<a <22时,对一切x >0都有f ′(x )>0,此时f (x )在(0,+∞)上是增函数,无极值点.②当Δ=a 2-8=0,即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0,此时f (x )在(0,+∞)上也是增函数,无极值点.③当Δ=a 2-8>0,即a >22时,方程g (x )=0有两个不同的实数根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:此时f (x )在(0(a +a 2-82,+∞)上是增加的.x 1=a -a 2-82是函数的极大值点,x 2=a +a 2-82是函数的极小值点.22.已知函数f (x )=12x 2-2a ln x +(a -2)x ,a ∈R.(1)当a =1时,求函数f (x )的图象在点(1,f (1))处的切线方程. (2)是否存在实数a ,对任意的x 1,x 2∈(0,+∞)且x 1≠x 2有f x 2-f x 1x 2-x 1>a 恒成立?若存在,求出a的取值范围;若不存在,说明理由.解析:(1)函数f (x )=12x 2-2a ln x +(a -2)x ,f ′(x )=x -2a x +(a -2)=x -x +a x(x >0).当a =1时,f ′(x )=x -x +x,f ′(1)=-2,则所求的切线方程为y -f (1)=-2(x -1),即4x +2y -3=0.(2)假设存在这样的实数a 满足条件,不妨设0<x 1<x 2.由f x 2-f x 1x 2-x 1>a 知f (x 2)-ax 2>f (x 1)-ax 1成立,令g (x )=f (x )-ax =12x 2-2a ln x -2x ,则函数g (x )在(0,+∞)上单调递增,则g ′(x )=x -2a x -2≥0,即2a ≤x 2-2x =(x -1)2-1在(0,+∞)上恒成立,则a ≤-12.故存在这样的实数a 满足题意,其取值范围为⎝ ⎛⎦⎥⎤-∞,-12.23.已知函数f (x )=x ln x -(x -1)(ax -a +1)(a ∈R). (1)若a =0,判断函数f (x )的单调性;(2)若x >1时,f (x )<0恒成立,求a 的取值范围. 解析:(1)若a =0,f (x )=x ln x -x +1,f ′(x )=ln x . ∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.(2)由题意知f (x )=x ln x -(x -1)(ax -a +1)<0在(1,+∞)上恒成立.①若a =0,则f (x )=x ln x -x +1,f ′(x )=ln x >0在x ∈(1,+∞)上恒成立,∴f (x )为(1,+∞)上的增函数,∴f (x )>f (1)=0,即f (x )<0不成立.∴a =0不合题意. ②若a ≠0,∵x >1,∴只需f x x =ln x -x -ax -a +x<0在(1,+∞)上恒成立.记h (x )=ln x -x -ax -a +x,x ∈(1,+∞),则h ′(x )=-ax 2-x -a +1x2=-x -ax +a -x 2,x ∈(1,+∞).由h ′(x )=0,得x 1=1,x 2=1-aa.若a <0,则x 2=1-aa<1=x 1,∴h ′(x )>0在(1,+∞)上恒成立,故h (x )为增函数, ∴h (x )>h (1)=0,不合题意.若0<a <12,x ∈⎝ ⎛⎭⎪⎫1,1-a a 时,h ′(x )>0,h (x )为增函数, ∴h (x )>h (1)=0,不合题意,若a ≥12,x ∈(1,+∞)时,h ′(x )<0,h (x )为减函数,∴h (x )<h (1)=0,符合题意.综上所述,若x >1时,f (x )<0恒成立,则a ≥12.24.已知函数f (x )=⎩⎪⎨⎪⎧ln x -ax +x ≥a e x -1+a -x x <a.(a >0)(1)若a =1,证明:y =f (x )在R 上单调递减; (2)当a >1时,讨论f (x )零点的个数.①当a >2时,f ′(x )>0,f (x )单调递增, 又f (0)=e -1>0,f ⎝⎛⎭⎪⎫12-a <0,所以此时f (x )在⎝ ⎛⎭⎪⎫12-a ,0上有一个零点. ②当a =2时,f (x )=e x -1,此时f (x )在(-∞,2)上没有零点.③当1<a <2时,令f ′(x 0)=0,解得x 0=ln(2-a )+1<1<a ,所以f (x )在(-∞,x 0)上单调递减,在(x 0,a )上单调递增.f (x 0)=e01x -+(a -2)x 0=e01x -(1-x 0)>0,所以此时f (x )没有零点.综上,当1<a ≤2时,f (x )没有零点;当a >2时,f (x )有一个零点. 25.设函数f (x )=ln x -ax (a ∈R)(e =2.718 28…是自然对数的底数). (1)判断f (x )的单调性;(2)当f (x )<0在(0,+∞)上恒成立时,求a 的取值范围;(3)证明:当x ∈(0,+∞)时,x +1ex(1+x )1x<e.解析:(1)f ′(x )=1x-a ,函数f (x )=ln x -ax 的定义域为(0,+∞), 当a ≤0时,f ′(x )>0,此时f (x )在(0,+∞)上是增函数,当a >0时,x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,此时f (x )在⎝ ⎛⎭⎪⎫0,1a 上是增函数,x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,此时f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上是减函数. 综上,当a ≤0时,f (x )在(0,+∞)上是增函数,当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上是增函数,在⎝ ⎛⎭⎪⎫1a ,+∞上是减函数.(2)f (x )<0在(0,+∞)上恒成立,即a >ln x x在(0,+∞)上恒成立, 设g (x )=ln x x ,则g ′(x )=1-ln x x 2, 当x ∈(0,e)时,g ′(x )>0,g (x )为增函数,当x ∈(e ,+∞)时,g ′(x )<0,g (x )为减函数,故当x =e 时,g (x )取得最大值1e, 所以a 的取值范围是⎝ ⎛⎭⎪⎫1e ,+∞. (3)证明:要证当x ∈(0,+∞)时,x +1e x (1+x )1x <e ,设t =1+x ,t ∈(1,+∞),只要证t 11+1t -<e t,两边取以e 为底数的对数,即ln t <t -1.由(1)知当a =1时,f (x )=ln x -x 的最大值为-1,此时x =1,所以当t ∈(1,+∞)时,ln t -t <-1, 即得ln t <t -1,所以原不等式成立.26.已知函数f (x )=(-x 2+x -1)e x ,其中e 是自然对数的底数.(1)求曲线f (x )在点(1,f (1))处的切线;(2)若方程f (x )=13x 3+12x 2+m 有3个不同的根,求实数m 的取值范围. 解析:(1)因为f (x )=(-x 2+x -1)e x ,所以f ′(x )=(-2x +1)e x +(-x 2+x -1)e x =(-x 2-x )e x.所以曲线f (x )在点(1,f (1))处的切线斜率为 k =f ′(1)=-2e.又f (1)=-e ,所以所求切线方程为y +e =-2e(x -1),即2e x +y -e =0.(2)因为f ′(x )=(-2x +1)e x +(-x 2+x -1)e x =(-x 2-x )e x,当x <-1或x >0时,f ′(x )<0;当-1<x <0时,f ′(x )>0,所以f (x )=(-x 2+x -1)e x 在(-∞,-1)上单调递减,在(-1,0)上单调递增,在(0,+∞)上单调递减,所以f (x )在x =-1处取得极小值f (-1)=-3e,在x =0处取得极大值f (0)=-1. 令g (x )=13x 3+12x 2+m ,得g ′(x )=x 2+x . 当x <-1或x >0时,g ′(x )>0;当-1<x <0时,g ′(x )<0,所以g (x )在(-∞,-1)上单调递增,在(-1,0)上单调递减,在(0,+∞)上单调递增.故g (x )在x =-1处取得极大值g (-1)=16+m ,在x =0处取得极小值g (0)=m . 因为方程f (x )=13x 3+12x 2+m 有3个不同的根, 即函数f (x )与g (x )的图象有3个不同的交点,所以⎩⎪⎨⎪⎧ f -g -f g ,即⎩⎪⎨⎪⎧ -3e <16+m -1>m .所以-3e -16<m <-1. 27.设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围.解:(1)证明:f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0. 若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0. 所以,f (x )在 (-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧ f -f -1,f --f -1, 即⎩⎪⎨⎪⎧ e m -m ≤e-1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t -1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1;当m <-1时,g (-m )>0,即e -m +m >e -1.综上,m 的取值范围是[-1,1]. 28.已知函数f (x )=mx 4x 2+16,g (x )=⎝ ⎛⎭⎪⎫12|x -m |,其中m ∈R 且m ≠0. (1)判断函数f (x )的单调性;(2)当m <-2时,求函数F (x )=f (x )+g (x )在区间[-2,2]上的最值;(3)设函数h (x )=⎩⎪⎨⎪⎧ f x ,x ≥2,g x ,x <2,当m ≥2时,若对于任意的x 1∈[2,+∞),总存在唯一的x 2∈(-∞,2),使得h (x 1)=h (x 2)成立,试求m 的取值范围. 解:(1)依题意,f ′(x )=m -x 2x 2+2=m -x +xx 2+2,①当m ≥0时,解f ′(x )≥0得-2≤x ≤2,解f ′(x )<0得x <-2或x >2; 所以f (x )在[-2,2]上单调递增,在(-∞,-2),(2,+∞)上单调递减. ②当m <0时,解f ′(x )≤0得-2≤x ≤2,f ′(x )>0得x <-2或x >2; 所以f (x )在[-2,2]上单调递减;在(-∞,-2),(2,+∞)上单调递增.(3)当m ≥2,x 1∈[2,+∞)时,h (x 1)=f (x 1)=mx 14x 21+16, 由(1)知h (x 1)在[2,+∞)上单调递减,从而h (x 1)∈(0,f (2)],即h (x 1)∈⎝ ⎛⎦⎥⎤0,m 16; 当m ≥2,x 2<2时,h (x 2)=g (x 2)=⎝ ⎛⎭⎪⎫12|x 2-m |=⎝ ⎛⎭⎪⎫12m -x 2=⎝ ⎛⎭⎪⎫12m ·2x 2在(-∞,2)上单调递增,从而h (x 2)∈(0,g (2)),即h (x 2)∈⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12m -2; 对于任意的x 1∈[2,+∞),总存在唯一的x 2∈(-∞,2),使得h (x 1)=h (x 2)成立, 只需m 16<⎝ ⎛⎭⎪⎫12m -2,即m 16-⎝ ⎛⎭⎪⎫12m -2<0成立即可. 记函数H (m )=m 16-⎝ ⎛⎭⎪⎫12m -2, 易知H (m )=m 16-⎝ ⎛⎭⎪⎫12m -2在[2,+∞)上单调递增,且H (4)=0. 所以m 的取值范围为[2,4).。
2018版高考数学(人教A版理)一轮复习教师用书 热点探究课2 导数应用中的高考热点问题 Word版含解析

热点探究课(二)三角函数与解三角形中的高考热点问题[命题解读] 从近五年全国卷高考试题来看,解答题第1题(全国卷T 17)交替考查三角函数、解三角形与数列,本专题的热点题型有:一是三角函数的图象与性质;二是解三角形;三是三角恒等变换与解三角形的综合问题,中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用.热点1 三角函数的图象与性质(答题模板)要进行五点法作图、图象变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换.(本小题满分12分)已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.[思路点拨] (1)先逆用倍角公式,再利用诱导公式、辅助角公式将f (x )化为正弦型函数,然后求其周期.(2)先利用平移变换求出g (x )的解析式,再求其在给定区间上的最值.[规范解答] (1)f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π)3分 =3cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π3,5分于是T =2π1=2π.6分(2)由已知得g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫x +π6.8分 ∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-12,1,10分 ∴g (x )=2sin ⎝ ⎛⎭⎪⎫x +π6∈[-1,2].11分 故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.12分[答题模板] 解决三角函数图象与性质的综合问题的一般步骤为:第一步(化简):将f (x )化为a sin x +b cos x 的形式.第二步(用辅助角公式):构造f (x )=a 2+b 2·⎝ ⎛⎭⎪⎫sin x ·a a 2+b 2+cos x ·b a 2+b 2. 第三步(求性质):利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. 第四步(反思):反思回顾,查看关键点、易错点和答题规范.[温馨提示] 1.在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2 sin (α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a ,在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.2.求g (x )的最值一定要重视定义域,可以结合三角函数图象进行求解.[对点训练1] (2016·石家庄模拟)已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2.(1)求f (x )的解析式;(2)在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.[解] (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.2分 又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2(k ∈Z ),φ=2k π+π6(k ∈Z ),4分所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx +2k π+π6=2sin ⎝ ⎛⎭⎪⎫πx +π6(k ∈Z ). 故f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6.5分 (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ).7分由214≤k +13≤234,解得5912≤k ≤6512,9分又k ∈Z ,知k =5,10分由此可知在闭区间⎣⎢⎡⎦⎥⎤214,234上存在f (x )的对称轴,其方程为x =163.12分 热点2 解三角形从近几年全国卷来看,高考命题强化了解三角形的考查力度,着重考查正弦定理、余弦定理的综合应用,求解的关键是实施边角互化,同时结合三角恒等变换进行化简与求值.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长.[解] (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .2分因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC .由正弦定理,得sin B sin C =AC AB =12.5分(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2.7分在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .9分故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1),知AB =2AC ,所以AC =1.12分[规律方法] 解三角形问题要关注正弦定理、余弦定理、三角形内角和定理、三角形面积公式,要适时、适度进行“角化边”或“边化角”,要抓住能用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则两个定理都有可能用到.[对点训练2] (2016·北京高考)在△ABC 中,a 2+c 2=b 2+2ac .(1)求∠B 的大小;(2)求2cos A +cos C 的最大值.[解] (1)由余弦定理及题设得,cos B =a 2+c 2-b 22ac =2ac 2ac =22.3分又因为0<∠B <π,所以∠B =π4.5分(2)由(1)知∠A +∠C =3π4,则2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A =2cos A -22cos A +22sin A =22cos A +22sin A =cos ⎝ ⎛⎭⎪⎫A -π4.8分 因为0<∠A <3π4,所以当∠A =π4时,2cos A +cos C 取得最大值1.12分热点3 三角恒等变换与解三角形的综合问题以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化.(2017·东北三省四市一联)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b=cos C c . (1)求a b 的值;(2)若角A 是钝角,且c =3,求b 的取值范围. [解] (1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,2分∴sin C cos B +sin B cos C =2(sin C cos A +sin A cos C ).∴sin(B +C )=2sin(A +C ).∵A +B +C =π,∴sin A =2sin B ,∴a b =2.5分(2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b=9-3b 26b <0, ∴b > 3. ①7分∵b +c >a ,即b +3>2b ,∴b <3, ②由①②得b 的范围是(3,3).12分[规律方法] 1.以三角形为载体,实质考查三角形中的边角转化,求解的关键是抓住边角间的关系,恰当选择正、余弦定理.2.解三角形常与三角变换交汇在一起(以解三角形的某一结论作为条件),此时应首先确定三角形的边角关系,然后灵活运用三角函数的和、差、倍角公式化简转化.[对点训练3] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2. 【导学号:01772140】(1)求sin 2A sin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积.[解] (1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得tan A =13, 所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25.5分 (2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010.7分由a =3,B =π4及正弦定理a sin A =b sin B ,得b =3 5.9分由sin C =sin(A +B )=sin ⎝ ⎛⎭⎪⎫A +π4,得sin C =255.设△ABC的面积为S,则S=12ab sin C=9.12分。
2018年高考数学文热点题型和提分秘籍 专题10 导数的概

1.了解导数概念的实际背景。
2.通过函数图象直观理解导数的几何意义。
3.能根据导数的定义求函数y =c(c 为常数),y =x ,y =1x ,y =x2,y =x3,y =x 的导数。
4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
热点题型一 导数的计算 例1、求下列函数的导数(1)y =exsinx ;(2)y =x ⎝⎛⎭⎫x2+1x +1x3; (3)y =x -sin x 2cos x2。
(4)y =ln(1-2x)。
【提分秘籍】导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导。
(2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差和的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导。
【举一反三】求下列函数的导数(1)y =(2x2-1)(3x +1); (2)y =x +x5+sinxx2;(3)y =-sin x2⎝⎛⎭⎫1-2cos2x 4。
(3)因为y =-sin x 2⎝⎛⎭⎫1-2cos2x 4=sin x2⎝⎛⎭⎫2cos2x 4-1 =sin x 2cos x 2=12sinx ,所以,y′=12cosx 。
热点题型二 导数的几何意义及应用 例2、已知曲线y =13x3+43。
(1)求曲线在x =2处的切线方程;(2)求曲线过点(2,4)的切线方程。
【解析】(1)∵y′=x2,∴在点P(2,4)处的切线的斜率k =y′|x =2=4。
∴曲线在点P(2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0。
(2)设曲线y =13x3+43与过点P(2,4)的切线相切于点A ⎝⎛⎭⎫x0,13x30+43,则切线的斜率k =y′|0x x ==x20。
【小初高学习]2018年高考数学 专题11 导数的应用热点题型和提分秘籍 理
![【小初高学习]2018年高考数学 专题11 导数的应用热点题型和提分秘籍 理](https://img.taocdn.com/s3/m/0d76dcb76529647d272852bf.png)
专题11 导数的应用1.利用导数求函数的单调区间及极值(最值)、结合单调性与不等式的成立情况求参数范围是高考命题的热点。
2.常与基本初等函数的图象与性质、解析几何、不等式、方程等交汇命题,主要考查转化与化归思想、分类讨论思想的应用。
3.题型主要以解答题为主,属中高档题。
热点题型一 判断或证明函数的单调性例1、【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 【答案】A【变式探究】设a ∈[-2,0],已知函数f (x )=⎩⎪⎨⎪⎧x 3-a +x ,x ≤0x 3-a +32x 2+ax ,x >0。
证明f (x )在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增。
解析:设函数f 1(x )=x 3-(a +5)x (x ≤0),f 2(x )=x 3-a +32x 2+ax (x ≥0)。
①f ′1(x )=3x 2-(a +5),由于a ∈[-2,0], 从而当-1<x ≤0时,f ′1(x )=3x 2-(a +5)<3-a -5≤0,所以函数f 1(x )在区间(-1,0]内单调递减。
②f ′2(x )=3x 2-(a +3)x +a =(3x -a )(x -1)。
由于a ∈[-2,0],所以当0<x <1时,f ′2(x )<0; 当x >1时,f ′2(x )>0,即函数f 2(x )在区间[0,1)内单调递减, 在区间(1,+∞)内单调递增。
综合①②及f 1(0)=f 2(0),可知函数f (x )在区间(-1,1)内单调递减, 在区间(1,+∞)内单调递增。
【提分秘籍】导数法证明函数f (x )在(a ,b )内的单调性的步骤 (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数。
2018高三大一轮复习数学(文)课时规范训练第三章 导数及其应用 规范解答指导课1 Word版含答案

课时规范训练(时间:分钟).已知函数()=-(+)+ (>).()当=时,求函数()的单调递增区间;()求函数()在区间上的最小值.解:()当=时,()=-+,定义域为(,+∞),′()=-+=,令′()>,即-+>(>),∴<<或>,∴()的单调递增区间为,(,+∞).()()=-(+)+,′()=-(+)+==.①当<≤时,()在(,),上单调递增,∴()在上单调递增,∴()=()=-.②当<≤时,()在上单调递增,∴()=()=-.③当<<时,()在上单调递增,∴()=()=--+ .④当≥时,()在上单调递减,∴()=()=-(+)+.综上所述,当<≤时,()=-;当<<时,()=--+;当≥时,()=-(+)+..已知函数()=-- (∈).()若函数()在=处取得极值,求的值;()在()的条件下,求证:()≥-+-+;()当∈上有唯一零点,求实数的取值范围;()对任意≥,()≥(-)恒成立,求实数的取值范围.解:()′()=-,当∈(-)时,′()≤,()单调递减;当∈(, )时,′()≥,()单调递增.(-)=+,( )=- .因为(-)>( ),函数()=在上有唯一的零点,等价于,( )<≤(-)或=(),即-<≤+或=.所以实数的取值范围是-<≤+或=.()令()=()-(-)=--,则′()=-.因为≥,≥.①当≤时,′()≥,()在区间..已知函数()=+++,()=+++(,为常数).()若()在=处的切线过点(,-),求的值;()设函数()的导函数为′(),若关于的方程()-=′()有唯一解,求实数的取值范围;()令()=()-(),若函数()存在极值,且所有极值之和大于+,求实数的取值范围.解:()设()在=处的切线方程为=-.∵′()=++,′()=,∴=,故切线方程为=-.当=时,=,将()代入()=+++,得=.()′()=++.由题意得方程+++=+++有唯一解,即方程++=有唯一解.令()=++,则′()=++=(+)(+),∴()在区间,上是增函数,在区间上是减函数.又∵=-,=-,∴实数的取值范围是∪.()()=--,∴′()=-.∵()存在极值,∴′()=-=在(,+∞)上有根,即方程-+=在(,+∞)上有根,则有Δ=-≥.显然当Δ=时,()无极值,不符合题意,∴方程必有两个不等正根.记方程-+=的两根为,,则(\\(=()>,+=()>,))()+()=(+)-(+)-( + )=-+- >-,解得>,满足Δ>.又+=>,即>,∴所求的取值范围是(,+∞).。
(整理版)高考中导数问题的六大热点

高考中导数问题的六大热点由于导数其应用的广泛性,为解决函数问题提供了一般性的方法及简捷地解决一些实际问题.因此在高考占有较为重要的地位,其考查重点是导数判断或论证单调性、函数的极值和最值,利用导数解决实际问题等方面,下面例析导数的六大热点问题,供参考.一、运算问题 例1函数22()(1)x bf x x -=-,求导函数()f x '.分析:用商的导数及复合函数导数的运算律即可解决.解:242(1)(2)2(1)()(1)x x b x f x x ---•-'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--. 评注:对于导数运算问题关键是记清运算法那么.主要是导数的定义、常见函数的导数、函数和差积商的导数,及复合函数、隐函数的导数法那么等.二、切线问题例2设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,那么a = .分析:由垂直关系可得切线的斜率为-12,又k =0()f x ',即可求出a 的值. 解:axae y =',∴切线的斜率a y k x ===0',由垂直关系,有1)21(-=-⋅a ,解得2=a .评注:是指运用导数的几何意义或物理意义,解决瞬时速度,加速度,光滑曲线切线的斜率等三类问题.特别是求切线的斜率、倾斜角及切线方程问题,其中:⑴ 曲线y =f (x )在点P (x 0,f (x 0))处的斜率k ,倾斜角为θ,那么tan θ=k =0()f x '. ⑵ 其切线l 的方程为:y =y 0+0()f x '(x -x 0).假设曲线y =f (x )在点P (x 0,f (x 0))的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为x =x 0.三、单调性问题例3函数32()1f x x ax x =+++,a ∈R .〔Ⅰ〕讨论函数()f x 的单调区间;〔Ⅱ〕设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 分析:对于第(1)小题,求导后利用f '(x )>0或'()f x <0,解不等式即得单调区间;而(2)转化为'()f x <0在2133⎛⎫-- ⎪⎝⎭,上恒成立即可. 解:〔1〕32()1f x x ax x =+++求导:2()321f x x ax '=++. 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增.当23a >,()0f x '=求得两根为3a x -±=,即()f x在⎛-∞ ⎝⎭递增,⎝⎭递减,⎫+∞⎪⎪⎝⎭递增. 〔2〕假设函数在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,那么2()321f x x ax '=++两根在区间2133⎛⎫-- ⎪⎝⎭,外,即2'()31'()3f f ⎧-⎪⎪⎨⎪-⎪⎩≤0≤0,解得a ≥2,故取值范围是[2,+∞). 评注:一般地,设函数y =f (x )在某个区间内可导.如果f '(x )>0,那么f (x )为增函数;如果f '(x )<0,那么f (x )为减函数.单调性是导数应用的重点内容,主要有四类问题:①运用导数判断单调区间; ②证明单调性; ③单调性求参数;④先证明其单调性,再运用单调证明不等式等问题. 四、极值问题 例4函数1()ln(1),(1)nf x a x x =+--其中n ∈N*,a 为常数.当n =2时,求函数f (x )的极值;分析:运用导数先确定函数的单调性,再求其极值. 解:由得函数f (x )的定义域为{x |x >1}, 当n =2时,21()ln(1),(1)f x a x x =+--所以232(1)().(1)a x f x x --=-(1)当a >0时,由'()f x =0,得11x =+1,21x =<1, 此时 f ′〔x 〕=123()()(1)a x x x x x ----. 当x ∈〔1,x 1〕时,f ′〔x 〕<0,f (x )单调递减; 当x ∈〔x 1+∞〕时,f ′〔x 〕>0, f (x )单调递增. 〔2〕当a ≤0时,f ′〔x 〕<0恒成立,所以f (x )无极值. 综上所述,n =2时,当a >0时,f (x )在1x =+处取得极小值,极小值为2(1(1ln ).2a f a+=+当a ≤0时,f (x )无极值.评注:运用导数解决极值问题.一般地,当函数f (x )在x 0处连续,判别f (x 0)为极大(小)值的方法是:⑴ 假设0'()f x =0,且在x 0附近的左侧()f x '>0,右侧()f x '<0,那么f (x 0)是极大值,⑵ 如果在x 0附近的左侧()f x '<0,右侧()f x '>0,那么f (x 0)是极小值. 五、最值问题例5 求函数f (x )=x 4-2x 2+5在[-2,2]上的最大值与最小值. 分析:可先求出导数及极值点,再计算.解: ()f x '=4x 3-4x ,令()f x '=0,解得x 1=-1,x 2=0,x 3=1,均在(-2,2)内. 计算f (-1)=4,f (0)=5,f (1)=4,f (-2)=13,f (2)=13. 通过比拟,可见f (x ) 在[-2,2]上的最大值为13,最小值为4.评注:运用导数求最大(小)值的一般步骤如下: 假设f (x )在[a ,b ]上连续,在(a ,b )内可导,那么⑴ 求()f x ',令()f x '=0,求出在(a ,b )内使导数为0的点及导数不存在的点. ⑵ 比拟三类点:导数不存在的点,导数为0的点及区间端点的函数值,其中最大者便是f (x )在[a ,b ]上的最大值,最小者便是f (x )在[a ,b ]上的最小值.六、应用问题例6 用总长的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积.分析:本小题主要考查应用所学导数的知识、思想和方法解决实际问题的能力,建立函数式、解方程、不等式、最大值等根底知识.解:设容器底面短边长为x m ,那么另一边长为()0.5x + m ,高为()14.8440.5 3.224x x x --+=-.由3.220x ->和0x >,得0 1.6x <<, 设容器的容积为3ym ,那么有()()0.5 3.22y x x x =+- ()0 1.6x <<.即322 2.2 1.6y x x x =-++, 令0y '=,有26 4.4 1.60x x -++=,即2151140x x --=,解得11x =,2415x =-〔不合题意,舍去〕.当x =1时,y 取得最大值,即max 2 2.2 1.6 1.8y =-++=, 这时,高为3.221 1.2-⨯=.答:容器的高为m 时容积最大,最大容积为31.8m .。
2018版高考数学人教A版理一轮复习课件:热点探究课3 数列中的高考热点问题 精品
[解] (1)取 n=1,得 λa21=2S1=2a1,a1(λa1-2)=0. 若 a1=0,则 Sn=0. 当 n≥2 时,an=Sn-Sn-1=0-0=0, 所以 an=0(n≥1).2 分 若 a1≠0,则 a1=2λ.
[对点训练 2] 数列{an}满足 a1=1,nan+1=(n+1)an+n(n+1),n∈N*. 【导学号:01772193】
(1)证明:数列ann是等差数列; (2)设 bn=3n· an,求数列{bn}的前 n 项和 Sn.
0000000000
[解] (1)证明:由已知可得na+n+11 =ann+1,2 分 即na+n+11-ann=1. 所以ann是以a11=1 为首项,1 为公差的等差数列.5 分
[规范解答] (1)由已知,a1b2+b2=b1,b1=1,b2=13,得 a1=2.3 分 所以数列{an}是首项为 2,公差为 3 的等差数列,通项公式为 an=3n-1.5 分 (2)由(1)知 anbn+1+bn+1=nbn,得 bn+1=b3n,7 分 因此{bn}是首项为 1,公比为13的等比数列.9 分 记{bn}的前 n 项和为 Sn, 则 Sn=11--1313n=32-2×13n-1.12 分
(本小题满分 12 分)(2016·全国卷Ⅰ)已知{an}是公差为 3 的等差数列, 数列{bn}满足 b1=1,b2=13,anbn+1+bn+1=nbn.
(1)求{an}的通项公式; (2)求{bn}的前 n 项和.
[思路点拨] (1)取 n=1,先求出 a1,再求{an}的通项公式. (2)将 an 代入 anbn+1+bn+1=nbn,得出数列{bn}为等比数列,再求{bn}的前 n 项 和.
专题3-2 导数在研究函数中的应用讲-2018年高考数学文
2018年高考数学讲练测【新课标版文】【讲】第三章导数第02节导数在研究函数中的应用【考纲解读】【知识清单】1.利用导数研究函数的单调性在(,)a b 内可导函数()f x ,'()f x 在(,)a b 任意子区间内都不恒等于0.'()0()f x f x ≥⇔在(,)a b 上为增函数. '()0()f x f x ≤⇔在(,)a b 上为减函数.对点练习:【2016高考新课标1文数】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦【答案】C2.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x)的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 对点练习:【2017山东,文20】(本小题满分13分)已知函数()3211,32f x x ax a =-∈R ., (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(I)390x y --=,(2)(II)⑴0a =无极值;⑵0a <极大值为31sin 6a a --,极小值为a -;⑶0a >极大值为a -,极小值为31sin 6a a --. 【解析】试题分析:(I)根据求出切线斜率,再用点斜式写出切线方程;(II)由()()(sin )g x x a x x '=--,通过讨论确定()g x 单调性,再由单调性确定极值.(1)当0a <时,'()()(sin )g x x a x x =--,当(,)x a ∈-∞时,0x a -<,'()0g x >,()g x 单调递增; 当(,0)x a ∈时,0x a ->,'()0g x <,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,'()0g x >,()g x 单调递增. 所以,当x a =时,()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时,()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,'()(sin )g x x x x =-, 当(,)x ∈-∞+∞时,'()0g x ≥,()g x 单调递增;所以,()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,'()()(sin )g x x a x x =--,当(,0)x ∈-∞时,0x a -<,'()0g x >,()g x 单调递增; 当(0,)x a ∈时,0x a -<,'()0g x <,()g x 单调递减;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 3.函数的最值(1)在闭区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值与最小值.(2)若函数f(x)在[a ,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 对点练习:【2017北京,文20】已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-.【解析】(Ⅱ)设()e(c o s s i n )1x hx x x =--,则()e(c o s s i n s i n c o s )2e s i n x xh x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<,所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【考点深度剖析】导数是研究函数性质的重要工具,它的突出作用是用于研究函数的单调性、极值与最值、函数的零点等.从题型看,往往有一道选择题或填空题,有一道解答题.其中解答题难度较大,常与不等式、方程等结合考查.【重点难点突破】考点1 确定函数的单调性或求函数的单调区间【1-1】【2017山西五校联考】已知函数)(x f 与)('x f 的图象如下图所示,则函数xe xf xg )()(=的递减区间为( )A .)4,0(B .)1,0(,),4(+∞C .)34,0( D .)1,(-∞,)4,34( 【答案】B【解析】()()()()()()()x x x x x ex f x f e e x f e x f x g e x f x g -'=-'='∴=2, ,由图可知,当0<x 时,()0>'x f ,即()x f 在()0,∞-单调递增;当340<<x 时,()0<'x f ,即()x f 在⎪⎭⎫⎝⎛34,0单调递减;当34>x 时,()0>'x f ,即()x f 在⎪⎭⎫⎝⎛+∞,34单调递增.而()x f '和()x f 的交点为4,1,0===x x x ,所以,在()1,0和()+∞,4时,()()x f x f <',即()0<'x g ,故选B.【【1-2】2017·深圳模拟】已知函数f (x )=12x 2-2a ln x +(a -2)x ,当a <0时,讨论函数f (x )的单调性.【答案】当a =-2时,f (x )在(0,+∞)上单调递增;当-2<a <0时,f (x )在(0,-a ),(2,+∞)上单调递增,在(-a,2)上单调递减;当a <-2时,f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.③当-a >2,即a <-2时,∵0<x <2或x >-a 时,f ′(x )>0;2<x <-a 时,f ′(x )<0,∴f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.综上所述,当a =-2时,f (x )在(0,+∞)上单调递增;当-2<a <0时,f (x )在(0,-a ),(2,+∞)上单调递增,在(-a,2)上单调递减;当a <-2时,f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减. 【领悟技法】1.导数法证明函数()f x 在(,)a b 内的单调性的步骤 (1)求'()f x ;(2)确认'()f x 在(,)a b 内的符号;(3)作出结论:'()0f x ≥时为增函数;'()0f x ≤时为减函数. 2.求函数的单调区间方法一:①确定函数()y f x =的定义域; ②求导数''()y f x =;③解不等式'()0f x ≥,解集在定义域内的部分为单调递增区间; ④解不等式'()0f x ≤,解集在定义域内的部分为单调递减区间. 3.求函数的单调区间方法二:①确定函数()y f x =的定义域;②求导数''()y f x =,令f′(x)=0,解此方程,求出在定义区间内的一切实根; ③把函数()f x 的间断点(即()f x 的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;④确定'()f x 在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性. 【触类旁通】【变式一】【2017·鸡西模拟】函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)【答案】D【解析】由题意,知f ′(x )=e x+(x -3)e x=(x -2)e x .由f ′(x )>0得x >2.故选D. 【变式二】已知函数23()1(0),()f x ax a g x x bx =+>=+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c)处具有公共切线,求a ,b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间.【答案】(1) 3.a b ==(2)单调递增区间是,,,26a a ⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭单调递减区间为,)26a a -(-. 【解析】(1)f′(x)=2ax ,g′(x)=3x 2+b ,由已知可得(1)1(1)123f a cg b c a b =+=⎧⎪=+=⎨⎪=+⎩解得 3.a b ==(2)令()()()()2232213244a a F x f x g x x ax x F x x ax '=+=+++,=++, 令()0F x '=,得1212026aa x x a x x >∴<=-,=-,∵,,由()0F x '>得,x<-2a 或x>-6a ; 由()0F x '<,得,.26a a x <<-- ∴单调递增区间是,,,26a a ⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭单调递减区间为,)26a a -(-. 【综合点评】解答此类问题,应该首先确定函数的定义域,否则,写出的单调区间易出错;另外,函数的单调区间不能出现“并”的错误写法. 考点2 已知函数的单调性求参数的范围 【2-1】已知函数(1)()ln 1a x f x x x -=-+在[1,)+∞上是减函数,则实数a 的取值范围为( ) A .1a < B .2a < C .2a ≤ D .3a ≤ 【答案】C 【解析】 由题意得,2(1)21()ln ,01(1)a x a f x x x x x x-'=-=->++,因为函数(1)()ln 1a x f x x x -=-+在[1,)+∞上是减函数,所以()0f x '≤在[1,)+∞上恒成立,即2210(1)a x x-≤+在[1,)+∞上恒成立,即2(1)122x a x x x +≤=++在[1,)+∞上恒成立,又因为1224x x ++≥=,当且仅当1x =是取等号,所以2a ≤,故选C . 【2-2】若21()(2)ln 2f x x b x =--+在(1,+∞)上是减函数,则b 的取值范围是( ) A .[-1,+∞) B .(-1,+∞) C .(-∞,-1] D .(-∞,-1)【答案】C【解析】由题意可知f′(x)=-(x -2)+bx≤0, 在x∈(1,+∞)上恒成立,即b≤x(x-2)在x∈(1,+∞)上恒成立,由于φ(x)=x(x -2)=x 2-2x 在(1,+∞)上的值域是(-1,+∞),故只要b≤-1即可. 【领悟技法】已知函数单调性,求参数范围的两个方法:(1)利用集合间的包含关系处理:y =f(x)在(a ,b)上单调,则区间(a ,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.提醒:f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a ,b)内的任一非空子区间上f′(x)≠0.应注意此时式子中的等号不能省略,否则漏解. 【触类旁通】【变式一】已知向量2=(e ,-x)2xx a + ,1()b t =,,若函数()·f x a b =在区间(-1,1)上存在增区间,则t 的取值范围为________.【答案】()1e ∞-,+【解析】2xf(x)=e -tx,x (-1,1),2x +∈ '()e x f x x t =+-,函数在12()x x ,⊆(-1,1)上单调递增,故12()xe x t x x x >∈+,,时恒成立,又111x e x e e-<<++,故1t e <+. 【变式二】已知函数()ln (1)2ex f x f x '=-⋅,32()()2x a g x f x x=--(其中a R ∈). (1)求()f x 的单调区间;(2)若函数()g x 在区间[2,)+∞上为增函数,求a 的取值范围;【答案】(1)单调增区间为(0,2),单调减区间为(2,)+∞.(2)3a ≥-.(2)2()2ln 2a ex g x x x =--,则2221222()2a x x ag x x x x -+'=-+=,由题意可知22220x x a x-+≥在[2,)+∞上恒成立,即2220x x a -+≥在[2,)+∞上恒成立,因函数2()22u x x x a =-+开口向上,且对称轴为14x =,故()u x 在[2,)+∞上单调递增,因此只需使(2)0u ≥,解得3a ≥-;易知当3a =-时,()0g x '≥且不恒为0. 故3a ≥-.考点3 应用导数研究函数的极(最)值问题【3-1】【2017河北武邑三调】已知函数()()12ln 2f x a x ax x=-++. (1)当2a =时,求函数()f x 的极值; (2)当0a <时,求函数()f x 的单调增区间. 【答案】(1)极小值为142f ⎛⎫=⎪⎝⎭,无极大值;(2)当2a =-时,增区间()0,+∞,当20a -<<时,增区间11,2a ⎛⎫- ⎪⎝⎭,当2a <-时,增区间11,2a ⎛⎫- ⎪⎝⎭. 【解析】试题分析:(1)函数()f x 的定义域为()0,+∞,令 ()21'40f x x =-+=,得1211;22x x ==-(舍去). 然后列表可求得:函数()f x 的极小值为142f ⎛⎫= ⎪⎝⎭,无极大值;(2)令()'0f x =,得1211,2x x a==-,然后利用分类讨论思想对a 分三种情况进行讨论. 试题解析: (1) 函数()f x 的定义域为()()210,,'4f x x+∞=-+,令()21'40f x x =-+=,得1211;22x x ==-(舍去). 当x 变化时,()()',f x f x 的取值情况如下:所以,函数()f x 的极小值为142f ⎛⎫=⎪⎝⎭,无极大值. (2)()()()2221121'2x ax a f x a x x x-+-=-+=,令()'0f x =,得1211,2x x a ==-,当2a =-时,()'0f x ≥,函数()f x 的在定义域()0,+∞单调递增; 当20a -<<时,在区间11,2a ⎛⎫- ⎪⎝⎭上()()'0,f x f x >单调递增; 当2a <-时,在区间11,2a ⎛⎫- ⎪⎝⎭上()()'0,f x f x >单调递增.【3-2】【2016新课标2理数】(Ⅰ)讨论函数xx 2f (x)x 2-=+e 的单调性,并证明当0x >时,(2)20x x e x -++>;(Ⅱ)证明:当[0,1)a ∈时,函数2x =(0)x e ax a g x x-->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【答案】(Ⅰ)详见解析;(Ⅱ)21(,].24e .【解析】试题分析:(Ⅰ)先求定义域,用导数法求函数的单调性,当(0,)x ∈+∞时,()(0)f x f >证明结论;(Ⅱ)用导数法求函数()g x 的最值,在构造新函数00h()2x e a x =+,又用导数法求解.(II )22(2)(2)2()(()),x x e a x x g x f x a x x-+++==+ 由(I )知,()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥ 因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0'()0g x =, 当00x x <<时,()0,'()0,()f x a g x g x +<<单调递减; 当0x x >时,()0,'()0,()f x a g x g x +>>单调递增. 因此()g x 在0x x =处取得最小值,最小值为000000022000(1)+()(1)().2x x x e a x e f x x e g x x x x -++===+ 于是00h()2x e a x =+,由2(1)()'0,2(2)2x x xe x e e x x x +=>+++单调递增 所以,由0(0,2],x ∈得002201().2022224x e e e e h a x =<=≤=+++因为2x e x +单调递增,对任意21(,],24e λ∈存在唯一的0(0,2],x ∈0()[0,1),a f x =∈使得(),h a λ=所以()h a 的值域是21(,],24e综上,当[0,1)a ∈时,()g x 有()h a ,()h a 的值域是21(,].24e【领悟技法】1.求函数f (x)极值的步骤: (1)确定函数的定义域; (2)求导数f′(x);(3)解方程f′(x)=0,求出函数定义域内的所有根;(4)列表检验f′(x)在f′(x)=0的根x 0左右两侧值的符号,如果左正右负,那么f(x)在x 0处取极大值,如果左负右正,那么f(x)在x 0处取极小值. 2. 求函数f(x)在[a ,b]上的最大值和最小值的步骤 (1)求函数在(a ,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值. 【触类旁通】【变式一】已知等比数列{}n a 的前n 项的和为12n n S k -=+,则()3221f x x kx x =--+的极大值为( )A .2B .3C .72D .52【答案】D 【解析】因k a S S k a a S k a S +=+=+=+=+==4,2,132321211,即2,1,1321==+=a a k a ,故题设21,1)1(2-==+k k ,所以1221)(23+-+=x x x x f ,由于)1)(23(23)(2/+-=-+=x x x x x f ,因此当)1,(--∞∈x 时, )(,0)(/x f x f >单调递增;当)32,1(-∈x 时, )(,0)(/x f x f <单调递减,所以函数)(x f 在1-=x 处取极大值2512211)1(=+++-=-f ,应选D. 【变式二】已知函数()()321xf x x a x ax a e ⎡⎤=+--+⎣⎦,若0x =是()f x 的一个极大值点,则实数a 的取值范围为 . 【答案】(),2-∞ 【解析】因x e a ax x a x a x a x x f ])1()1(23[)(232/+--++--+=,即x x e a x a x x e x a x a x x f )]2()2([])2()2([)(223/-+++=-+++=,由题设条件及导函数的图象可以推知方程0)2()2(2=-+++a x a x 的两根21,x x 在0的两边,即021<x x ,也即02<-a ,所以2<a .【易错试题常警惕】易错典例:已知函数f(x)=(x -k)e x. (1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.易错分析:解答本题时,易于忽视对k -1不同取值情况的讨论,而错误得到f(x)在区间[0,1]上的最小值为f(k-1).正确解析: (1)f′(x)=(x -k +1)e x . 令f′(x)=0,得x =k -1. f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞). (2)当k -1≤0,即k≤1时,函数f(x)在[0,1]上单调递增, 所以f(x)在区间[0,1]上的最小值为f(0)=-k ; 当0<k -1<1,即1<k<2时,由(1)知f(x)在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k -1)=1k e--;当k -1≥1时,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.温馨提醒:1.求函数极值时,易于误把导数为0的点作为极值点;极值点的导数也不一定为0.2.极值与最值:注意函数最值是个“整体”概念,而极值是个“局部”概念.【学科素养提升之思想方法篇】_____化整为零,积零为整——分类讨论思想1.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位. 所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.2.分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.【典例】【2017湖北襄阳四校期中联考】已知函数21()(1)2xf x x e ax =--()a R ∈ ()I 当1a ≤时,求()f x 的单调区间; ()II 当(0,+)x ∈∞时,()y f x '=的图象恒在32(1)y ax x a x =+--的图象上方,求a 的取值范围.【答案】(Ⅰ)当0a ≤时,单调增区间是(0,)+∞,单调减区间是(,0)-∞;当01a <<时,单调增区间是(,ln )a -∞,(0,)+∞,单调减区间是(ln ,0)a ;当1a =时,单调增区间是(,)-∞+∞,无减区间;(Ⅱ)1(,]2-∞.【解析】试题分析:(Ⅰ)首先求得导函数,然后分0a ≤、01a <<、1a =讨论导函数与0之间的关系,由此求得函数的单调区间;(Ⅱ)首先结合(Ⅰ)将问题转化为210x e ax x --->对(0,+)x ∈∞恒成立,然后令2()1x g x e ax x =---(0)x >,从而通过求导函数()g x ',再构造新函数得到函数()g x 的单调性,进而求得a 的取值范围.(ii) 当1a =时,ln 0a =, ()(1)x x f x xe ax x e '=-=-0≥恒成立,()f x 在(,)-∞+∞上单调递增,无减区间; …(5分)综上,当0a ≤时,()f x 的单调增区间是(0,)+∞,单调减区间是(,0)-∞;当01a <<时,()f x 的单调增区间是(,ln )a -∞(0,)+∞和,单调减区间是(ln ,0)a ;当1a =时,()f x 的单调增区间是(,)-∞+∞,无减区间. …(6分)()II 由()I 知()x f x xe ax '=-当(0,+)x ∈∞时,()y f x '=的图象恒在32(1)y ax x a x =+--的图象上方, 即32(1)x xe ax ax x a x ->+--对(0,+)x ∈∞恒成立即 210x e ax x --->对(0,+)x ∈∞恒成立 …(7分)记 2()1xg x e ax x =--- (0)x >,∴()()21xg x e ax h x '=--=()'2x h x e a ∴=- …(8分)(i) 当12a ≤时,()'20xh x e a =->恒成立,()g x '在(0,)+∞上单调递增, ∴()'(0)0g x g '>=, ∴()g x 在(0,)+∞上单调递增∴()(0)0g x g >=,符合题意; …(10分)(ii) 当12a >时,令()'0h x =得ln(2)x a = (0,ln(2))x a ∴∈时,()'0h x <,∴()g x '在(0,ln(2))a 上单调递减∴(0,ln(2))x a ∈时,()'(0)0g x g '<= ∴()g x 在(0,ln(2))a 上单调递减, ∴ (0,ln(2))x a ∈时,()(0)0g x g <=,不符合题意 …(11分)综上可得a 的取值范围是1(,]2-∞. …(12分)。
【课堂新坐标】2018版高考数学(人教A版理)一轮复习:教师用书 热点探究课2 导数应用中的高考热点问题
热点探究课(二)三角函数与解三角形中的高考热点问题[命题解读] 从近五年全国卷高考试题来看,解答题第1题(全国卷T 17)交替考查三角函数、解三角形与数列,本专题的热点题型有:一是三角函数的图象与性质;二是解三角形;三是三角恒等变换与解三角形的综合问题,中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用.热点1 三角函数的图象与性质(答题模板)要进行五点法作图、图象变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换.(本小题满分12分)已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.[思路点拨] (1)先逆用倍角公式,再利用诱导公式、辅助角公式将f (x )化为正弦型函数,然后求其周期.(2)先利用平移变换求出g (x )的解析式,再求其在给定区间上的最值.[规范解答] (1)f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π)3分 =3cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π3,5分 于是T =2π1=2π.6分(2)由已知得g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫x +π6.8分 ∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-12,1,10分 ∴g (x )=2sin ⎝ ⎛⎭⎪⎫x +π6∈[-1,2].11分 故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.12分[答题模板] 解决三角函数图象与性质的综合问题的一般步骤为:第一步(化简):将f (x )化为a sin x +b cos x 的形式.第二步(用辅助角公式):构造f (x )=a 2+b 2·⎝ ⎛⎭⎪⎫sin x ·a a 2+b 2+cos x ·b a 2+b 2. 第三步(求性质):利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. 第四步(反思):反思回顾,查看关键点、易错点和答题规范.[温馨提示] 1.在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2 sin (α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a ,在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.2.求g (x )的最值一定要重视定义域,可以结合三角函数图象进行求解.[对点训练1] (2016·石家庄模拟)已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2.(1)求f (x )的解析式;(2)在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.[解] (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.2分又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2(k ∈Z ),φ=2k π+π6(k ∈Z ),4分所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx +2k π+π6=2sin ⎝ ⎛⎭⎪⎫πx +π6(k ∈Z ). 故f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6.5分 (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ).7分由214≤k +13≤234,解得5912≤k ≤6512,9分又k ∈Z ,知k =5,10分由此可知在闭区间⎣⎢⎡⎦⎥⎤214,234上存在f (x )的对称轴,其方程为x =163.12分 热点2 解三角形从近几年全国卷来看,高考命题强化了解三角形的考查力度,着重考查正弦定理、余弦定理的综合应用,求解的关键是实施边角互化,同时结合三角恒等变换进行化简与求值.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长. [解] (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .2分因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC .由正弦定理,得sin B sin C =AC AB =12.5分(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2.7分在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .9分故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1),知AB =2AC ,所以AC =1.12分[规律方法] 解三角形问题要关注正弦定理、余弦定理、三角形内角和定理、三角形面积公式,要适时、适度进行“角化边”或“边化角”,要抓住能用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则两个定理都有可能用到.[对点训练2] (2016·北京高考)在△ABC 中,a 2+c 2=b 2+2ac .(1)求∠B 的大小;(2)求2cos A +cos C 的最大值.[解] (1)由余弦定理及题设得,cos B =a 2+c 2-b 22ac =2ac 2ac =22.3分又因为0<∠B <π,所以∠B =π4.5分(2)由(1)知∠A +∠C =3π4,则2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A =2cos A -22cos A +22sin A =22cos A +22sin A =cos ⎝ ⎛⎭⎪⎫A -π4.8分因为0<∠A <3π4,所以当∠A =π4时,2cos A +cos C 取得最大值1.12分热点3 三角恒等变换与解三角形的综合问题以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化.(2017·东北三省四市一联)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b=cos C c . (1)求a b 的值;(2)若角A 是钝角,且c =3,求b 的取值范围.[解] (1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,2分∴sin C cos B +sin B cos C =2(sin C cos A +sin A cos C ).∴sin(B +C )=2sin(A +C ).∵A +B +C =π,∴sin A =2sin B ,∴a b =2.5分(2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b=9-3b 26b <0, ∴b > 3. ①7分∵b +c >a ,即b +3>2b ,∴b <3, ②由①②得b 的范围是(3,3).12分[规律方法] 1.以三角形为载体,实质考查三角形中的边角转化,求解的关键是抓住边角间的关系,恰当选择正、余弦定理.2.解三角形常与三角变换交汇在一起(以解三角形的某一结论作为条件),此时应首先确定三角形的边角关系,然后灵活运用三角函数的和、差、倍角公式化简转化.[对点训练3] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2. 【导学号:01772140】(1)求sin 2A sin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积.[解] (1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得tan A =13, 所以sin 2Asin 2A +cos 2A =2tan A 2tan A +1=25.5分 (2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010.7分 由a =3,B =π4及正弦定理a sin A =b sin B ,得b =3 5.9分由sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫A +π4,得sin C =255. 设△ABC 的面积为S ,则S =12ab sin C =9.12分。
2018届高考新课标数学文大一轮复习检测:热点专题二
1.(2017·兰州模拟)已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数).(1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.【解析】 (1)函数f (x )的定义域为R ,f ′(x )=e x -a .当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数;当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0,∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x ,∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立,即m ≤x e x +1e x -1在(2,+∞)上恒成立, 令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立,即L (x )=e x -x -2在(2,+∞)上为增函数,即L (x )>L (2)=e 2-4>0,∴h ′(x )>0,即h (x )=x e x +1e x -1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1, ∴m ≤2e 2+1e 2-1. 所以实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,2e 2+1e 2-1. 2.(2017·武汉调研)已知函数f (x )=ax 2+bx -ln x (a >0,b ∈R ).(1)设a =1,b =-1,求f (x )的单调区间;(2)若对任意的x >0,f (x )≥f (1),试比较ln a 与-2b 的大小.【解析】 (1)由f (x )=ax 2+bx -ln x ,x ∈(0,+∞),得f ′(x )=2ax 2+bx -1x. ∵a =1,b =-1,∴f ′(x )=2x 2-x -1x =(2x +1)(x -1)x(x >0). 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增.∴f (x )的单调递减区间是(0,1),f (x )的单调递增区间是(1,+∞).(2)由题意可知,f (x )在x =1处取得最小值,即x =1是f (x )的极值点,∴f ′(1)=0,∴2a +b =1,即b =1-2a .令g (x )=2-4x +ln x (x >0),则g ′(x )=1-4x x. 令g ′(x )=0,得x =14. 当0<x <14时,g ′(x )>0,g (x )单调递增, 当x >14时,g ′(x )<0,g (x )单调递减, ∴g (x )≤g ⎝ ⎛⎭⎪⎫14=1+ln 14=1-ln 4<0, ∴g (a )<0,即2-4a +ln a =2b +ln a <0,故ln a <-2b .3.(2016·日照模拟)已知函数f (x )=ax +b x 2+1在点(-1,f (-1))处的切线方程为x +y +3=0.(1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在.6.(2016·山东)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R .(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围.【解析】 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).则g ′(x )=1x -2a =1-2ax x. 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0, 函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减.当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增, 所以f (x )在x =1处取得极小值,不合题意.③当a =12时,12a=1,f ′(x )在(0,1)内单调递增, 在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a<1, 当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )在x =1处取极大值,合题意.综上可知,实数a 的取值范围为a >12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
热点探究训练(一)
导数应用中的高考热点问题
1.(2014·全国卷Ⅱ节选)已知函数f(x)=ex-e-x-2x.
(1)讨论f(x)的单调性;
(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值.
[解] (1)f′(x)=ex+e-x-2≥0,等号仅当x=0时成立.
所以f(x)在(-∞,+∞)单调递增. 3分
(2)g(x)=f(2x)-4bf(x)
=e2x-e-2x-4b(ex-e-x)+(8b-4)x,
g′(x)=2[e2x+e-2x-2b(ex+e-x)+(4b-2)]
=2(ex+e-x-2)(ex+e-x-2b+2). 5分
①当b≤2时,g′(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)
单调递增.
而g(0)=0,所以对任意x>0,g(x)>0. 8分
②当b>2时,若x满足2
而g(0)=0,因此当0
2.已知函数f(x)=ex(x2+ax-a),其中a是常数.
【导学号:01772100】
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若存在实数k,使得关于x的方程f(x)=k在[0,+∞)上有两个不相等的
实数根,求k的取值范围.
[解] (1)由f(x)=ex(x2+ax-a)可得
f′(x)=ex[x2+(a+2)x]. 2分
2
当a=1时,f(1)=e,f′(1)=4e.
所以曲线y=f(x)在点(1,f(1))处的切线方程为:
y-e=4e(x-1),即y=4ex-3e. 5分
(2)令f′(x)=ex[x2+(a+2)x]=0,
解得x=-(a+2)或x=0. 6分
当-(a+2)≤0,即a≥-2时,在区间[0,+∞)上,f′(x)≥0,
所以f(x)是[0,+∞)上的增函数,
所以方程f(x)=k在[0,+∞)上不可能有两个不相等的实数根. 8分
当-(a+2)>0,即a<-2时,f′(x),f(x)随x的变化情况如下表:
x 0
(0,-(a+2)) -(a+2) (-(a+2),+∞)
f′(x) 0 - 0 +
f(x)
-a
a+4ea+2
由上表可知函数f(x)在[0,+∞)上的最小值为
f(-(a+2))=a+4ea+2.
因为函数f(x)是(0,-(a+2))上的减函数,
是(-(a+2),+∞)上的增函数,且当x≥-a时,
有f(x)≥e-a(-a)>-a,又f(0)=-a.
所以要使方程f(x)=k在[0,+∞)上有两个不相等的实数根,则k的取值范
围是a+4ea+2,-a. 12分
3.(2016·全国卷Ⅰ)已知函数f(x)=(x-2)ex+a(x-1)2.
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.
[解] (1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).1分
(ⅰ)设a≥0,则当x∈(-∞,1)时,f′(x)<0;
当x∈(1,+∞)时,f′(x)>0.
所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.3分
(ⅱ)设a<0,由f′(x)=0得x=1或x=ln(-2a).
3
①若a=-e2,则f′(x)=(x-1)(ex-e),
所以f(x)在(-∞,+∞)上单调递增.
②若a>-e2,则ln(-2a)<1,
故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;
当x∈(ln(-2a),1)时,f′(x)<0.
所以f(x)在(-∞,ln(-2a)),(1,+∞)上单调递增,在(ln(-2a),1)上单调
递减. 5分
③若a<-e2,则ln(-2a)>1,
故当x∈(-∞,1)∪(ln(-2a),+∞)时,f′(x)>0;
当x∈(1,ln(-2a))时,f′(x)<0.
所以f(x)在(-∞,1),(ln(-2a),+∞)上单调递增,在(1,ln(-2a))上单调
递减. 7分
(2)(ⅰ)设a>0,则由(1)知,f(x)在(-∞,1)上单调递减,在(1,+∞)上单调
递增.又f(1)=-e,f(2)=a,取b满足b<0且b<lna2,则f(b)>a2(b-2)+a(b-
1)2=ab2-32b>0,所以f(x)有两个零点. 9分
(ⅱ)设a=0,则f(x)=(x-2)ex,所以f(x)只有一个零点.
(ⅲ)设a<0,若a≥-e2,则由(1)知,f(x)在(1,+∞)上单调递增.又当x≤1
时f(x)<0,故f(x)不存在两个零点;若a<-e2,则由(1)知,f(x)在(1,ln(-2a))
上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时,f(x)<0,故f(x)不存
在两个零点.
综上,a的取值范围为(0,+∞). 12分
4.(2017·郑州二次质量预测)已知函数f(x)=exx-m.
(1)讨论函数y=f(x)在x∈(m,+∞)上的单调性;
(2)若m∈0,12,则当x∈[m,m+1]时,函数y=f(x)的图象是否总在函数
g(x)=x2+x图象上方?请写出判断过程.
4
[解] (1)f′(x)=exx-m-exx-m2=exx-m-1x-m2, 2分
当x∈(m,m+1)时,f′(x)<0;当x∈(m+1,+∞)时,f′(x)>0,
所以函数f(x)在(m,m+1)上单调递减,在(m+1,+∞)上单调递增.4分
(2)由(1)知f(x)在(m,m+1)上单调递减,
所以其最小值为f(m+1)=em+1. 5分
因为m∈0,12,g(x)在x∈[m,m+1]最大值为(m+1)2+m+1.
所以下面判断f(m+1)与(m+1)2+m+1的大小,即判断ex与(1+x)x的大小,
其中x=m+1∈1,32.
令m(x)=ex-(1+x)x,m′(x)=ex-2x-1,
令h(x)=m′(x),则h′(x)=ex-2,
因为x=m+1∈1,32,所以h′(x)=ex-2>0,m′(x)单调递增.8分
所以m′(1)=e-3<0,m′32=e-4>0,故存在x0∈1,32,使得m′(x0)
=ex0-2x0-1=0,
所以m(x)在(1,x0)上单调递减,在x0,32上单调递增,
所以m(x)≥m(x0)=ex0-x20-x0=2x0+1-x20-x0=-x20+x0+1,
所以当x0∈1,32时,m(x0)=-x20+x0+1>0,
即ex>(1+x)x,也即f(m+1)>(m+1)2+m+1,
所以函数y=f(x)的图象总在函数g(x)=x2+x图象上方. 12分