飞思卡尔智能车硬软件设计

合集下载

飞思卡尔智能车 电磁组 技术报告

飞思卡尔智能车 电磁组 技术报告
#defineZSPEED130//100
//#define K10
//#define Kp 1;//PID的//#define Kd 1;
#include <hidef.h>
#include <stdio.h>
#include <math.h>
#include <MC9S12XS128.h>
3.1.3
考虑到适当增加力臂来提高舵机的灵敏度和为了赛车布局的的紧凑,采取了如图3.2所示的安装方法。
图3.2舵机安装结构
3.1.4
采用接插件与焊接结合的方式连接传感器、主控板、编码器、电机驱动电路、电机、赛道起始检测等单元,既考虑可靠性,又兼顾结构调整与安装的便利性。具体安装结构如图3.3所示,
图3.3主控板安装结构
[6]卓晴.基于磁场检测的寻线小车传感器布局研究[J].清华大学.2009
[7]杨延玲.载流直导线的电磁场特性分析[J].山东师范大学.2007
[8]王毅敏.马丽英等.一种改进的数字PID控制算法及其在励磁系统中的应用电网技术[J].1998
[9]高金源,夏洁.计算机控制系统[M].清华大学出版社.2007
本校积极组队参加第六届“飞思卡尔”杯全国大学生智能汽车竞赛。从2010年底着手准备,历时半年多,经过不断试验设计,最终设计出较为完整的智能赛车。在赛区比赛中获得了较好的综合性能和成绩。
在本次比赛中,采用大赛组委会统一提供的竞赛车模,采用飞思卡尔16位微控制器MC9S12XS128作为核心控制单元,构思控制方案及系统设计,进行包括机械结构的调整与优化,硬件的设计与组装、软件控制算法的编写与改进等过程(小车上的具体方案模块有传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等)从而实现小车智能化的识别道路,最终实现智能化竞速。

基于Freescale Kinetis的电磁导航智能车的设计与实现

基于Freescale Kinetis的电磁导航智能车的设计与实现
关键 词 : 智能车 , 电磁导航 , 飞思卡尔 K 6 0单片机 , P 1 D 中图分类号: T P 2 7 3 文献标 识码 : A
De s i g n a n d I mp l e me n t a t i o n o f El e c t r o ma g n e t i c Na v i g a t i o n o f I n t e l l i g e n t Ca r Ba s e d o n Fr e e s c a l e Ki n e t i s
到 目前 已经成功举办 8 届, 成为各高校展示科研 成果和大学实践创新能力 的重要平台。通过 比赛不

1 总体 设 计
1 . 1设计 原理

仅能提高参赛学生的单片机 、 传感器 、 机械和软件开 发的综合应用能力 , 同时也对相关学科 的建设提供了

根据麦克斯韦电磁场理论 , 交变电流会在周围产 生交变的电磁场。智能汽车竞赛使用路径导航 的交

4 8 ・ (  ̄ , 0 0 4 8 )
基于 F r e e s c a e K i n e t i s 的电磁导航智能车的设计与实现
2 0 1 4年第 l 期
文章编号 : 1 0 0 3 — 5 8 5 0 ( 2 0 1 4) 0 1 — 0 0 4 8 — 0 3
全 国大学生智能车比赛 以智能车技术为背景 , 涵
P I T中断 、 输入捕捉中断 、 A D采集 、 偏差计算 、 P I D控 制等程序 , 实现小车 自动寻迹并匀速前进 。
盖 了自动控制 、 模式识别 、 传感技术 、 电子、 计算机 、 机 械等多个学科 , 是教育部重点支持的五大科技竞赛之
流 电流 频 率 为 2 0 k H z ,产 生 的 电 磁 波 属 于 甚 低 频

疾速蜗牛技术文档

疾速蜗牛技术文档

第八届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告学校:滁州学院队伍名称:疾速蜗牛队参赛队员:方纪锋祖杰姚旺带队教师:温卫敏姚光顺技术报告和研究论文使用授权的说明本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:带队教师签名:日期:摘要本文介绍了滁州学院疾速蜗牛队在准备第八届飞思卡尔智能车大赛的工作成果。

该系统以Freescale微控制芯片MC9S12XS128为核心,并以CodeWarriorIDE 为系统的开发平台,车模采用大赛组委会统一提供的A型仿真车模。

本文主要介绍了智能车控制系统的机械结构、软硬件模块的设计过程。

整个系统主要包括车模机械结构调整、传感器电路设计及信号处理、控制算法和策略的优化等多个方面。

车模以安装在车体前的工字电感作为循迹传感器,采用干簧管检测起跑线,以旋转光电编码器来检测速度信息,其简单工作原理为MC9S12XS128单片机采集工字电感感应电压的模拟量和干簧管的导通状态,结合舵机控制算法控制舵机转角,单片机再综合赛道信息并结合旋转光电编码器的速度反馈信号,利用电机控制算法控制速度变化,结合无线串口的监控调试,最终确定了各项控制参数。

关键字:智能车,电磁循迹,PID算法目录第一章引言 ............................................................................................................................... - 1 -1.1 概述 .............................................................................................................................. - 1 -1.2 整体框架介绍 .............................................................................................................. - 2 - 第二章机械设计与优化 ........................................................................................................... - 4 -2.1 车轮定位调节 .............................................................................................................. - 4 -2.1.1 主销后倾角 ....................................................................................................... - 4 -2.1.2 主销内倾角 ....................................................................................................... - 4 -2.1.3 前轮外倾角 ....................................................................................................... - 5 -2.1.4 前轮前束 ........................................................................................................... - 5 -2.2 舵机安装 ...................................................................................................................... - 6 -2.3 底盘固定 ...................................................................................................................... - 7 -2.4 编码器的安装 .............................................................................................................. - 7 -2.5 差速调节 ...................................................................................................................... - 8 -2.6 PCB板固定................................................................................................................... - 8 -2.7重心调整 ....................................................................................................................... - 9 - 第三章硬件电路设计 ............................................................................................................. - 11 -3.1 硬件电路的整体框架设计 ........................................................................................ - 11 -3.2 传感器设计 ................................................................................................................ - 12 -3.2.1 传感器选定 ..................................................................................................... - 12 -3.2.2 传感器信号处理电路...................................................................................... - 12 -3.2.3 传感器的布局设计 ......................................................................................... - 13 -3.3 驱动电路设计 ............................................................................................................ - 15 -3.4 系统电源电路设计 .................................................................................................... - 15 - 第四章智能车控制软件设计 ................................................................................................. - 16 -4.1 软件控制思路 ............................................................................................................ - 16 -4.2 主程序总体框架 ........................................................................................................ - 16 -4.3 定位算法 .................................................................................................................... - 16 -4.4 基于位置式PID的方向控制 .................................................................................... - 18 -4.5 基于增量式PID的速度控制 .................................................................................... - 19 - 第五章开发工具、调试说明 ................................................................................................. - 21 -5.1 Codewarrior IDE的使用............................................................................................. - 21 -5.2程序源代码的编辑、编译、链接与BDM调试....................................................... - 22 - 第六章智能车技术参数说明 ................................................................................................. - 24 - 第七章总结 ............................................................................................................................. - 25 - 参考文献 ................................................................................................................................... - 26 - 附录程序源代码 ..................................................................................................................... - 27 -第一章引言1.1 概述为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,受教育部高等教育司委托(教高司函[2005]201号文,附件1),由教育部高等自动化专业教学指导分委员会(以下简称自动化分教指委)主办全国大学生智能汽车竞赛。

基于HCS12X单片机的多传感器智能车控制系统设计

基于HCS12X单片机的多传感器智能车控制系统设计

基于HCS12X单片机的多传感器智能车控制系统设计【摘要】本文基于飞思卡尔HCS12X控制单元,利用多传感器的信息融合技术设计了一款可以自主循迹行驶的智能车。

系统主要融合了GPS,视觉传感器,激光雷达传感器对智能车进行定位及轨迹控制。

该控制系统在安全性,可靠性,易操作性等方面都进行了综合的优化。

实验表明:该智能车可以按照设计路径自主行驶。

【关键词】智能车;HCS12X单片机;视觉传感器Multi-sensor Combination Intelligent Vehicle Control System's Design Based on HCS12XHANYi-lun WANGBin-long WENXue-lei(College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao Shandong, 266510)【Abstract】In this paper, the intelligent vehicle control system’s design based on HCS12X MCU. The Multi-sensor combination technology be used in this control system. This system can control vehicle’s position and Navigate the vehicle with GPS, vision sensor and laser radar sensor. This control system have an optimal decision in safety, reliability and handleability. The experiment showed that the smart vehicle can driving in the designed road by itself.【Key words】Intelligent vehicle; HCS12X MCU; Vision sensor0 引言随着近年来科学技术的高速发展,电子化、信息化、智能化成为了未来车辆的发展趋势。

集合几篇智能车文献综述有51单片机的飞思卡尔的

集合几篇智能车文献综述有51单片机的飞思卡尔的

CQWU/JL/JWB/ZY012-13重庆文理学院本科生文献综述情况表成绩:西安建筑科技大学毕业设计 (论文)文献综述院(系):专业班级:自动化0701毕业设计:论文方向综述题目:智能小车设计学生姓名:学号:指导教师:2011 年 3 月日信息与控制工程学院毕业设计(论文)文献综述智能小车设计摘要:智能车技术以汽车电子为背景,涵盖了控制、模式识别、传感、电子、电气、计算机和机械等多个学科,这对进一步提高学生的综合素质,培养创新意识,培养学生从事科学、技术研究能力有着重要意义。

智能小车系统以飞思卡尔16位单片机作为系统处理器,采用基于光电传感器的信号采样模块获取赛道黑线信息,通过算法控制策略和PWM控制技术对智能小车的转向和速度进行控制。

使小车能够自主识别黑色引导线并根据黑色引导线实现快速稳定的寻线行驶。

系统介绍了硬件和软件两个方面。

在硬件方面,设计了具有电源管理、路径识别、车速检测、舵机控制和直流驱动电机控制的相关电路;在软件方面,根据PID控制或模糊控制并使用CodeWarrior软件编程和BDM调试实现小车行驶控制。

关键词:智能车;单片机;光电传感器;路径识别;1. 前言飞思卡尔智能车具体包括一种基于光电传感器的智能寻迹小车的设计和实现。

智能小车硬件系统由XS12微控制器、电源管理模块、路径识别电路、车速检测模块、舵机控制单元和直流驱动电机控制单元组成。

本系统以飞思卡尔16位微处理器MC9S12XS128为控制核心,并采用CodeWarrior软件编程和BDM作为调试工具。

运用红外发射接收原理进行道路信息采集,经单片机AD转换后通过相关算法及控制策略和PWM控制技术对智能小车的转向和速度进行控制,使小车能够自主识别黑色引导线并根据黑色引导线实现快速稳定的寻线行驶。

2.小车机械结构调整与优化车身机构调整包括:底盘调整、前轮的调整、后轮距及后轮差速的调整、齿轮传动机构调整。

信息与控制工程学院毕业设计(论文)文献综述3.硬件设计方案3.1电源模块设计由于电路中的不同电路模块所需要的工作电压和电流容量不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。

浙江赛区-摄像头组-杭州电子科技大学信息工程学院-杭电信工摄像头一队

浙江赛区-摄像头组-杭州电子科技大学信息工程学院-杭电信工摄像头一队

第九届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告学校:杭州电子科技大学信息工程学院队伍名称:杭电信工摄像头1队参赛队员:赵勇林玉彪杨平贝带队老师:李金新余皓珉关于技术报告和研究论文使用授权的说明本人完全了解第九届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:赵勇、林玉彪、杨平贝带队教师签名:李金新、余皓珉日期:2014/08/10摘要本文介绍了杭州电子科技大学信息工程学院的队员们在准备此次比赛中的成果。

本次比赛采用大赛组委会提供的1:16仿真车模,硬件平台采用带MK60DN512ZVLQ10单片机的K60环境,软件平台为Keil开发环境。

文中介绍了本次我们的智能车控制系统软硬件结构和开发流程,整个智能车涉及车模机械调整,传感器选择,信号处理电路设计,控制算法优化等许多方面。

整辆车的工作原理是先将小车的控制周期中提取出相应的时间片,相应的时间片用来控制车体的平衡,留下的时间片用来控制速度和转向,由CCD摄像头采集赛道信息至主板的硬件二值化模块进行信号处理,并递送二值化视频信息到单片机,再由单片机对二值化视频信号进行计算分析,运用我们自己的软件程序对赛道信息进行提取并选择最佳路径,通过对电机的精确控制从而实现小车在赛道上精彩漂亮的飞驰!为了进一步提高小车在运行时的稳定性和速度,我们组在软件方面使用了多套方案进行比较。

更新了SD卡技术实时存储赛道信息。

硬件上为了稳定的考虑,采用了以前比较稳定的方案,但是在电源部分做了调整,使得整车的电源裕度更大,硬件鲁棒性更强。

为更好的分析调车数据,我们继承并且改进上届的上位机,用C#软件编写了新的上位机程序来进行车模调试,很大程度上提高了调车效率。

智能循迹小车设计

智能循迹小车设计李伟龙【摘要】采用飞思卡尔16位微控制器MC9S12DG128B作为核心控制单元.详细地介绍了智能循迹小车控制系统的硬件设计和软件设计与实现,本循迹小车采用两排激光传感器来进行道路信息的采集和霍尔传感器采集速度信息,通过相应运算后,软件判断其有效性,结合控制算法控制随动舵机给出合理舵值,控制前轮舵机转向,单片机再给出合适的PWM波占空比以控制电机转速,并用H桥驱动电机的正反转运行.该智能小车能够较好地完成循迹任务,并且能够从较快的速度完成规定的路径,始终保持稳定运行.【期刊名称】《甘肃科技》【年(卷),期】2013(029)015【总页数】3页(P14-16)【关键词】智能小车;激光传感器;霍尔传感器;电机驱动;PWM【作者】李伟龙【作者单位】西北民族大学电气工程学院,甘肃兰州730030【正文语种】中文【中图分类】TP242.6本课题来源于“飞思卡尔”杯第七届全国大学生智能车竞赛,采用飞思卡尔16位微控制器MC9S12DG128B作为核心控制单元,自主构思控制方案及系统设计,包括传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等,完成智能车的工程制作及调试。

最终完成后的智能车能够自主识别黑色导引线,巡线高速平稳行驶。

系统主要由道路识别模块、速度传感器模块、主控模块、舵机驱动模块、电机驱动模块。

框图如图1所示。

整个设计基于16位微控制器MC9S12XS128完成对采集数据的处理和各驱动的控制命令[1],道路信息的采集为了使能够更多的采集到道路两边的赛道信息,又要避免相邻激光管互相干扰,于是采用两排各八对激光管且相邻激光管分时发光的方法来采集道路信息。

为了能快速完成赛道又使小车能够始终不偏离赛道,适应不同的赛道变化,除了调整好舵机转角,还应对速度采取闭环控制,选择霍尔传感器能够较好的完成测量任务并采用PID控制算法使小车能够在较短的时间内,快速达到设定值要求[2]。

电机模块利用4个场效应管作H桥驱动[3]。

2024年飞思卡尔智能车总结(二篇)

2024年飞思卡尔智能车总结关于飞思____智能车轨迹追踪竞赛飞思____智能车竞赛,由飞思____公司赞助,是一项全国本科院校共同参与的科技竞赛活动。

今年,安徽省有幸成为第____届省级赛区,我们专科院校也有幸参与其中。

基于专业的匹配,我们系在本专业中选拔了一些同学,我非常荣幸能与我的团队并肩合作。

由于我们学校初次参加,缺乏经验,指导老师正与我们一起逐步探索解决方案。

我们选择使用B型车进行光电寻迹任务。

根据任务需求,老师将其划分为几个关键模块(寻迹模块、电源模块、驱动模块、测速模块),我负责的是寻迹模块的构建。

起初,对于黑白寻迹,我仅感到“神秘”。

通过查阅资料和老师的指导,我理解了其寻迹原理。

这主要基于黑白颜色对光的反射差异(白色完全反射,黑色完全吸收)来识别黑白线。

由于我们之前未接触过传感器知识,对此领域略感模糊,因此我专门投入时间学习传感器,理解了其在电路中的功能。

接下来,我们面临材料选择的挑战,市场上的光电管种类繁多,各校使用的也不尽相同。

我们需要找到一款适合我们车辆的光电管。

我最初在网上找到一些电路图,并购买了一些光电管进行焊接,但结果并未达到预期。

我一度认为问题出在光电管上,但即使更换为光电发射与接收一体管,问题仍未解决。

在一段时间的停滞和反复试验后,我尝试调整了与接收管串联的电阻值(从10k改为100k),意外地提高了接收距离,达到十几厘米。

这仍不理想,因为为了防止光电管之间的相互影响,每个光电管都需要加上套管,而我们购买的光电管无法满足这一要求。

经过深入研究,查阅资料,以及反复实验,我们最终选择了____公司的光电管(型号)。

我想强调的是,他人的经验可以作为参考,但不一定适用于我们自身,就像我之前选择的光电管电路图,可能在某些情况下适用,但在我们的特定需求下并不理想。

在探索阶段,逐步实验始终是至关重要的。

确定光电管后,我们进入了电路焊接阶段。

我们借鉴了其他学校的经验,初步决定使用____来配置光电管。

1.1 飞思卡尔智能车竞赛概述

15



第二届智能车总决赛场地
16
竞赛历史——第三届,赛区+总决赛

第三届智能车大赛在东北大学举行,有551支代表 队伍参加了分区赛,104支队伍参加了总决赛。

第三届比赛保留了前两届的要求,同时又增加了跑 完全部路程起跑线在3米内停车的限制,对起跑线 的识别又提出了严格的要求。

与前两届摄像头与光电同条件参加比赛不同,本次 竞赛分为光电与摄像头两个赛题组。


19
第四届智能车总决赛场地
20
竞赛的发展——第五届,更具难度

增加电磁组,扩大创意组规模; 赛道变窄,提高小车控制难度; 措施更严密,一等奖以上需上交车模, 由组委会保管2年。
21
我校智能车比赛成绩

第一届,2支代表队,获第10名和第19名 第二届,2支代表队,获第10名和第21名。 第三届,4支队伍参加分赛区,2支参加总 决赛,获摄像头组第1名和光电组第3名; 第四届,4支队伍参加分赛区,2支代表队 参加总决赛,获摄像头组第8名和光电组第 16名。
图1.1 美国的智能汽车
6
韩国大学生智能汽车竞赛

韩国汉阳大学汽车控制实验室在飞思卡尔半导 体公司资助下举办,以HCS12单片机为核心的 大学生智能模型汽车竞赛。 组委会提供一个标准的汽车模型、直流电机和 可充电式电池,参赛队伍要制作一个能够自主 识别路线的智能车,在专门设计的跑道上自动 识别道路行驶,谁最快跑完全程而没有冲出跑 道并且技术报告评分较高,谁就是获胜者。
17
第三届智能车总决赛场地
18
竞赛历史——第四届,赛区+总决赛

第四届智能车总决赛在北京科技大学举行,有780 支代表队伍参加了分区赛,120支队伍参加了总决 赛。 第四届比赛保留了前三届的要求,同时又增加了 窄道、更复杂的背景、三角形标识识别等更具有 难度的内容。 增加了创意组,共有10个队经过初选进入复赛。

freescale智能车技术报告

第三届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告附件A程序源代码附件B模糊算法在智能车控制中的应用学校:中国民航大学队伍名称:航大一队参赛队员:贾翔宇李科伟杨明带队教师:丁芳孙毅刚关于技术报告和研究论文使用授权的说明本人完全了解第三届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:带队教师签名:日期:目录第一章引言 (1)第二章智能车设计制作思路以及实现方案概要 (2)第三章硬件电路设计 (4)3.1 黑线检测电路 (4)3.2系统电路 (4)3.2.1 单片机最小系统 (5)3.2.2 接口电路 (5)3.2.3 调试电路 (5)3.2.4 电源电路 (5)3.3电机驱动电路 (6)3.4 测速电路 (6)第四章机械改造及电路板设计安装 (7)4.1 机械部分安装及改造 (7)4.1.1 舵机的改造 (7)4.1.2 前轮定位 (7)4.2 传感器的设计及安装 (7)4.2.1 黑线检测传感器 (7)4.2.2 测速传感器 (8)4.3 电机驱动电路板的设计及安装 (8)4.4 系统电路板的固定及连接 (9)4.5 整体结构总装 (9)第五章微处理器控制软件主要理论、算法说明及代码介绍 (10)5.1模糊控制原理 (10)5.2 控制算法说明 (10)5.3 程序代码介绍 (11)5.4 数字滤波器设计 (13)5.4.1传感器基准值初始化滤波器设计 (13)5.4.2行驶过程中采样信号滤波器设计 (13)第六章安装调试过程 (15)第七章EEPROM辅助调试 (16)7.1 EEPROM概述 (16)7.2 EEPROM擦除和编程步骤 (16)7.3 EEPROM编程命令字及其含义 (17)7.4 EEPROM使用中可能遇到的问题进行说明 (17)7.4.1如何修改ROM/RAM/EEPROM的地址 (17)7.4.2 如何将EEPROM中的数据读出 (18)第八章模型车主要技术参数说明 (19)第九章总结 (20)1第一章引言全国大学生飞思卡尔杯智能汽车竞赛已经成功举办过两届了,智能汽车的速度越来越快,技术也越来越高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档