时序逻辑电路的定义
时序逻辑电路

8.1
8.1.1 触发器综述
触发器
在数字系统中,不但要对数字信号进行算术运算和逻辑运算, 而且经常需要对二值信息进行保存,需要有逻辑记忆功能的逻辑电 路。我们把能够存储1位二值信息的基本单元电路称为触发器。 触发器有两个特点:一是具有两个稳定状态,分别用逻辑0和逻辑1 表示;二是在输入信号作用下,可从一种状态翻转到另一种状态, 在输入信号取消后,能保持状态不变。
8.3 计数器
8.3 计数器
例8.3.2 试分析图8.3.12所示逻辑图,说明它是个具有什么功能 的电路。
8.3 计数器
【解】 (1)写出各触发器驱动方程和时钟方程。
各触发器的翻转时刻,F1和F3是每来一个CP触发器状 态翻转一次,而F2一定是在Q1输出由1变为0,即有下降沿 时,Q2状态发生翻转。
2)假设逻辑电路初始状态Q3Q2Q1=000,列出状态转 换表如表8.3.10所示。
8.3 计数器
8.4
定时器
8.4.1 555定时器的结构与工作原理
8.4
定时器
1 阻值相等的三个电阻构成分压器
555定时器由三个5 kΩ电阻R串联构成分压器,对 电源UCC实现分压(因为比较器的输入电阻近似为无穷 大,所以比较器的两个输入端都不取用电流)。
8.3 计数器
8.3 计数器
2
同步二进制加法计数器
同步二进制加法计数器的逻辑电路如图8.3.2所示。图中JK触
发器的J端和K端有多个输入,它们之间分别具有与门的逻辑功能
,所以无须再外加逻辑与门。
8.3 计数器
8.3.3 十进制计数器
1
异步十进制加法计数器
8.3 计数器
8.3 计数器
2
同步十进制加法计数器
时序逻辑电路分类

时序逻辑电路分类介绍时序逻辑电路是一种用于处理时序信号的电路,它由逻辑门和存储元件组成。
时序逻辑电路按照其功能和结构的不同,可以分为多种类型。
本文将对时序逻辑电路的分类进行全面、详细、完整和深入的探讨。
一、根据功能分类1. 同步时序逻辑电路同步时序逻辑电路是指其数据在同一个时钟上升沿或下降沿进行传递和存储的电路。
这类电路广泛应用于计算机中的寄存器、时钟驱动器和状态机等。
同步时序逻辑电路具有可靠性高、稳定性强的特点。
2. 异步时序逻辑电路异步时序逻辑电路是指其数据不依赖时钟信号而进行传递和存储的电路。
这种电路在通信系统中常用于数据传输和处理,如异步串行通信接口(UART)。
异步时序逻辑电路具有处理速度快和实时性强的特点。
二、根据结构分类1. 寄存器寄存器是一种时序逻辑电路,用于存储和传递数据。
寄存器通常采用D触发器作为存储元件,可以实现数据的暂存和移位操作。
寄存器广泛应用于计算机的数据存储和寄存器阵列逻辑器件(RALU)等。
2. 计数器计数器是一种时序逻辑电路,用于生成特定的计数序列。
计数器可以按照时钟信号对计数进行增加或减少,并可以在达到指定计数值时触发其他操作。
计数器被广泛应用于时钟发生器、频率分频器和时序控制等电路中。
3. 时序控制器时序控制器是一种时序逻辑电路,用于控制其他电路的时序和操作。
时序控制器根据输入的控制信号和当前的状态,通过逻辑运算和状态转移进行运算和控制。
时序控制器被广泛应用于计算机的指令译码和状态机的设计中。
三、根据存储方式分类1. 同步存储器同步存储器是一种时序逻辑电路,用于存储和读取数据。
同步存储器是在时钟信号作用下进行数据存取的,并且数据的读取和写入操作都在时钟的上升沿或下降沿进行。
同步存储器主要包括静态随机存储器(SRAM)和动态随机存储器(DRAM)等。
2. 异步存储器异步存储器是一种时序逻辑电路,用于存储和读取数据。
与同步存储器不同的是,异步存储器的读取和写入操作不依赖时钟信号,而是由数据访问信号和存储器内部的同步电路进行控制。
第四章 数字逻辑基础(1)

锁存器和触发器工作波形示意图:
Set Reset R Q Set Reset Clock S C R Q Q S Q
Байду номын сангаас
Q
Q
4.3 锁存器 4.3.1 RS锁存器 (1) 电路结构及逻辑符号
SD
≥1
Q
≥1
S R
Q
或
S R
Q
RD
Q
Q
Q
SD :置位端(置1端); RD :复位端(置0端); 定义: Q=0,Q=1 为0状态; Q=1,Q=0 为1状态.
RD 0 0 0 1 0 1 0
1 0 0 0 × 1 1 0 1 1 0 × 0 0
4.3.2 门控RS锁存器 在RS锁存器的基础上, 加控制信号,使锁存器状态转换的时 间,受控制信号的控制.
R C
&
≥1 &
RD ≥1
Q
1S C1 Q
Q
1R
Q
S
SD
RD=R· C
SD=S· C
当C=1时:门控RS锁存器功能和RS锁存器完全相同; 当C=0时:RD=SD=0,锁存器状态保持不变.
(3) RS锁存器的功能描述 ① 特性表
② 特性方程
Qn+1=SD+RDQn SDRD=0
③ 状态图
SD=0 RD=×
0
SD=1 RD=0
1
SD=0 RD=1
SD=× RD=0
RS锁存器工作波形图(初态假设为0)
SD 0 Q Q
1 0 1 0 0 0 1 0 0 1 SD RD 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 Qn Qn+1 0 0 1 1 0 0 1 0 0 1 1 1 0 × 1 ×
数字电子技术基础-第六章_时序逻辑电路(完整版)

T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)
CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0
CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3
数字电子技术第6章 时序逻辑电路

RD—异步置0端(低电平有效) 1 DIR—右移串行输入 1 DIL—左移串行输入 S0、S1—控制端 1 D0D1 D2 D3—并行输入
《数字电子技术》多媒体课件
山东轻工业学院
4、扩展:两片74LS194A扩展一片8位双向移位寄存器
《数字电子技术》多媒体课件
山东轻工业学院
例6.3.1的电路 (P276) 74LS194功能 S1S0=00,保持 S1S0=01,右移 S1S0=10,左移 S1S0=11,并入
(5)状态转换图
《数字电子技术》多媒体课件
山东轻工业学院
小结
1、时序逻辑电路的特点、组成、分类及描述方法; 2、同步时序逻辑电路的分析方法; 课堂讨论: 6.1,6.4
《数字电子技术》多媒体课件
山东轻工业学院
6.3 若干常用的时序逻辑电路
寄存器和移位寄存器 时序 逻辑电路 计数器 顺序脉冲发生器 序列信号发生器
移位寄存器不仅具有存储功能,且还有移位功能。 可实现串、并行数据转换,数值运算以及数据处理。 所谓“移位”,就是将寄存器所存各位数据,在每个移 位脉冲的作用下,向左或向右移动一位。
2、类型: 根据移位方向,分成三种:
左移 寄存器 (a) 右移 寄存器 (b) 双向 移位 寄存器 (c)
《数字电子技术》多媒体课件
学习要求 :
* *
自学掌握
1. 掌握寄存器和移位寄存器的概念并会使用; 2. 掌握计数器概念,熟练掌握中规模集成计数器74161 和74160的功能,熟练掌握用160及161设计任意进制计 数器的方法。
《数字电子技术》多媒体课件
山东轻工业学院
6.3.1寄存器和移位寄存器
一、寄存器
寄存器是计算机的主要部件之一, 它用来暂时存放数据或指令。
时序逻辑电路的分析和设计

莫尔型同步时序 电路。 2. 写出各触发器 的驱动方程。
n J 0 K 0 Q2
1J >C >C1
1 1K
1J
Q1 &
≥1 1J
FF2
Q2
1J >C >C1
1 1K
1J >C1 >C
1 1K Q2
输 入 信 号
1K
1K
Y0 A1 74139Y1 A0 Y2 Y3
n n n n n Q0 1 Q2 Q0 Q2 Q0
n n Q1n1 Q0 Q1n Q0 Q1n
n n n n n n Q2 1 (Q1nQ0 Q2 )Q n Q1nQ0 Q2 Q2 2
n n n n n Q2 1 Q1nQ0 Q n Q1nQ0 Q2 Q2 2
Q
n
=1
1
Y=Q2Q1
n 1 1J 1J
n Q2 1
n 1 Q 1K Q2 1 X1K Q1n Q Q2 1X Q1 Q n 2 3.求出电路状态方程。 & n
1 2
>C >C1
>C >C1
输 出 信 号 n
Qn1 JQ n KQn >C
1J
Q2
n 1
n n X Q1 Q2
Q Q
1
1 0
n +1 1
3
第六章
1、组合电路:
概
述
时序逻辑电路是数字逻辑电路的重要组成部分。 逻辑电路可分为 两大类:
由若干逻辑门组成,电路不具记忆能力。 电路的输出仅仅与当时的输入有关。
2、时序电路:
延迟元件或触发器
存储电路,因而具有记忆能力。 电路的输出不仅与当时的输入有关,而且 还与电路原来的状态有关。
《时序逻辑电路分析》课件

采用低功耗、高速的触发器设计,减少资源占用。
提高工作速度的优化方法
并行处理
通过并行处理技术,提高电路的工作 速度。
时钟分频与倍频
根据电路的工作频率需求,合理选择 时钟的分频与倍频方案,以优化工作 速度。
THANKS
感谢观看
REPORTING
PART 03
时序逻辑电路的设计
REPORTING
同步设计法
01
同步设计法定义
同步设计法是一种基于时钟信号 的设计方法,用于构建时序逻辑
电路。
03
优点
同步设计法具有较高的可靠性和 稳定性,能够实现复杂的逻辑功
能。
02
工作原理
在同步设计法中,所有操作都严 格在时钟信号的驱动下进行,保 证了电路的稳定性和可靠性。
《时序逻辑电路分析 》PPT课件
REPORTING
• 时序逻辑电路概述 • 时序逻辑电路的分析方法 • 时序逻辑电路的设计 • 时序逻辑电路的应用 • 时序逻辑电路的优化设计
目录
PART 01
时序逻辑电
时序逻辑电路的定义、特点
时序逻辑电路的特点包括
具有记忆功能、具有时钟信号控制、具有输入信号和输出信号等。
时序逻辑电路的基本组成
时序逻辑电路由触发器、组合逻 辑电路和时钟信号源三部分组成 。
组合逻辑电路用于实现输入信号 到输出信号的逻辑变换,主要由 门电路组成。
总结词:时序逻辑电路的基本组 成
触发器是时序逻辑电路中的核心 元件,用于存储状态信息,常见 的触发器有RS触发器、D触发器 、JK触发器和T触发器等。
04
异步时序逻辑电路是指触发器的时钟输入端接在不同的时钟源上,时 钟信号独立作用于各个触发器,实现状态异步转换。
第六章 时序电路

二、时序逻辑电路的分类:
按 动 作 特 点 可 分 为
同步时序逻辑电路
所有触发器状态的变化都是在 同一时钟信号操作下同时发生。
异步时序逻辑电路
触发器状态的变化不是同时发生。
按 输 出 特 点 可 分 为
米利型时序逻辑电路(Mealy)
输出不仅取决于存储电路的状态,而且还 决定于电路当前的输入。
Q2 Q1 Q0
/Y
/0 /0 000→001→011 /1↑ ↓/0
CP Q0 010 Q1 Q2 Y
/0 101 /1 (b) 无效循环
100←110←111 /0 /0 (a) 有效循环
有效循环的6个状态分别是0~5这6个十进制数
字的格雷码,并且在时钟脉冲CP的作用下,这6个
状态是按递增规律变化的,即: 000→001→011→111→110→100→000→… 所以这是一个用格雷码表示的六进制同步加法 计数器。当对第6个脉冲计数时,计数器又重新从 000开始计数,并产生输出Y
Q=0时
LED亮
RD Q0 Q1 D1 Q2 D2 D3 Q3 S1
DIR D0 D1D2D3S0 DIL CLK +5V
74LS194
DIR D0
S0 DIL CLK +5V
清0按键 1秒
S1=0,S0=1
CLK 右移控制
本节小结:
寄存器是用来存放二进制数据或代
码的电路,是一种基本时序电路。任何
画状态转换图
Q3Q2Q1 /Y
000
/1 /1 111
/0
001
/0
010
/0
011 /0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时序逻辑电路的定义
时序逻辑电路是数字电路中一种重要的电路类型,它根据时钟信号的变化来实现特定的逻辑功能。
与组合逻辑电路不同,时序逻辑电路的输出不仅依赖于当前的输入信号,还依赖于过去的输入信号和时钟信号的状态。
时序逻辑电路由触发器和组合逻辑电路组成。
触发器是时序逻辑电路的基本单元,它能存储和改变输入信号的状态。
时钟信号的变化会触发触发器的工作,使其输出状态发生变化。
组合逻辑电路则根据触发器的输出状态和当前输入信号,通过逻辑门实现特定的逻辑功能。
在时序逻辑电路中,时钟信号起到了至关重要的作用。
时钟信号通常是一个周期性的方波信号,用来同步电路中各个触发器的工作。
时钟信号的上升沿和下降沿触发触发器的状态改变,使其能够在特定的时间点对输入信号进行处理。
通过合理设计时钟信号的频率和时序逻辑电路的结构,可以实现各种复杂的逻辑功能。
时序逻辑电路常用于各种计算机系统和数字系统中,如处理器、内存、时钟、寄存器等。
在这些系统中,时序逻辑电路被用来实现各种功能,如存储数据、控制信号的传输、状态机的设计等。
时序逻辑电路的设计需要考虑电路的稳定性、时序问题和时钟速度等因素,以确保电路的正确运行。
时序逻辑电路的设计过程一般包括以下几个步骤:首先,根据需求分析确定电路的功能和性能要求;然后,根据功能要求设计逻辑电路的结构和时序逻辑电路的组成;接下来,进行逻辑电路的电路图设计和仿真验证;最后,进行电路的实现和测试,确保电路的正确性和稳定性。
时序逻辑电路的设计和实现需要考虑多个因素。
首先,需要合理选择触发器和逻辑门的类型和数量,以满足电路的功能需求。
其次,需要考虑时钟信号的频率和占空比,以确保电路的稳定性和可靠性。
此外,还需要考虑电路的功耗、面积和成本等因素,以实现性能和经济的平衡。
时序逻辑电路是数字电路中一种重要的电路类型,它通过触发器和组合逻辑电路实现特定的逻辑功能。
时序逻辑电路常用于计算机系统和数字系统中,其设计和实现需要考虑多个因素,以满足电路的功能需求和性能要求。
通过合理设计和优化,可以实现高性能、低功耗和可靠的时序逻辑电路。