JPEG图像压缩编码及其MATLAB仿真实现
实验三-基于DCT的数字图像压缩及Matlab实现

实验三-基于DCT的数字图像压缩及Matlab实现实验三基于DCT的数字图像压缩及Matlab实现一、实验原理图像压缩基本原理及模型(一)图像压缩基本原理图像数据压缩的目的是在满足一定图像质量的条件下,用尽可能少的比特数来表示原始图像,以提高图像传输的效率和减少图像存储的容量,在信息论中称为信源编码。
图像压缩是通过删除图像数据中冗余的或者不必要的部分来减小图像数据量的技术,压缩过程就是编码过程,解压缩过程就是解码过程。
压缩技术分为无损压缩和有损压缩两大类,前者在解码时可以精确地恢复原图像,没有任何损失;后者在解码时只能近似原图像,不能无失真地恢复原图像。
假设有一个无记忆的信源,它产生的消息为{ai},1≤i≤N,其出现的概率是已知的,记为P(ai)。
则其信息量定义为:由此可见一个消息出现的可能性越小,其信息量就越多,其出现对信息的贡献量越大,反之亦然。
信源的平均信息量称为“熵”(entropy),可以表示为:对上式取以2为底的对数时,单位为比特(bits):根据香农(Shannon)无噪声编码定理,对于熵为H的信号源,对其进行无失真编码所可能达到的最低比特数为,这里为一任意小的正数,因此可能达到的最大压缩比为:其中B是原始图像的平均比特率。
在图像压缩中,压缩比是一个重要的衡量指标。
可以定义压缩比为:(二)图像压缩的基本模型图像编码包括两个阶段,前一个阶段就是利用预测模型或正交模型对图像信号进行变换;后一个阶段是利用已变换信号的统计特性,对其分配适当的代码来进行编码传输。
编码器与解码器的结构分别如图(a)、(b)。
在发送端,输入的原始图像首先经过DCT变换后,其低频分量都集中在左上角,高频分量分布在右下角(DCT变换实际上是空间域的低通滤波器)。
由于该低频分量包含了图像的主要信息,而高频分量与之相比就不那么重要了,所以可以忽略高频分量,从而达到压缩的目的。
将高频分量去掉就要用到量化,这是产生信息损失的根源。
基于DCT的JPEG图像压缩编码算法的MATLAB实现

维普资讯
第1 第 1 5卷 期
20 年 3 02 - 月
J u a fZ i gWa l U iesy o r l } a ni nv ri n o n t
浙 江万里学院学报
V
b , o】
Ma 2 0 r 02
文章 编号 :6 1 2o2o ]l 0 2 —0. 17 —25 io 2o 一 08 4 -
和解 压过程 .
12 结 合 M T  ̄ 53仿 真对上 述算法 的几点 解释 . A LB. 12 1 离散 余 弦 变挟 ( c ) D r 定义
二维 D T的解 析式定 义 可 以由下式表示 : C
F f= (yF, 等 ( ) ( )N ) ( ) c o , 0 ,,O o s
D T系数值 , 中 1 数 值是 直 流 ( C 系数 , 8×8空域 图像 子块 的平 均值 , 余 的 6 C 其 个 D) 即 其 3个 是交 流 ( c 系 A ) 数, 接下 来对 D T系数进 行量 化 , 将变 换得到 的量 比的 D T系数进 行编码 和传 送 , 成压 缩后 的图像 格 C 最后 C 形
二维 D T反变换 (D T 解析 式定 义可 以表示 为 : C IC )
几 =m, 啬 击 o ) +
+ m cs o
c o s
os o
+ os 等 m.o ) c
数字图像处理及MATLAB实现第六章 图像压缩与编码及MATLAB实现

图6.8 图像预测编码前、后显示效果比较
25
6.4 混合编码 6.4.1 子带编码(SBC) 子带编码(Subband Coding)的基本思想是: 使用一组带通滤波器(Band-Pass Filter,BPF) 把输入图像的傅立叶频谱分成若干个连续的频段, 每个频段称为子带。对每个子带中的图像信号采 用单独的编码方案去编码。也就是说:子带编码 是把图像信号通过一组带通滤波器分解成不同频 带内的分量,然后在每个独立的子带中对信号进 行降率采样和单独编码。
1
6.1 图像压缩与编码概述 6.1.1 图像压缩与编码概念 6.1.2 图像压缩编码的分类
图6.1 压缩处理示意图
2
6.1.3 图像压缩的国际标准 (1)二进制图像压缩标准 (2)静止图像压缩标准 (3)运动图像压缩标准 1)H.261 2)MPEG-1 3)MPEG-2 4)MPEG-4、MPEG-7 5)H.263
3
6.1.4 图像压缩编码术语简介 (1)图像熵与平均码字长度
(2)编码效率
(3)压缩比
4
6.2 无损压缩技术 6.2.1 无损压缩技术概述 6.2.2 霍夫曼(huffman)编码 (1)huffman编码的基本原理 在无损压缩的编码方法中,Huffman编码是一 种较有效的编码方法。Huffman编码是一种长度 不均匀的、平均码率可以接近信息源熵值的一种 编码。 (2)huffman编码过程举例
11
6.3 有损压缩技术 6.3.1 预测编码 预测编码方式,是目前应用比较广泛的编码技 术之一。常见的 DPCM、ADPCM、Δ M 等都属 于预测编码方式的编码技术。通常,图像的相邻 像素值具有较强的相关性,观察一个像素的相邻 像素就可以得到关于该像素的大量信息。这种性 质导致了预测编码技术。
基于MATLAB的JPEG压缩编码

图像信息是人类赖以获取信息的最重要的来 源之一,大约有70%的信息是通过视觉系统获得的 图像信息。
随着多媒体技术的广泛应用,过去经典的 图像压缩技术已经不能满足人们的需要,人们 迫切的期望更高性能的图像压缩技术的出现。 图像压缩技术水平的高低主要取决于图像压 缩编码的技术水平。
虽然图像信息有着许多优点,但也存在不可 回避的潜在问题,其中一个主要问题就是其数据量 过于庞大。大数据量的图像信息会给存储器的存 储容量,通信干线信道的带宽,以及计算机的处理 速度增加极大的压力。单纯靠增加存储器容量,提 高信道带宽以及计算机的处理速度等方法来解决 这个问题是不现实的,因此对视频图像信号进行压 缩显得尤为必要。数字图像压缩就是对要处理的 图像源数据用一定的规则进行变换和组合,从而达 到以尽可能少的代码来表示尽可能多的数据信息 的目的。
4
科技咨询导报 Science and Technology Consulting Herald
高 新 技 术
有相同的颜色值。在这些情况下不需要存储 每一个像素的颜色值,而只需存储一个像素值 以及具有相同颜色的像素数目。这种编码方 式称为游程编码(Run_Length Encoding, R L E ) 。其中具有同一颜色的连续像素的数目 称为游程长度。例如:aaabcccccccdddeeee 可 以用 3a1b7c3d4e 来代替。对于拥有大量连续 相同数值的数据用 RLE 非常有效。
根据 D C T 系数集中在低频区域、越是高 频区域系数值越小的特点, 根据人眼的视觉特 性, 通过设置不同的视觉阈值或量化电平, 将 许多能量较小的高频分量量化为 0 , 可以增加 变换系数中“0 ”的个数, 同时保留能量较大的 系数分量, 从而获得进一步的压缩。
3 JPEG标准简介及算法研究 3.1 关于 JPEG 标准
基于JPEG图像压缩及其仿真实现

9 9 9 9 9 9 9 9 9 9
9 9
9 9 9 9 9 9 9 9 9 9
9 9
9 9 9 g 9 9 9 9 9 9
9 9
9 9 9 9 9 9 9 9 9 9
9 9
t 7
9 9 9 9
l 8
2 1
2 4
2 6
4 7
6 6
9 g
g g
9 9
9 9
9 9
9 9
9 9
9 9
2 4
,
2 6 6 6 9 9 9 9 g 9
9 9
5 6 9 9 9 9 9 9 9 g
9 9
9 9 9 9 9 9 9 9 9 9
如下 : 峰峰对 数信噪 比:
c o m p r e s s i o n wi t h M a t l a b ,c a n g r e a t l y i mp r o v e t h e
c o mp r e s s b n e f f i c i e n c y Байду номын сангаас a n d c o r mr e s  ̄ o n a c c u r a c y.
摘 要 静 止 图像 的压缩 在现 实 中有着 非 常重要 的意
义 。数据 中存在 着 冗余 为 图像压 缩提 供 了可 能性 。 ̄ ] M a t l a b 实现静 止 图像 压 缩 ,可 以很 大 的提 高压缩 效率 以及压缩的精度 。 关键 词 J P E G;图像 压缩 ;仿真
图1 J P E C  ̄ 码器 .
压 缩 后救 据 - 馏 I 蝙羁鼯
●
逆她化罄
MATLAB中的图像压缩与编码技巧

MATLAB中的图像压缩与编码技巧引言:在当今信息爆炸的时代,数字图像成为人们生活中不可或缺的一部分。
然而,大量的图像数据不仅占用了大量的存储空间,而且传输和处理的时间也相对较长。
图像压缩与编码技巧因此变得非常重要。
本文将介绍MATLAB中常用的图像压缩与编码技巧,以期提供一些有价值的思路和方法。
一、无损压缩技术无损压缩技术是指在压缩图像的同时不丢失任何数据,使得压缩后的图像能够完全还原为原始图像。
MATLAB提供了多种无损压缩算法,例如Huffman编码、Lempel-Ziv-Welch编码和Run-length编码。
1. Huffman编码:Huffman编码使用变长编码来减少不同像素值的出现次数,从而达到压缩图像的目的。
首先,统计每个像素值的出现频率,并按照频率构建哈夫曼树。
然后,根据哈夫曼树生成每个像素值对应的编码。
在MATLAB中,可以使用"imhist"函数统计像素值的频率,再利用"Huffman"函数进行编码。
2. Lempel-Ziv-Welch编码:Lempel-Ziv-Welch(LZW)编码是一种字典编码算法,通过不断更新字典来实现压缩。
它将输入的数据划分为不同的符号,并将符号序列用字典中已有的条目替换,如果字典中不存在相应的条目,则将新的条目添加到字典中,并使用其索引作为输出。
在MATLAB中,可以使用"lzwenco"和"lzwdenco"函数对图像进行LZW 编码。
3. Run-length编码:Run-length编码是一种简单且有效的无损压缩技术,它将连续重复出现的像素值替换为该像素值和连续出现的次数的对。
在MATLAB中,可以使用"rle"函数对图像进行Run-length编码。
二、有损压缩技术有损压缩技术是指在压缩图像的同时,对图像数据进行一定程度的损失,以减小文件大小和提高传输速度。
基于DCT的图像压缩编码算法的MATLAB实现之欧阳法创编
摘要随着科学技术的发展,图像压缩技术越来越引起人们的关注。
为此从众多的图像压缩编码标准中选取了基于DCT变换的JPEG图像压缩编码算法进行研究,并通过对比分析各种软件特性选取了MATLAB进行实验仿真。
首先说明了图像压缩在现代通信中的必要性和可行性,然后讲述了MATLAB及其图像处理工具箱的相关知识,并对基于DCT变换的JPEG图像压缩算法进行了详细的研究,重点介绍了JPEG压缩编码的具体过程和方法,详细介绍了编码中DCT变换、量化、熵编码和霍夫曼编码等模块的原理和数学推导以及各模块的功能分析。
最后应用MATLAB进行了实验仿真并分析结果得出结论。
实验结果表明基于DCT变换的JPEG图像压缩方法简单、方便,既能保证有较高的压缩比,又能保证有较好的图像质量,应用MATLAB仿真出来的结2021.03.09 欧阳法创编果较好的反应了其编码算法原理。
关键词JPEG图像压缩;DCT;MATLAB;图像处理工具箱目录摘要IAbstract .................................................................................. 错误!未定义书签。
第1章绪论11.1课题背景 (1)1.1.1 离散余弦变换 (2)1.1.2 预测技术 (3)1.2图像压缩技术的发展和现状 (3)1.2.1 图像编码技术发展历史 (3)1.2.2 图像编码技术的现状 (4)1.3MATLAB及其图像处理工具箱 (4)第2章图像压缩编码理论算法62.1DCT变换的思想来源 (6)2.2基于DCT的JPEG图像压缩编码步骤 (8)2.2.1 颜色空间的转换和采样 (8)2.2.2 二维离散余弦变换 (9)2.2.3 DCT系数的量化 (12)2.2.4 量化系数的编排 (13)2.2.5 DC系数的编码 (14)2.2.6 AC系数的编码 (15)2.2.7 组成位数据流 (16)2.2.8 DCT变换在图像压缩中的应用 (19)2.3代码实现错误!未定义书签。
基于Matlab的JPEG图像压缩编码仿真实现
用 Ma a t b做 仿真 实验 , l 方法 简单 而且误 差小 , 大大提 高 了图像 压 缩的效 率和精 度 。 关键 词 : 合 图像 专 家组 ; 联 图像 压 缩算 法 ; 离散 余 弦变换 ; f a Hu m n编码 ; f 峰值 信 噪 比 中图分类 号 :P 1 T 32 文 献标识 码 : A 文章编 号 :01 45(07 1 09 — 3 10 — 5 120 )0— 07 0
( o e eo c a i l n l t c l n ier g H b C l g oaina d Tc n l y H b 4 8 3 ,C ia C l g l fMeh n a a d Ee r a E gn ei , ei ol eo V c t n eh oo , ei 5 0 0 h ) c ci n e f o g n
Ke r s on h tga hee p rsgo p( P ywo d :jitp oolp i x et ru J EG);i g o rsin ag r h 。 ma ec mpe s loi m;dsrt o iet n fr ( Ct o t i e, s r s m D —);lu - c  ̄c n a o l f
S mul to m p e n a i n o i a i n i l me t to fJPEG m a e c mpr s in b s d o a lb i g o e so a e n M ta
Z HA0 W e . ..D nj u ONG Hu— n.Z h. n imi HU Z imi
JPEG图像压缩Matlab程序
% function ReconImage=func_DCTJPEG(I,q)%% 1.This function tests the DCTJPEG codec%% ReconImage=DCTJPEG(I,q),I为待压缩图像,q为量化因子,ReconImage为解压缩重建图像。
%% 2.This function calls:%% blkproc.m,DCHuffmanEncoding.m,ACHuffmanEncoding.m,zigzag.m,PSNR.m, %% 对灰度图像进行DCT变换,量化,ZigZag扫描,Huffman编解码,反量化,反DCT 变换而重建图像。
%% 其中,blkproc.m为分块DCT变换函数;%% DCHuffmanEncoding.m,ACHuffmanEncoding.m分别为DC和AC变换系数的Huffman码表函数;%% zigzag.m为ZigZag扫描函数;PSNR.m为求图像峰值信噪比函数。
%% Copyright 2008 Reserved @ Wang Chengyou @ Tianjin University, P.R.China.%%******************************************************************* *******************%%%%Testclose all;clear all;clc;% fname=input('Please input the bmp image name:','s');%%读一幅bmp灰度图像% [I,map]=imread(fname,'bmp');I=imread('lena512.bmp');%%读bmp灰度图像q=1;%%设定量化因子OriginalImage=I;Q=q;OriginalImage=double(OriginalImage);%%图像数据类型转换ImageSub=OriginalImage-128;%%电平平移128[Row,Col]=size(OriginalImage);%%图像的大小BlockNumber=Row*Col/64;%%8*8分块数%% dct2变换:把ImageSub分成8*8像素块,分别进行dct2变换,得变换系数矩阵CoefCoef=blkproc(ImageSub,[8,8],'dct2(x)');%% 量化:用量化矩阵L量化Coef得CoefAfterQ%% JPEG建议量化矩阵L=Q*[16 11 10 16 24 40 51 6112 12 14 19 26 58 60 5514 13 16 24 40 57 69 5614 17 22 29 51 87 80 6218 22 37 56 68 109 103 7724 35 55 64 81 104 113 9249 64 78 87 103 121 120 10172 92 95 98 112 100 103 99];CoefAfterQ=blkproc(Coef,[8,8],'round(x./P1)',L);%%向靠近的整数取圆整%% 把CoefAfterQ分成8*8的块得分块矩阵CoefBlockm=0;for row=1:Row/8for col=1:Col/8m=m+1;CoefBlock(:,:,m)=CoefAfterQ(((row-1)*8+1):(row*8),((col-1)*8+1):(col*8));endendm;%% 把量化后各个分块的DC系数存放到行矩阵DC中DC(m)=0;for i=1:mDC(i)=CoefBlock(1,1,i);endDC;%% 求由各个DC系数的差值组成的行矩阵DCdifDCdif(BlockNumber)=0;DCdif(1)=DC(1);for i=2:BlockNumberDCdif(i)=DC(i)-DC(i-1);endDCdif;%% 用行矩阵DCdif中的差值替换原来系数矩阵CoefBlock中各个分块的DC系数m=0;for i=1:Row/8for j=1:Col/8m=m+1;CoefBlock(1,1,m)=DCdif(m);endendm;%% 把分块矩阵CoefBlock放到变换系数大矩阵CoefDCchanged中n=0;forrow=1:Row/8for col=1:Col/8n=n+1;CoefDCchanged(((row-1)*8+1):(row*8),((col-1)*8+1):(col*8))=CoefBlock(:,:,n);endendn;%%******************************************************************* *******************************%% 至此,完成了所有块中DC系数的替换(除第一个分块以外),为以后的DC系数差分编码做好了准备%%******************************************************************* *******************************%%*********************** the first--end blocks ************************%% 以下对每个分块进行量化,ZigZag扫描和编码(分别对DC系数和AC系数)%%******************************************************************* ***%% 整个图像编码后的bit序列以及bit序列的长度ImageBitSeq=[];ImageBitLen=[];%% 调试用,用来记循环的次数rowloop=0;for row=1:Row/8colloop=0;for col=1:Col/8m(1:8,1:8)=CoefDCchanged((row-1)*8+1:(row-1)*8+8,(col-1)*8+1:(col-1)*8+8);k= round(m); %% 就近取整%k;%% k为变换系数矩阵经量化并就近取整后的矩阵%% ZigZag Scaning%%*********************************************************t=zigzag(k);%t;%% t为zigzag扫描结果。
如何使用Matlab进行图像压缩和图像恢复技术实现
如何使用Matlab进行图像压缩和图像恢复技术实现图像压缩和图像恢复技术在数字图像处理领域中起着至关重要的作用。
随着数字图像的广泛应用,图像压缩已经成为了一种必要的手段。
而图像恢复技术则可以使压缩后的图像更好地还原,提高图像质量。
本文将介绍如何使用Matlab进行图像压缩和图像恢复技术的实现。
首先,我们需要了解图像压缩的基本原理。
图像压缩通常包括有损压缩和无损压缩两种方式。
有损压缩是指在压缩图像的过程中会有一定的信息损失,而无损压缩则是保证图像质量不受损失的压缩方式。
在Matlab中,我们可以使用多种算法实现图像压缩。
其中,最常用的算法是基于离散余弦变换(DCT)的JPEG压缩算法。
JPEG算法的基本思想是将图像分成若干个8x8的小块,然后对每个小块进行DCT变换,再对变换后的系数进行量化,最后采用熵编码的方式进行压缩。
具体操作如下:1. 将彩色图像转换为灰度图像:在Matlab中,可以使用rgb2gray函数将彩色图像转换为灰度图像。
2. 将图像分成若干个8x8的小块:可以使用im2col函数将图像转换为列,然后使用reshape函数将列重新组合成8x8的小块。
3. 对每个小块进行DCT变换:可以使用dct2函数对每个小块进行DCT变换。
4. 对变换后的系数进行量化:将变换后的系数除以一个预定义的量化矩阵,然后四舍五入取整。
5. 采用熵编码进行压缩:根据量化后的系数,使用Huffman编码或算术编码等方法进行压缩。
在实际应用中,我们还可以对JPEG算法进行一些改进,以提高压缩效果。
例如,可以根据图像内容的特点对量化矩阵进行优化,可以使用小波变换代替DCT变换等。
接下来,我们将介绍如何使用Matlab进行图像的恢复。
图像恢复通常包括去噪和超分辨率重建两个步骤。
对于图像去噪,Matlab提供了多种滤波器和去噪算法,例如中值滤波、均值滤波、小波去噪等。
我们可以使用这些工具对图像进行去噪处理。
对于图像的超分辨率重建,Matlab中有多种算法可供选择,例如插值法、边缘增强法、小波插值法等。