2014年高考数学(文)二轮复习简易通真题感悟(江苏专用):常考问题11 直线与圆]

合集下载

【高考领航】2014高考数学总复习 8-4 直线与圆、圆与圆的位置关系练习 苏教版

【高考领航】2014高考数学总复习 8-4 直线与圆、圆与圆的位置关系练习 苏教版

【高考领航】2014高考数学总复习 8-4 直线与圆、圆与圆的位置关系练习 苏教版【A 组】一、填空题1.若直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则点P (a ,b )与圆C 的位置关系是________.解析:由题意得圆心(0,0)到直线ax +by =1的距离小于1,即d =1a 2+b 2<1,所以有a 2+b 2>1,∴点P 在圆外.答案:在圆外2.(2011·高考某某卷)设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为________.解析:设圆心C (x ,y ),由题意得x -02+y -32=y +1(y >0),化简得x 2=8y -8.答案:x 2=8y -83.(2011·高考某某卷)在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC和BD ,则四边形ABCD 的面积为________.解析:由题意可知,圆的圆心坐标是(1,3)、半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-12+22=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.答案:10 24.(2011·高考某某卷)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值X 围是________.解析:整理曲线C 1方程得,(x -1)2+y 2=1,知曲线C 1为以点C 1(1,0)为圆心,以1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,知直线l 与x 轴相交,故有圆心C 1到直线l 的距离d =|m1+1-0|m 2+1<r =1,解得m ∈⎝ ⎛⎭⎪⎫-33,33,又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去. 答案:(-33,0)∪(0,33) 5.(2012·高考某某卷)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为________.解析:设过P 点的直线为l ,当OP ⊥l 时,过P 点的弦最短,所对的劣弧最短,此时,得到的两部分面积之差最大.易求得直线的方程为x +y -2=0. 答案:x +y -2=06.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的方程为________.解析:设所求直线的方程为x +y +m =0,圆心(a,0),由题意知:(|a -1|2)2+2=(a -1)2,解得a =3或a =-1,又因为圆心在x 轴的正半轴上,∴a =3,故圆心坐标为(3,0),而直线x +y +m =0过圆心(3,0),∴3+0+m =0, 即m =-3,故所求直线的方程为x +y -3=0. 答案:x +y -3=07.(2012·高考某某卷)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于________.解析:如图所示:解Rt △ACO ,|OC |为圆心到直线x +3y -2=0的距离, |OC |=|0+3×0-2|12+32=1, |OA |=r =2,|AC |=|OA |2-|OC |2=22-12=3, |AB |=2|AC |=2 3 答案:2 3 二、解答题8.圆经过点A (2,-3)和B (-2,-5).(1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程. 解:(1)要使圆的面积最小,则AB 为圆的直径, 圆心C (0,-4),半径r =12|AB |=5,所以所求圆的方程为:x 2+(y +4)2=5. (2)法一:因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x , 即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10, 因此,所求的圆的方程为(x +1)2+(y +2)2=10. 法二:设所求圆的方程为(x -a )2+(y -b )2=r 2, 根据已知条件得⎩⎪⎨⎪⎧2-a 2+-3-b 2=r 2-2-a 2+-5-b 2=r 2a -2b -3=0⇒⎩⎪⎨⎪⎧a =-1,b =-2,r 2=10.所以所求圆的方程为(x +1)2+(y +2)2=10.9.已知圆C 的方程为x 2+y 2=1,直线l 1过定点A (3,0),且与圆C 相切.(1)求直线l 1的方程;(2)设圆C 与x 轴交于P 、Q 两点,M 是圆C 上异于P 、Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P ′,直线QM 交直线l 2于点O ′.求证:以P ′Q ′为直径的圆C ′总过定点,并求出定点坐标.解:(1)∵直线l 1过点A (3,0),且与圆C :x 2+y 2=1相切,设直线l 1的方程为y =k (x -3),即kx -y -3k =0,则圆心O (0,0)到直线l 1的距离为d =|3k |k 2+1=1,解得k =±24,∴直线l 1的方程为y=±24(x -3). (2)证明:对于圆C 的方程x 2+y 2=1,令y =0,则x =±1,即P (-1,0),Q (1,0).又直线l 2过点A 且与x 轴垂直,∴直线l 2方程为x =3.设M (s ,t ),则直线PM 的方程为y=ts +1(x +1).解方程组⎩⎪⎨⎪⎧x =3,y =ts +1x +1得P ′(3,4ts +1). 同理可得Q ′(3,2ts -1). ∴以P ′Q ′为直径的圆C ′的方程为(x -3)(x -3)=(y -4t s +1)(y -2t s -1)=0, 又s 2+t 2=1,∴整理得(x 2+y 2-6x +1)+6s -2ty =0,若圆C ′经过定点,只需令y =0,从而有x 2-6x +1=0,解得x =3±22, ∴圆C ′总经过定点,定点坐标为(3±22,0).【B 组】一、填空题1.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________.解析:方程x 2+y 2+2ay -6=0与x 2+y 2=4. 相减得2ay =2,则y =1a.由已知条件22-32=1a,即a =1.答案:12.(2013·某某十校联考)已知圆C 的半径为1,圆心在第一象限,且与y 轴相切,与x 轴相交于点A 、B ,若AB =3,则该圆的标准方程是________.解析:根据AB =3,可得圆心到x 轴的距离为12,故圆心坐标为⎝ ⎛⎭⎪⎫1,12,故所求圆的标准方程为(x -1)2+⎝ ⎛⎭⎪⎫y -122=1.答案:(x -1)2+⎝ ⎛⎭⎪⎫y -122=13.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值X 围是________.解析:由题设得,若圆上有四个点到直线的距离为1,则需圆心(0,0)到直线的距离d 满足0≤d <1.∵d =|c |122+52=|c |13,∴0≤|c |<13,即c ∈(-13,13). 答案:(-13,13)4.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点C 为(-2,3),则直线l 的方程为________.解析:圆的方程可化为(x +1)2+(y -2)2=5-a .由圆的几何性质可知圆心(-1,2)与点C (-2,3)的连线必垂直于l ,∴k AB =--1+22-3=1,∴l 的方程为x -y +5=0. 答案:x -y +5=05.(2013·某某模拟)从圆x 2-2x +y 2-2y +1=0外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为________.解析:圆的方程整理为(x -1)2+(y -1)2=1,C (1,1), ∴sin ∠APC =15,则cos ∠APB =cos2∠APC=1-2×⎝ ⎛⎭⎪⎫152=35. 答案:356.直线2x -y +m =0与圆x 2+y 2=5交于A 、B 两点,O 为坐标原点,若OA ⊥OB ,则m 的值为________.解析:当OA ⊥OB 时,圆心(0,0)到直线2x -y +m =0的距离等于22r , ∴|m |5=22· 5. ∴m =±5210.答案:±51027.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为________.解析:如图所示,设直线上一点P ,切点为Q , 圆心为M ,则|PQ |即为切线长,MQ 为圆M 的 半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |的最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离,设圆心到直线y =x +1的距离为d ,则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, ∴|PQ |=|PM |2-1≥222-1=7.答案:7 二、解答题8.(2013·某某模拟)已知圆C :(x +1)2+y 2=4和圆外一点A (1,23),(1)若直线m 经过原点O ,且圆C 上恰有三个点到直线m 的距离为1,求直线m 的方程; (2)若经过A 的直线l 与圆C 相切,切点分别为D ,E ,求切线l 的方程及D 、E 两切点所在的直线方程.解:(1)方法一:圆C 的圆心为(-1,0),半径r =2, 圆C 上恰有三个点到直线m 的距离为1, 则圆心到直线m 的距离恰为1,由于直线m 经过原点,圆心到直线m 的距离最大值为1.所以满足条件的直线就是经过原点且垂直于OC 的直线,即y 轴,所以直线方程为x =0.方法二:圆C 的圆心为(-1,0),半径r =2,圆C 上恰有三个点到直线m 的距离为1. 则圆心到直线m 的距离恰为1.设直线方程为y =kx ,d =|-k -0|1+k 2=1,k 无解. 直线斜率不存在时,直线方程为x =0显然成立. 所以所求直线为x =0.(2)设直线方程为y -23=k (x -1),d =|-2k +23|1+k 2=2,解得k =33, 所求直线为y -23=33(x -1), 即3x -3y +53=0,斜率不存在时,直线方程为x =1,∴切线l 的方程为x =1或3x -3y +53=0,过点C 、D 、E 、A 有一外接圆,x 2+(y -3)2=4,即x 2+y 2-23y -1=0, 过切点的直线方程为x +3y -1=0.9.已知圆M :(x -1)2+(y -1)2=4,直线l :x -y -6=0,A 为直线l 上一点.(1)若AM ⊥直线l ,过A 作圆M 的两条切线,切点分别为P ,Q ,求∠PAQ 的大小;(2)若圆M 上存在两点B ,C ,使得∠BAC =60°,求点A 横坐标的取值X 围. 解:(1)圆M 的圆心M (1,1),半径r =2,直线l 的斜率为-1,而AM ⊥l ,∴k AM =1. ′∴直线AM 的方程为y =x .由⎩⎪⎨⎪⎧ y =x ,x +y -6=0解得⎩⎪⎨⎪⎧x =3,y =3,即A (3,3). 如图,连结MP , ∵∠PAM =12∠PAQ ,sin ∠PAM =PM AM=23-12+3-12=22, ∴∠PAM =45°,∴∠PAQ =90°.(2)过A (a ,b )作AD ,AE ,分别与圆M 相切于D ,E 两点,因为∠DAE ≥∠BAC ,所以要使圆M 上存在两点B ,C ,使得∠BAC =60°,只要做∠DAE ≥60°. ∵AM 平分∠DAE , ∴只要30°≤DAM <90°.类似于第(1)题,只要12≤sin∠DAM <1,即2a -12+b -12≥12且a -12+b -12≥12<1. 又a +b -6=0,解得1≤a ≤5, 即a 的取值X 围是[1,5].。

2014届高考数学(文)二轮专题复习17个常考问题专项突破常考问题4导数的简单应用[真题感悟]

2014届高考数学(文)二轮专题复习17个常考问题专项突破常考问题4导数的简单应用[真题感悟]

常考问题4导数的简单应用[真题感悟]1.(2013·浙江卷)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示,则该函数的图象是().解析在(-1,0)上,f′(x)单调递增,所以f(x)图象的切线斜率呈递增趋势;在(0,1)上,f′(x)单调递减,所以f(x)图象的切线斜率呈递减趋势,故选B.答案 B2.(2013·福建卷)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是().A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析A错,因为极大值未必是最大值;B错,因为函数y=f(x)与函数y=f(-x)的图象关于y轴对称,-x0应是f(-x)的极大值点;C错,函数y=f(x)与函数y=-f(x)的图象关于x轴对称,x0应为-f(x)的极小值点;D正确,函数y =f(x)与y=-f(-x)的图象关于原点对称,-x0应为y=-f(-x)的极小值点.答案 D3.(2012·陕西卷)设函数f(x)=2x+ln x,则().A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点解析∵f(x)=2x+ln x(x>0),∴f′(x)=-2x2+1x.由f′(x)=0,解得x=2.当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)为增函数.∴x=2为f(x)的极小值点.答案 D4.(2013·广东卷)若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析由y=ax2-ln x,得y′=2ax-1x,依导数的几何意义,k=y′|x=1=2a-1=0,∴a=1 2.答案1 2[考题分析]题型选择题、填空题、解答题难度低档对导数几何意义的考查中档考查函数的极值与最值高档考查利用导数研究函数的单调性、极值、最值(说明:部分省市要求的低)。

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题3 不等式问题

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题3 不等式问题

常考问题3 不等式问题[真题感悟]1.(2013·广东卷)不等式x 2+x -2<0的解集为________.解析 由x 2+x -2<0得-2<x <1,故其解集为{x |-2<x <1}.答案 {x |-2<x <1}2.(2013·江苏卷)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.解析 由已知得f (0)=0,当x <0时,f (x )=-f (-x )=-x 2-4x ,因此f (x )=⎩⎨⎧ x 2-4x ,x ≥0-x 2-4x ,x <0不等式f (x )>x 等价于⎩⎨⎧ x ≥0,x 2-4x >x 或⎩⎨⎧x <0,-x 2-4x >x , 解得:x >5或-5<x <0.答案 (-5,0)∪(5,+∞)3.(2013·天津卷)设a +b =2,b >0,则当a =________时,12|a |+|a |b 取得最小值.解析 因为12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b≥a 4|a |+2b 4|a |·|a |b =a 4|a |+1≥-14+1=34,当且仅当b 4|a |=|a |b ,a <0,即a =-2,b =4时取等号,故12|a |+|a |b 取得最小值时,a =-2.答案 -24.(2012·江苏卷)已知正数a ,b ,c 满足:5c -3a ≤b ≤4c -a ,c ln b ≥a +c ln c ,则b a的取值范围是________. 解析 由题意知⎩⎨⎧ a +b ≤4c ,3a +b ≥5c ,c ln b -a ≥c ln c ⇒b ≥c e .作出可行域(如图所示).由⎩⎨⎧ a +b =4c ,3a +b =5c ,得a =c 2,b =72c .此时⎝ ⎛⎭⎪⎫b a max =7. 由⎩⎨⎧a +b =4c ,b =c e ,得a =4c e +1,b =4c e e +1. 此时⎝ ⎛⎭⎪⎫b a min =4c ee +14c e +1=e.所以b a ∈[e,7]. 答案 [e,7][考题分析]高考对本内容的考查主要有:(1)一元二次不等式是C 级要求,线性规划是A 级要求.(2)基本不等式是C 级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用.试题类型可能是填空题,同时在解答题中经常与函数、实际应用题综合考查,构成中高档题.。

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题15 概率与统计

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题15 概率与统计

常考问题15 概率与统计[真题感悟]1.(2013·江苏卷)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.解析 基本事件总数为N =7×9=63,其中m ,n 都为奇数的事件个数为M =4×5=20,所以所求概率P =M N =2063. 答案 20632.(2013·江苏卷)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析 对于甲,平均成绩为x 甲=15(87+91+90+89+93)=90,所以方差为s 2甲=15(32+12+02+12+32)=4;对于乙,平均成绩为x 乙=15(89+90+91+88+92)=90,所以方差为s 2乙=15(12+02+12+22+22)=2,由于2<4,所以乙的平均成绩为稳定. 答案 23.(2012·江苏卷)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析 由已知,高二人数占总人数的310,所以抽取人数为310×50=15. 答案 154.(2012·江苏卷)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析满足条件的数有1,-3,-33,-35,-37,-39;所以p=610=35.答案3 5[考题分析]高考对本内容的考查主要有:(1)抽样方法的选择、与样本容量相关的计算,尤其是分层抽样中的相关计算,A级要求.(2)图表中的直方图、茎叶图都可以作为考查点,尤其是直方图更是考查的热点,A级要求.(3)特征数中的方差、标准差计算都是考查的热点,B级要求.(4)随机事件的概率计算,通常以古典概型、几何概型的形式出现,B级要求.。

2014年全国普通高等学校招生统一考试数学(江苏卷带解析) 答案解析

2014年全国普通高等学校招生统一考试数学(江苏卷带解析) 答案解析

2014年全国普通高等学校招生统一考试(江苏卷)数学答案解析1、【答案】【解析】由题意得.【考点】集合的运算2、【答案】21【解析】由题意,其实部为21.【考点】复数的概念.3、【答案】5【解析】本题实质上就是求不等式的最小整数解.整数解为,因此输出的【考点】程序框图.4、【答案】【解析】从这4个数中任取2个数共有种取法,其中乘积为6的有和两种取法,因此所求概率为.【考点】古典概型.5、【答案】【解析】由题意,即,,,因为,所以.【考点】三角函数图象的交点与已知三角函数值求角.6、【答案】24【解析】由题意在抽测的60株树木中,底部周长小于的株数为.【考点】频率分布直方图.7、【答案】4【解析】设公比为,因为,则由得,,解得,所以.【考点】等比数列的通项公式.8、【答案】【解析】设甲、乙两个圆柱的底面和高分别为,,则,,又,所以,则.【考点】圆柱的侧面积与体积.9、【答案】【解析】圆的圆心为,半径为,点到直线的距离为,所求弦长为.【考点】直线与圆相交的弦长问题.10、【答案】【解析】据题意解得.【考点】二次函数的性质.11、【答案】【解析】曲线过点,则①,又,所以②,由①②解得所以.【考点】导数与切线斜率.12、【答案】22【解析】由题意,,,所以,即,解得.【考点】向量的线性运算与数量积.13、【答案】【解析】作出函数的图象,可见,当时,,,方程在上有10个零点,即函数和图象与直线在上有10个交点,由于函数的周期为3,因此直线与函数的应该是4个交点,则有.【考点】函数的零点,周期函数的性质,函数图象的交点问题.14、【答案】【解析】由已知及正弦定理可得,,当且仅当即时等号成立.【考点】正弦定理与余弦定理.15、【答案】(1);(2).【解析】试题分析:(1)要求的值,根据两角和的正弦公式,可知还要求得,由于已知,所以,利用同角关系可得;(2)要求,由两角差的余弦公式我们知要先求得,而这由二倍角公式结合(1)可很容易得到.本题应该是三角函数最基本的题型,只要应用公式,不需要作三角函数问题中常见的“角”的变换,“函数名称”的变换等技巧,可以算得上是容易题,当然要正确地解题,也必须牢记公式,及计算正确.试题解析:(1)由题意,所以.(2)由(1)得,,所以.【考点】三角函数的基本关系式,二倍角公式,两角和与差的正弦、余弦公式.16、【答案】证明见解析.【解析】(1)本题证明线面平行,根据其判定定理,需要在平面内找到一条与平行的直线,由于题中中点较多,容易看出,然后要交待在平面外,在平面内,即可证得结论;(2)要证两平面垂直,一般要证明一个平面内有一条直线与另一个平面垂直,由(1)可得,因此考虑能否证明与平面内的另一条与相交的直线垂直,由已知三条线段的长度,可用勾股定理证明,因此要找的两条相交直线就是,由此可得线面垂直.试题解析:(1)由于分别是的中点,则有,又,,所以.(2)由(1),又,所以,又是中点,所以,,又,所以,所以,是平面内两条相交直线,所以,又,所以平面平面.【考点】线面平行与面面垂直.17、【答案】(1);(2).【解析】试题分析:(1)求椭圆标准方程,一般要找到关系的两个等量关系,本题中椭圆过点,可把点的坐标代入标准方程,得到一个关于的方程,另外,这样两个等量关系找到了;(2)要求离心率,就是要列出关于的一个等式,题设条件是,即,,要求,必须求得的坐标,由已知写出方程,与椭圆方程联立可解得点坐标,则,由此可得,代入可得关于的等式,再由可得的方程,可求得.试题解析:(1)由题意,,,,又,∴,解得.∴椭圆方程为.(2)直线方程为,与椭圆方程联立方程组,解得点坐标为,则点坐标为,,又,由得,即,∴,化简得.【考点】椭圆标准方程,椭圆离心率,直线与直线的位置关系.18、【答案】(1);(2).【解析】试题分析:本题是应用题,我们可用解析法来解决,为此以为原点,以向东,向北为坐标轴建立直角坐标系.(1)点坐标炎,,因此要求的长,就要求得点坐标,已知说明直线斜率为,这样直线方程可立即写出,又,故斜率也能得出,这样方程已知,两条直线的交点的坐标随之而得;(2)实质就是圆半径最大,即线段上哪个点到直线的距离最大,为此设,由,圆半径是圆心到直线的距离,而求它的最大值,要考虑条件古桥两端和到该圆上任一点的距离均不少于80,列出不等式组,可求得的范围,进而求得最大值.当然本题如果用解三角形的知识也可以解决.试题解析:(1)如图,以为轴建立直角坐标系,则,,由题意,直线方程为.又,故直线方程为,由,解得,即,所以;(2)设,即,由(1)直线的一般方程为,圆的半径为,由题意要求,由于,因此,∴∴,所以当时,取得最大值,此时圆面积最大.【考点】解析几何的应用,直线方程,直线交点坐标,两点间的距离,点到直线的距离,直线与圆的位置关系.19、【答案】(1)证明见解析;(2);(3)当时,,当时,,当时,.【解析】试题分析:试题解析:(1)证明:函数定义域为,∵,∴是偶函数.(2)由得,由于当时,,因此,即,所以,令,设,则,,∵,∴(时等号成立),即,,所以.(3)由题意,不等式在上有解,由得,记,,显然,当时,(因为),故函数在上增函数,,于是在上有解,等价于,即.考察函数,,当时,,当时,,当时,即在上是增函数,在上是减函数,又,,,所以当时,,即,,当时,,,即,,因此当时,,当时,,当时,.【考点】(1)偶函数的判断;(2)不等式恒成立问题与函数的交汇;(3)导数与函数的单调性,比较大小.20、【答案】(1)证明见解析;(2);(3)证明见解析.【解析】(1)首先,当时,,所以,所以对任意的,是数列中的项,因此数列是“数列”.(2)由题意,,数列是“数列”,则存在,使,,由于,又,则对一切正整数都成立,所以.(3)首先,若(是常数),则数列前项和为是数列中的第项,因此是“数列”,对任意的等差数列,(是公差),设,,则,而数列,都是“数列”,证毕.【考点】(1)新定义与数列的项,(2)数列的项与整数的整除;(3)构造法.21、【答案】证明见解析.【解析】试题分析:这两个角直接证明相等不太可能,我们可以通过第三个角过渡,即证明他们都与第三个角相等,在本题中一个等腰三角形说明,另一方面与是同弧所对的圆周角,相等,故结论得证.试题解析:由题意,,又∵,∴,∴. 【考点】圆周角问题.22、【答案】【解析】试题分析:利用矩阵运算和矩阵相等列出关于的方程组,解出即可.试题解析:由题意得,解得.∴.【考点】矩阵的运算.23、【答案】【解析】试题分析:可以把直线参数方程化为普通方程,与抛物线方程联立解得的坐标,可求线段的长,也可直接把直线的参数方程代入抛物线方程,解关于的方程,利用此直线参数方程中的几何意义,可得.试题解析:直线的普通方程为,即,与抛物线方程联立方程组解得,∴.【考点】直线的参数方程.24、【答案】证明见解析.【解析】试题分析:直接利用算术-几何平均不等式可得,,两式相乘即得要证不等式.试题解析:∵,∴,,∴.【考点】算术平均值-几何平均不等式.25、【答案】(1);(2).【解析】试题分析:(1)从9个球中抽2个球共有种方法,而两个球同色,可能同为红,同为黄或同为绿,方法为,概率为;(2)首先抽4个球中,红、黄、绿色球的个数至少有一个不小于2,因此的可能值为,,说明抽出的4个球都是红球,,说明抽出的4个球中有3个红球、1个其他色或者3个黄球、1个其他色,说明4个球中2个红球、其他两色各1个,或2个黄球、其他两色各1个,或2个绿球、其他两色各1个,当然求时,可用来求.试题解析:(1)由题意;(2)随机变量的取值可能为,,,,所以的分布列为.【考点】排列与组合,离散型随机变量的分布列与均值(数学期望).26、【答案】(1);(2)证明见解析.【解析】试题分析:(1)本题首先考查复合函数的求导,如;(2)要找到式子的规律,当然主要是找式子的规律,为了达到此目标,我们让看看有什么特点,由(1),对这个式子两边求导可得,再求导,由引可归纳出,从上面过程还可看出应该用数学归纳法证明这个结论.试题解析:(1)由已知,,所以,,故.(2)由(1)得,两边求导可得,类似可得,下面我们用数学归纳法证明对一切都成立,(1)时命题已经成立,(2)假设时,命题成立,即,对此式两边求导可得,即,因此时命题也成立.综合(1)(2)等式对一切都成立.令,得,所以.【考点】复合函数的导数,数学归纳法。

江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题12 圆锥曲线的基本问题

江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题12 圆锥曲线的基本问题

y2 x2 程为 a2 - b2 = 1(a>0 , b>0) ,根据定义 2a = | 152+12 - 152+72|=4,故 a=2.又 b2=32-22=5,故所求双曲线方 y2 x2 程为 4 - 5 =1.
法二
x2 y2 y2 x2 + =1 的焦点坐标是(0,± 3),设双曲线方程为 2- 2= 27 36 a b
解析
c (1)因为双曲线的离心率 e= =2,所以 b= 3a,所以双曲 a
b p 线的渐近线方程为 y=± 与抛物线的准线 x=-2相交于 ax=± 3x,
p A -2, p 1 p 3 3 ,B- ,- p,所以△AOB 的面积为2×2× 3p p 2 2 2
热点与突破
热点一 圆锥曲线的定义与标准方程
x2 y2 【例 1】 设双曲线与椭圆 + =1 有共同的焦点,且与椭圆相 27 36 交,一个交点的坐标为 ( 15,4),则此双曲线的标准方程是 ________________. 解析 法一 x2 y2 3),设双曲线方 27+36=1 的焦点坐标是(0,±
2 2
16 15 1(a>0,b>0),则 a +b =9, 2 - 2 =1,解得 a2=4,b2=5,故 a b y2 x2 所求双曲线方程为 4 - 5 =1. 法三 x2 y2 设双曲线方程为 + =1(27<λ<36), 由于双曲线过 27-λ 36-λ
15 16 点( 15,4),故 + =1,解得 λ1=32,λ2=0(舍去),故 27-λ 36-λ y2 x2 所求双曲线方程为 4 - 5 =1. 答案 y2 x2 - =1 4 5
热点二 圆锥曲线的几何性质 x2 2 【例 2】 (2013· 浙江卷改编)如图,F1,F2 是椭圆 C1: +y =1 4 与双曲线 C2 的公共焦点,A,B 分别是 C1,C2 在第二、四象 限的公共点.若四边形 AF1BF2 为矩形,则 C2 的离心率是 ________.

江苏省2014年高考数学(文)二轮复习简易通配套课件:2-2 转化与化归思想、分类讨论思想


f(-α)=sin2α+sin2(α-β),f(-β)=sin2β+sin2(α-β).
2 2 2 2 sin α + sin β = 1 + cos α + cos β, 所以有 2 2 2 2 sin α + sin α - β = sin β + sin α-β,
类型四
由字母参数引起的分类讨论
【例4】 已知函数f(x)=x3+x2-ax(a∈R). (1)当a=0时,求与直线x-y-10=0平行,且与曲线y=f(x)相 切的直线方程; fx (2)求函数g(x)= x -aln x(x>1)的单调递增区间.
2 2 解 (1)设切点为T(x0,x3 + x ) , f ′ ( x ) = 3 x +2x. 0 0
1 2 由题意得3x0+2x0=1,解得x0=-1或 . 3 ∴切线的方程为x-y+1=0或27x-27y-5=0. a (2)g(x)=x +x-a-aln x(x>1),由g′(x)=2x+1-x >0得
2
2x2+x-a>0.令φ(x)=2x2+x-a(x>1), 由于φ(x)在(1,+∞)上是增函数.∴φ(x)>φ(1)=3-a.
解 (1)设数列{an}的公差为d,由已知,得
3a1+3d=6, 8a1+28d=-4, a1=3, 解得 d=-1.
故an=3-(n-1)=4-n. (2)由(1)可得bn=n· qn 1,于是

Sn=1· q0+2· q1+3· q2+…+n· qn-1. 若q≠1,将上式两边同乘q,得 qSn=1· q1+2· q2+…+(n-1)· qn 1+n· qn.
[类型讲解] 类型一 【例1】 数学概念与运算引起的分类讨论
2 sinπx ,-1<x<0, 函数f(x)= x-1 e ,x≥0.

江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题21 坐标系与参数方程


3),B(- 3,1),
C(-1,- 3),D( 3,-1). (2)设P(2cos φ,3sin φ), 令S=|PA|2+|PB|2+|PC|2+|PD|2, 则S=16cos2φ+36sin2φ+16=32+20sin2φ. 因为0≤sin2φ≤1,所以S的取值范围是[32,52].
[规律方法] 本题的技巧在于根据圆内接正方形的各顶点的极角相 π 差 2 ,而极径不变,先得到各点的直角坐标,如果先把圆的方程 转化为普通方程,再求各点的坐标就相对比较麻烦.
π (3)当圆心位于Mr,2,半径为r:ρ=2rsin
θ.
(4)圆心在点M(x0,y0),半径为r的圆的参数方程为
x=x0+rcos θ, y=y0+rsin θ
(θ为参数,0≤θ≤2π).圆心在点A(ρ0,θ0),
半径为r的圆的方程为r2=ρ2+ρ20-2ρρ0cos(θ-θ0).
•常考问题21 坐标系与参数方程
[真题感悟]
[考题分析]
1.直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两 坐标系中取相同的长度单位.设M是平面内的任意一点,它 的直角坐标、极坐标分别为(x,y)和(ρ,θ),则 ρ2=x2+y2, y tan θ=xx≠0.
2

3 2 =3 2. 2
热点三 参数方程与极坐标方程的应用 【例3】 已知曲线C1的参数方程是
x=2cos φ, y=3sin φ
(φ为参数),以
坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线 C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且
(t为参数).
热点与突破
热点一 极坐标方程和参数方程

2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷答案与解析2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A ∩B= {﹣1,3} .考点: 交集及其运算. 专题: 集合. 分析: 根据集合的基本运算即可得到结论. 解答: 解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A ∩B={﹣1,3},故答案为:{﹣1,3}点评: 本题主要考查集合的基本运算,比较基础.2.(5分)(2014•江苏)已知复数z=(5+2i )2(i 为虚数单位),则z 的实部为 21 .考点: 复数的基本概念;复数代数形式的乘除运算. 专题: 数系的扩充和复数. 分析: 根据复数的有关概念,即可得到结论. 解答: 解:z=(5+2i )2=25+20i+4i 2=25﹣4+20i=21+20i ,故z 的实部为21,故答案为:21点评: 本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n 的值是 5 .4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是 .考点: 古典概型及其概率计算公式. 专题: 概率与统计. 分析: 首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可. 解答: 解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个, 所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.点评: 本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)(2014•江苏)已知函数y=cosx 与y=sin (2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是 .考点: 三角方程;函数的零点. 专题: 三角函数的求值;三角函数的图像与性质. 分析:由于函数y=cosx 与y=sin (2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.解答: 解:∵函数y=cosx 与y=sin (2x+φ),它们的图象有一个横坐标为的交点, ∴=. ∵0≤φ<π,∴, ∴+φ=,解得φ=.故答案为:.点评: 本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm .考点: 频率分布直方图. 专题: 概率与统计. 分析: 根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm 的频率,再根据频数=样本容量×频率求出底部周长小于100cm 的频数.解答: 解:由频率分布直方图知:底部周长小于100cm 的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm 的频数为60×0.4=24(株).故答案为:24.点评: 本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)(2014•江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 4 .考点: 等比数列的通项公式. 专题: 等差数列与等比数列. 分析:利用等比数列的通项公式即可得出. 解答: 解:设等比数列{a n }的公比为q >0,a 1>0. ∵a 8=a 6+2a 4,∴,化为q 4﹣q 2﹣2=0,解得q 2=2.∴a 6===1×22=4.故答案为:4.点评: 本题考查了等比数列的通项公式,属于基础题.8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且=,则的值是 .考点: 棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台). 专题: 立体几何. 分析: 设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比. 解答: 解:设两个圆柱的底面半径分别为R ,r ;高分别为H ,h ; ∵=,∴,它们的侧面积相等, ∴,∴===.故答案为:.点评: 本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)(2014•江苏)在平面直角坐标系xOy 中,直线x+2y ﹣3=0被圆(x ﹣2)2+(y+1)2=4截得的弦长为 .考点: 直线与圆的位置关系. 专题: 直线与圆. 分析: 求出已知圆的圆心为C (2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l 的距离d ,由垂径定理加以计算,可得直线x+2y ﹣3=0被圆截得的弦长.解答: 解:圆(x ﹣2)2+(y+1)2=4的圆心为C (2,﹣1),半径r=2,∵点C 到直线直线x+2y ﹣3=0的距离d==,∴根据垂径定理,得直线x+2y ﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2= 故答案为:.点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)(2014•江苏)已知函数f (x )=x 2+mx ﹣1,若对于任意x ∈[m ,m+1],都有f (x )<0成立,则实数m 的取值范围是 (﹣,0) . 考点:二次函数的性质.专题: 函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m 的范围. 解答: 解:∵二次函数f (x )=x 2+mx ﹣1的图象开口向上,对于任意x ∈[m ,m+1],都有f (x )<0成立,∴,即,解得﹣<m <0,故答案为:(﹣,0). 点评: 本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)(2014•江苏)在平面直角坐标系xOy 中,若曲线y=ax 2+(a ,b 为常数)过点P (2,﹣5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b 的值是 ﹣3 . 考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析: 由曲线y=ax 2+(a ,b 为常数)过点P (2,﹣5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y ′|x=2=,解方程可得答案. 解解:∵直线7x+2y+3=0的斜率k=,答: 曲线y=ax 2+(a ,b 为常数)过点P (2,﹣5),且该曲线在点P 处的切线与直线7x+2y+3=0平行, ∴y ′=2ax ﹣, ∴, 解得:,故a+b=﹣3, 故答案为:﹣3 点评: 本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y ′|x=2=,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD 中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .考向量在几何中的应用;平面向量数量积的运点: 算.专题:平面向量及应用.分析: 由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案. 解答: 解:∵=3, ∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22, 故答案为:22. 点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2﹣2x+|,若函数y=f (x )﹣a 在区间[﹣3,4]上有10个零点(互不相同),则实数a 的取值范围是 (0,) .考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析: 在同一坐标系中画出函数的图象与直线y=a 的图象,利用数形结合判断a 的范围即可. 解答: 解:f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2﹣2x+|,若函数y=f (x )﹣a 在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f (x )与y=a 的图象如图:由图象可知. 故答案为:(0,).点本题考查函数的图象以函数的零点的求评: 法,数形结合的应用.14.(5分)(2014•江苏)若△ABC 的内角满足sinA+sinB=2sinC ,则cosC 的最小值是. 考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形. 分析: 根据正弦定理和余弦定理,利用基本不等式即可得到结论.解答:解:由正弦定理得a+b=2c ,得c=(a+b ), 由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC <1,故cosC 的最小值是.故答案为:.点评: 本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键.二、解答题(本大题共6小题,共计90分) 15.(14分)(2014•江苏)已知α∈(,π),sin α=.(1)求sin (+α)的值; (2)求cos (﹣2α)的值. 考点: 两角和与差的正弦函数;两角和与差的余弦函数.专题:三角函数的求值;三角函数的图像与性质. 分析:(1)通过已知条件求出cos α,然后利用两角和的正弦函数求sin (+α)的值; (2)求出cos2α,然后利用两角差的余弦函数求cos (﹣2α)的值. 解答:解:α∈(,π),sin α=.∴cos α=﹣= (1)sin (+α)=sin cos α+cos sin α==﹣;∴sin (+α)的值为:﹣.(2)∵α∈(,π),sin α=.∴cos2α=1﹣2sin 2α=,sin2α=2sin αcos α=﹣ ∴cos (﹣2α)=cos cos2α+sin sin2α==﹣.cos (﹣2α)的值为:﹣.点评: 本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)(2014•江苏)如图,在三棱锥P ﹣ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,已知PA ⊥AC ,PA=6,BC=8,DF=5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .考点: 平面与平面垂直的判定;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何. 分析: (1)由D 、E 为PC 、AC 的中点,得出DE ∥PA ,从而得出PA ∥平面DEF ;(2)要证平面BDE ⊥平面ABC ,只需证DE ⊥平面ABC ,即证DE ⊥EF ,且DE ⊥AC 即可. 解答: 证明:(1)∵D 、E 为PC 、AC 的中点,∴DE ∥PA ,又∵PA ⊄平面DEF ,DE ⊂平面DEF , ∴PA ∥平面DEF ;(2)∵D 、E 为PC 、AC 的中点,∴DE=PA=3;又∵E 、F 为AC 、AB 的中点,∴EF=BC=4;∴DE 2+EF 2=DF 2, ∴∠DEF=90°, ∴DE ⊥EF ;∵DE ∥PA ,PA ⊥AC ,∴DE ⊥AC ; ∵AC ∩EF=E ,∴DE ⊥平面ABC ; ∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC . 点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)(2014•江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆+=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C . (1)若点C 的坐标为(,),且BF 2=,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.考点:椭圆的简单性质;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析: (1)根据椭圆的定义,建立方程关系即可求出a ,b 的值.(2)求出C 的坐标,利用F 1C ⊥AB 建立斜率之间的关系,解方程即可求出e 的值. 解答: 解:(1)∵C 的坐标为(,),∴,即,∵,∴a 2=()2=2,即b 2=1, 则椭圆的方程为+y 2=1.(2)设F 1(﹣c ,0),F 2(c ,0), ∵B (0,b ),∴直线BF 2:y=﹣x+b ,代入椭圆方程+=1(a >b >0)得()x 2﹣=0,解得x=0,或x=,∵A (,),且A ,C 关于x 轴对称, ∴C (,﹣), 则=﹣=,∵F 1C ⊥AB , ∴×()=﹣1, 由b 2=a 2﹣c 2得,即e=. 点评: 本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)(2014•江苏)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan ∠BCO=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析: (1)在四边形AOCB 中,过B 作BE ⊥OC 于E ,过A 作AF ⊥BE 于F ,设出AF ,然后通过解直角三角形列式求解BE ,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO 交于P,设OM=xm,把PC、PQ用含有x 的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.解:(1)如图,解答:过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x ≤35.∴当且仅当x=10时R 取到最大值. ∴OM=10m 时,保护区面积最大. 点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)(2014•江苏)已知函数f (x )=e x +e﹣x,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数; (2)若关于x 的不等式mf (x )≤e ﹣x +m ﹣1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (﹣x 03+3x 0)成立,试比较e a ﹣1与a e﹣1的大小,并证明你的结论. 考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析: (1)根据函数奇偶性的定义即可证明f (x )是R 上的偶函数;(2)利用参数分离法,将不等式mf (x )≤e ﹣x +m ﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m 的取值范围; (3)构u 造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论. 解答: 解:(1)∵f (x )=e x +e ﹣x ,∴f (﹣x )=e ﹣x +e x =f (x ),即函数:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e ﹣x +m ﹣1在(0,+∞)上恒成立, 即m (e x +e ﹣x ﹣1)≤e ﹣x ﹣1,∵x >0, ∴e x +e ﹣x ﹣1>0,即m ≤在(0,+∞)上恒成立,设t=e x ,(t >1),则m ≤在(1,+∞)上恒成立, ∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e ﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e ﹣1)≤h(x)<h(1)=0,当x ∈(e ﹣1,e )⊆(e ﹣1,+∞)时,h (x )<h (e )=0,∴h (x )<0,对任意的x ∈(1,e )成立. ①a ∈((e+),e )⊆(1,e )时,h (a )<0,即a ﹣1<(e ﹣1)lna ,从而e a ﹣1<a e ﹣1,②当a=e 时,a e ﹣1=e a ﹣1,③当a ∈(e ,+∞)⊆(e ﹣1,+∞)时,当a >e ﹣1时,h (a )>h (e )=0,即a ﹣1>(e ﹣1)lna ,从而e a ﹣1>a e ﹣1.点评: 本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)(2014•江苏)设数列{a n }的前n 项和为S n ,若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和为S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0,若{a n }是“H 数列”,求d 的值;(3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 考点:数列的应用;等差数列的性质.专题:等差数列与等比数列.分析: (1)利用“当n ≥2时,a n =S n ﹣S n ﹣1,当n=1时,a 1=S 1”即可得到a n ,再利用“H ”数列的意义即可得出.(2)利用等差数列的前n 项和即可得出S n ,对∀n ∈N *,∃m ∈N *使S n =a m ,取n=2和根据d <0即可得出;(3)设{a n }的公差为d ,构造数列:b n =a 1﹣(n ﹣1)a 1=(2﹣n )a 1,c n =(n ﹣1)(a 1+d ),可证明{b n }和{c n }是等差数列.再利用等差数列的前n 项和公式及其通项公式、“H ”的意义即可得出. 解答: 解:(1)当n ≥2时,a n =S n ﹣S n ﹣1=2n ﹣2n ﹣1=2n﹣1,当n=1时,a 1=S 1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n (n ﹣3)为非负偶数,m ∈N *. 因此对∀n ∈N *,都可找到m ∈N *,使T n =b m 成立,即{b n }为H 数列. 数列{c n }的前n 项和R n =,令c m =(m ﹣1)(a 1+d )=R n ,则m=.∵对∀n ∈N *,n (n ﹣3)为非负偶数,∴m ∈N *. 因此对∀n ∈N *,都可找到m ∈N *,使R n =c m 成立,即{c n }为H 数列. 因此命题得证. 点评: 本题考查了利用“当n ≥2时,a n =S n ﹣S n ﹣1,当n=1时,a 1=S 1”求a n 、等差数列的前n项和公式及其通项公式、新定义“H ”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点,证明:∠OCB=∠D .考点:弦切角.专题:直线与圆.分析: 利用OC=OB ,可得∠OCB=∠B ,利用同弧所对的圆周角相等,即可得出结论. 解答: 证明:∵OC=OB , ∴∠OCB=∠B ,∵∠B=∠D , ∴∠OCB=∠D . 点评: 本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x ,y 为实数,若A =B ,求x+y 的值. 考点:矩阵与向量乘法的意义.专题:矩阵和变换.分析: 利用矩阵的乘法,结合A =B ,可得方程组,即可求x ,y 的值,从而求得x+y 的值. 解答:解:∵矩阵A=,B=,向量=,A =B ,∴,∴x=﹣,y=4, ∴x+y= 点评: 本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长. 考点:直线的参数方程.专题:计算题;坐标系和参数方程.分析: 直线l 的参数方程化为普通方程,与抛物线y 2=4x 联立,求出A ,B 的坐标,即可求线段AB 的长. 解答:解:直线l 的参数方程为,化为普通方程为x+y=3,与抛物线y 2=4x 联立,可得x 2﹣10x+9=0, ∴交点A (1,2),B (9,﹣6), ∴|AB|==8.点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修4-4:不等式选讲】24.(2014•江苏)已知x >0,y >0,证明(1+x+y 2)(1+x 2+y )≥9xy . 考点:不等式的证明.专题: 证明题;不等式的解法及应用. 分析: 由均值不等式可得1+x+y 2≥3,1+x 2+y ≥,两式相乘可得结论. 解答:证明:由均值不等式可得1+x+y 2≥3,1+x 2+y ≥分别当且仅当x=y 2=1,x 2=y=1时等号成立, ∴两式相乘可得(1+x+y 2)(1+x 2+y )≥9xy . 点评: 本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数,求X 的概率分布和数学期望E (X ). 考点: 离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析: (1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X 的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X 的所有可能值为4,3,2,则P (X=4)=,P (X=3)=于是P (X=2)=1﹣P (X=3)﹣P (X=4)=,X 的概率分布列为 X 2 3 4 P故X 数学期望E (X )=.点评: 本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题. 26.(10分)(2014•江苏)已知函数f 0(x )=(x >0),设f n (x )为f n ﹣1(x )的导数,n ∈N *. (1)求2f 1()+f 2()的值;(2)证明:对任意n ∈N *,等式|nf n ﹣1()+f n()|=都成立. 考点:三角函数中的恒等变换应用;导数的运算. 专函数的性质及应用;三角函数的求值.题: 分析: (1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf 0(x )=sinx ,然后两边求导后根据条件两边再求导得:2f 1(x )+xf 2(x )=﹣sinx ,把x=代入式子求值;(2)由(1)得,f 0(x )+xf 1(x )=cosx 和2f 1(x )+xf 2(x )=﹣sinx ,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证. 解答: 解:(1)∵f 0(x )=,∴xf 0(x )=sinx , 则两边求导,[xf 0(x )]′=(sinx )′,∵f n (x )为f n ﹣1(x )的导数,n ∈N *,∴f 0(x )+xf 1(x )=cosx ,两边再同时求导得,2f 1(x )+xf 2(x )=﹣sinx , 将x=代入上式得,2f 1()+f 2()=﹣1,(2)由(1)得,f 0(x )+xf 1(x )=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,41 由①②得,nf n ﹣1(x )+xf n (x )=sin (x+)对任意n ∈N *恒成立,令x=代入上式得,nf n ﹣1()+f n ()=sin (+)=±cos =±,所以,对任意n ∈N *,等式|nf n ﹣1()+f n ()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题19 几何证明选讲

常考问题19 几何证明选讲
[真题感悟]
1.(2013·江苏卷)如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,
且BC =2OC .求证:AC =2AD .
证明 连接OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以∠ADO =∠ACB =90°.又因为∠A =∠A ,所以Rt △ADO ∽Rt △ACB .
所以BC OD =AC AD .
又BC =2OC =2OD ,故AC =2AD .
2.(2012·江苏卷)如图,AB 是圆O 的直径,D ,E 为圆上
位于AB 异侧的两点,连接BD 并延长至点C ,使BD
=DC ,连接AC ,AE ,DE .
求证:∠E =∠C .
证明 连接OD ,因为BD =DC ,O 为AB 的中点,
所以OD ∥AC ,于是∠ODB =∠C .
因为OB =OD ,所以∠ODB =∠B 于是∠B =∠C .
因为点A ,E ,B ,D 都在圆O 上,且D ,E 为圆O
上位于AB 异侧的两点,所以∠E 和∠B 为同弧所对
的圆周角,
故∠E =∠B .所以∠E =∠C .
[考题分析]
高考对本内容的考查主要有:
(1)三角形及相似三角形的判定与性质;
(2)圆的相交弦定理,切割线定理;
(3)圆内接四边形的性质与判定;
(4)相交弦定理,本内容考查属B级要求.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常考问题11 直线与圆
[真题感悟]
1.(2012·江苏卷)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,
若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C
有公共点,则k的最大值是________.

解析 设圆心C(4,0)到直线y=kx-2的距离为d,则d=|4k-2|k2+1,由题意知

问题转化为d≤2,即d=|4k-2|k2+1≤2,得0≤k≤43,所以kmax=43.
答案 43
2.(2013·江苏卷)如图,在平面直角坐标系xOy中,点A(0,3),
直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,
求切线的方程;
(2)若圆C上存在点M,使|MA|=2|MO|,
求圆心C的横坐标a的取值范围.
解 (1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),
于是切线的斜率必存在.

设过A(0,3)的圆C的切线方程为y=kx+3,由题意,得|3k+1|k2+1=1,解得k=

0或-34,故所求切线方程为y=3或3x+4y-12=0.
(2)因为圆心在直线y=2x-4上,
所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.
设点M(x,y),因为|MA|=2|MO|,所以x2+y-32=2 x2+y2,化简得x
2
+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为
半径的圆上.
由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤|CD|≤2
+1,
即1≤a2+2a-32≤3.整理得-8≤5a2-12a≤0.
由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤125.
所以点C的横坐标a的取值范围是0,125.
[考题分析]
高考对本内容的考查主要有:直线和圆的方程;两直线的平行与垂直关系;
点到直线的距离;直线与圆的位置关系;直线被圆截得的弦长.多为B级或C
级要求.

相关文档
最新文档