小学希望杯全国数学邀请赛五年级第2试

合集下载

2014年第十二届希望杯五年级二试详解.doc

2014年第十二届希望杯五年级二试详解.doc

2014年第十二届小学“希望杯”全国数学邀请赛五年级第2 试详细解答一、填空题(每题5 分,共60 分。

)1. 能被2,3,7整除的最小的三位数是_________。

【答案】126【考点】因数与倍数【解析】找2,3,7 的最小公倍数是2×3×7=42,最小的三位数42 的3倍是126。

2. 在1-100 的自然数中,数字和是5 的倍数的数有__________个。

【答案】19【考点】计数之枚举法【解析】数字之和是5 的有:5,50,14,41,23,32数字之和是10的有:19,91,28,82,37,73,46,64,55数字之和是15的有:69,96,78,87共有19个。

3. 如图1,有10克、25 克、50 克的砝码各一个,若在天平上只称量一次,则可以称出的重量有___________种。

【答案】10【考点】计数之枚举法【解析】单独放的:10,25,50和的有:35,60,75,85差的有:15, 40,65共有10种。

4. 如图2,将黑、白两种小球从上到下逐层排列,每层都是从左到右逐个地排。

当白球第一次比黑球多2013个时,恰好排完第_________层的第_________个。

【答案】2014 层的4026 个【考点】计算之等差数列找规律【解析】观察规律是每两层,白球比黑球多2个2013÷2=1006 (1)1006×2=2012,则前2012 层,白球比黑球多2012 个下一层2013 层为全黑,共有2013×2-1=4025个小球2014 层为白,要想比2013 层多1个球,则为第4026 个小球。

因此是2014 层的第2046 个。

5. 有10个连续的偶数,其中最大的偶数是最小的偶数的4 倍。

在这10个偶数中,最小的是________。

【答案】6【考点】数论之奇数与偶数【解析】最大偶数是最小偶数的4 倍,则把最小偶数看成2,4,6,······来试数,当最小偶数是6 时,最大偶数24,这时刚好有10个连续的偶数。

“希望杯全国数学邀请赛真题(五年级)-图文

“希望杯全国数学邀请赛真题(五年级)-图文

“希望杯全国数学邀请赛真题(五年级)-图文第一届小学“希望杯”五年级第1试一、填空题1.计算=_______2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______个交点。

4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______,温差最大的景区是______5.,各表示一个两位数,若和它的反序数+=_______6.三位数的差被99除,商等于_______与_______的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______个,三角形有_______个。

8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。

10.六位自然数1082□□能被12整除,末两位数有种情况。

11.右边的除法算式中,商数是。

第1页共87页12.比2/3大,比3/4小的分数有无穷多个,请写出三个:。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。

14.观察5某2=5+55=60,7某4=7+77+777+7777=8638,推知9某5的值是。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2‖。

警察由此判断该车牌号可能是。

16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。

小光,小亮二人随意往桌上扔放这个木块。

规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

每人扔100次,得分高的可能性最大。

17.从1,2,3,4,5,6,7,8,9。

第 届五年级希望杯二试答案解析

第 届五年级希望杯二试答案解析

2017年第15届小学“希望杯”全国数学邀请赛五年级 第2试试题解析一、填空题(每小题5份, 共60分)1. 计算: (2.016201)201.720.16(20.172010)________.+×−×+=【考点】提取公因数【关键词】2017年希望杯五年级二试第1题【解析】原式=2.016201.7201201.720.1620.1720.162010×+×−×−×20.1620.1720.1620.17201201.7201.62010201(201.7201.6)2010.120.1=×−×+×−×=+×−×=【解析】20.12. 定义2a b a b a b ∗=×+−, 若317m ∗=, 则________.m = 【考点】定义新运算【关键词】2017年希望杯五年级二试第2题【解析】3332317m m m m ∗=+−=+=, 14m =. 【答案】143. 在下表中, 8位于第3行第2列, 2017位于第a 行第b 列, 则________.a b −=【考点】长方形数表(周期问题)【关键词】2017年希望杯五年级二试第3题【解析】每三行为一个周期, 一个周期中有9个数, 201792241÷=, 所以22431673a =×+=, 1b =, 672a b −=.【答案】6724. 相同的3个直角梯形的位置如图所示, 则1________.∠=【考点】角度的计算【关键词】2017年希望杯五年级二式第4题...2120232219161718151211141310789632541130°50°【解析】如下图所示, 因为5090,AOC ∠+°=° 90,AOC COD ∠+∠=° 所以50COD ∠=°. 又因为90BOF ∠=°, 所以190305010∠=°−°−°=°.【答案】10°5. 张超和王海在同一家文具店买同样的练习本和铅笔, 张超买了5个练习本和4支铅笔, 付了20元, 找回3.5元; 王海买了2个练习本和2支铅笔, 正好7元整. 则练习本每个________元. 【考点】鸡兔同笼【关键词】2017年希望杯五年级二试第5题【解析】依题意得, 5个练习本和4支铅笔的价格为20 3.516.5−=(元), 4个练习本和4支铅笔的价格为7214×=(元), 所以练习本每个16.514 2.5−=(元).【答案】2.56. 数,,,a b c d 的平均数是7.1, 且2.5 1.2 4.80.25a b c d ×=−=+=×, 则________.a b c d ×××= 【考点】平均数问题, 列方程解应用题【关键词】2017年希望杯五年级二试第6题【解析】设2.5 1.2 4.80.25a b c d x ×=−=+=×=, 则0.4a x =, 1.2b x =+, 4.8c x =−, 4d x =.0.4 1.2 4.847.14a b c d x x x x ++++++−+×, 解得5x =, 2a =, 6.2b =, 0.2c =, 20d =, 所以2 6.20.22049.6a b c d ×××=×××=.【答案】49.67. 如图, 小正方形的面积是1, 则图中阴影部分的面积是________.【考点】格点图形面积【关键词】2017年希望杯五年级二式第7题【解析】分类计算, 121 2.5564131.5++++++=. 【答案】31.58. 将2015, 2016, 2017, 2018, 2019这五个数分别填入图中写有“,,,,D O G C W ”的五个方格内, 使得D O G C O W ++=++, 则共有________种不同的填法. 【考点】加乘原理【关键词】2017年希望杯五年级二式第8题【解析】D G C W +=+, 则O 处可填2015、2016、2017,.当O 处填2015时, 2016、2017、2018、2019在,,,D G C W 处, 有41218×××=种填法; 同理O 处填2016和2017时, 都有8种填法, 所以共有8324×=种不同的填法.FED CBAO 50°30°1【答案】249. 不为零的自然数a 满足以下两个条件:(1)0.2a m m =×; (2)0.5a n n n =××.其中,m n 为自然数, 则a 的最小值是________.【关键词】2017年希望杯五年级二试第9题【解析】依题意得, 2352a m n ==, 所以m 和n 均含有质因数2和5, a 最小为225(25)2000××=. 【答案】200010. 如图是一个玩具钟, 当时针每转一圈时, 分针转9圈, 若开始时两针重合, 则当两针下次重合时,时针转过的度数是________.【考点】时钟问题【关键词】2017年希望杯五年级二试第10题【解析】从第一次重合到第二次重合, 分针比时针多转一圈. 由题知当时针转1圈时, 时针比分针多转918−=(圈), 所以当时针比分针多转1圈时, 时针转过的度数是1836045÷×=(度). 【答案】45度【总结】希望杯特喜欢考察环形跑道多次相遇和追及结果的逆应用, 及已知多次的路程和或路程差反求1次的路程和或路程差或单人的路程.11. 若六位数2017ab 能被11和13整除, 则两位数________.ab = 【考点】整除特征【关键词】2017年希望杯五年级二试第11题【解析】由11的整除特征可知: (70)(21)011a b ++−++=或, 即4011a b +−=或. 若411a b +−=, 则7a b −=, 只有201817和201927两种情况, 都不能被13整除. 若40a b +−=, 则4a b +=, 构成的六位数为201047、201157、201267、201377、201487和201597, 其中只有201487能被13整除, 则48ab =. 【答案】48【另解】因为2017ab 能被11整除, 所以201与7ab 的差是11的倍数; 同理, 201与7ab 的差也是13的倍数. 因为(11,13)1=, 所以201与7ab 的差是1113143×=的倍数. 当2017143ab k −=(其中k 为自然数)时, 无解; 当7201143ab k −=(其中k 为自然数)时, 可得48ab =.【总结】201与7ab 的差是11的倍数, 也是13的倍数, 所以是11和13的公倍数. 因为公倍数是最小公倍数的倍数, 又[]11,13143=, 所以201与7ab 的差是143的倍数.12. 甲、乙、丙三人相互比较各自的糖果数.甲说: “我有13颗, 比乙少3颗, 比丙多1颗. ” 乙说: “我不是最少的, 丙和我相差4颗, 甲有11颗. ” 丙说: “我比甲少, 甲有10颗, 乙比甲多2颗. ”如果每人说的三句话中都有一句是错的, 那么糖果数最少的人有________颗糖果.【考点】逻辑推理【关键词】2017年希望杯五年级二试第12题【解析】甲说的“我有13颗, 比乙少3颗”与丙说的“甲有10颗, 乙比甲多2颗”相矛盾, 且由题意知,各对一句. 若甲有13颗, 则由乙的前两句是对的, 丙的第一和第三句是对的. 从而乙有15颗, 丙有11颗, 则甲的话只有一句是对的, 不符合题意. 所以甲有10颗, 从而乙有14颗, 丙有9颗, 糖果数最少的人有9颗.【答案】913. 自然数a b c 、、分别是某个长方体的长、宽、高的值, 若两位数ab 、bc 满足79ab bc +=, 求这个长方体体积的最大值. 【考点】长方体体积, 最值问题【关键词】2017年希望杯五年级二试第13题【解析】由79ab bc +=知, 9b c +=, 7a b +=. 则b 可取1~6, 枚举比较得, 当3b =, 6c =, 4a =时长方体的体积最大, 为34672××=. 【答案】7214. 李老师带领学生参观科技馆, 学生人数是5的倍数, 根据规定, 教师、学生按票价的一半收费, 且恰好每个人所付的票价为整数元, 共付了1599元, 问:⑴ 这个班有多少名学生?⑵ 规定的票价是每人多少元? 【考点】分解质因数【关键词】2017年希望杯五年级二式第14题【解析】学生人数是5的倍数, 算上老师, 总人数为5的倍数多1. 因为159931341313(401)=××=××+, 所以学生有40人, 票价为: 313278××=(元). 【答案】⑴ 40人; ⑵ 78元【总结】在小学中出现多次的, 一定是分解质因数的方法.15. 如图, ABCD 是长方形, AEFG 是正方形, 若6AB =, 4AD =, 2ADE S =△, 求ABG S △.【考点】直线型几何旋转【关键词】2017年希望杯五年级二式第15题 【解析】如图, 作EN AD ⊥交AD 于D , 将AEN △绕A 点顺时针旋转90度可得AGM △, ABG △的高GM 和ADE △的高EN 相等, 都等于2241×÷=, 所以1623ABG S =×÷=△.G F ED CBAMNA BCD E F G【答案】3【总结】看到正方形AEFG 斜放, 想到在正方形AEFG 构造弦图, 由弦图可想到旋转的方法.16. 某天爸爸开车送小红到距离学校1000米的地方后, 让她步行去学校, 结果小红这天从家到学校用了22.5分钟, 若小红骑自行车从家去学校需40分钟, 她平均每分钟步行80米, 骑自行车比爸爸开车平均每分钟慢800米, 求小红家到学校的距离. 【考点】方程法解行程【关键词】2017年希望杯五年级二试第16题【解析】爸爸开车送小红的时间为: 22.510008010−÷=(分). 设小红骑自行车的速度为x 米/分, 则10(800)100040x x ++=, 解之得300x =. 所以小红家到学校的距离为: 4030012000×=(米).【答案】12000米。

希望杯第一届至第十届五年级试题与答案

希望杯第一届至第十届五年级试题与答案

10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是

8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =

BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=

10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是

希望杯第1-8届五年级数学试题及答案(WORD版)

希望杯第1-8届五年级数学试题及答案(WORD版)

第一届小学“希望杯”全国数学邀请赛五年级第1试一、填空题1.计算=_______ .2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______ 个交点.4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。

5.,各表示一个两位数,若+=139,则=_______ 。

6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。

8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。

9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。

10.六位自然数1082□□能被12整除,末两位数有种情况。

11.右边的除法算式中,商数是。

12.比大,比小的分数有无穷多个,请写出三个:。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。

警察由此判断该车牌号可能是。

16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。

小光,小亮二人随意往桌上扔放这个木块。

规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

每人扔100次,得分高的可能性最大。

17.从1,2,3,4,5,6,7,8,9。

2020年第十三届小学数学“梦想杯”全国数学邀请赛试卷(五年级第2试)

2020年第十三届小学数学“梦想杯”全国数学邀请赛试卷(五年级第2试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每小题5分,满分60分)1.(5分)用3、4、7、8、这四个数组成两个两位数(每个数字只能用一次,且必须使用),它们的乘积最大是.2.(5分)有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=.3.(5分)用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).4.(5分)一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.5.(5分)同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.6.(5分)某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.7.(5分)大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.8.(5分)从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.9.(5分)观察下表中的数的规律,可知第8行中,从左向右第5个数是.10.(5分)如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?11.(5分)用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).12.(5分)将五位数“12345”重复写403次组成一个2015位数“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数,再删去新数中所有位于奇数位上的数字;按上述规则已知删下去,直到剩下一个数字为止,则最后剩下的数字是.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.(15分)图中有多少个三角形?15.(15分)如图,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm.乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.16.(15分)有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每小题5分,满分60分)1.(5分)用3、4、7、8、这四个数组成两个两位数(每个数字只能用一次,且必须使用),它们的乘积最大是6142.【解答】解:根据乘法的性质及数位知识可知,3、4、7、8这四个数字组成可组成的两位数,乘积最大可为:74×83=6142.故答案为:6142.2.(5分)有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=2.【解答】解:由题意可知:m+1+m+2011+m+2012=2015×23m+4024=40303m=6m=2故答案为:2.3.(5分)用1、2、3、5、6、7、8、9这8个数字最多可以组成6个质数(每个数字只能使用一次,且必须使用).【解答】解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成6个质数.故答案为:6.4.(5分)一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是83分.【解答】解:(84×10﹣93)÷(10﹣1)=747÷9=83(分)答:其他9个人的平均分是83分.故答案为:83.科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。

希望杯第1-8届五年级数学试题及答案(WORD版)

第一届小学“希望杯"全国数学邀请赛五年级第1试一、填空题1.计算=_______ 。

2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______ 个交点。

4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ .5.,各表示一个两位数,若+=139,则=_______ 。

6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。

8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。

9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米.10.六位自然数1082□□能被12整除,末两位数有种情况.11.右边的除法算式中,商数是。

12.比大,比小的分数有无穷多个,请写出三个:。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2"。

警察由此判断该车牌号可能是.16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9.小光,小亮二人随意往桌上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

每人扔100次,得分高的可能性最大。

17.从1,2,3,4,5,6,7,8,9.中随意取出两个数字,一个作分子,一个作分母,组成一个分数,所有分数中,最大的是,循环小数有个。

2017年希望杯五年级第2试

2017年小学第十五届“希望杯”全国数学邀请赛五年级第2试试题一、填空题(每题5分,共60分)1、计算:(2.016+201)×201.7—20.16×(20.17+2010)=。

2、定义:a*b=a×b+a—2b,若3*m=17,则m=。

3、在表1中,8位于第3行第2列,2017位于第a行第b列,则a—b=。

4、相同的3个直角梯形的位置如图1所示,则∠1=。

5、张超和王海在同一家文具店买同样的练习本和铅笔,张超买了5个练习本和4支铅笔,付了20元,找回3.5元;王海买了2个练习本和2支铅笔,正好7元整,则练习本每个元。

6、数a,b,c,d的平均数是7.1,且2.5×a=b—1.2=c+4.8=0.25×d,则a×b×c×d =。

7、如图2,小正方形的面积是1,则图中阴影部分的面积是。

8、将2015,2016,2017,2018,2019这五个数分别填在图3中写有“D,O,G,C,W”的五个方格内,使得D+O+G=C+O+W,则共有种不同的填法。

9、不为0的自然数a满足以下两个条件:(1)0.2a=m×m;(2)0.5a=n×n×n,其中m,n为自然数,则a的最小值是。

10、如图4是一个玩具钟,当时针转一圈时分针转9圈,若开始时两针重合,则当两针下次重合时,时针转过的度数是。

11、若六位数2017ab能被11和13整除,则两位数ab=。

12、甲、乙、丙三人相互比较各自的糖果数。

甲说:“我有13颗,比乙少3颗,比丙多1颗。

”乙说:“我不是最少的,丙和我相差4颗,甲有11颗。

”丙说:“我比甲少,甲有10颗,乙比甲多2颗。

”如果每人说的三句话中都有一句话是错的,那么糖果数最少的人有颗糖果。

二、解答题(每小题15分,共60分)每题都要写出推算过程。

13、自然数a,b,c分别是某个长方体的长、宽、高的值,若两位数ab,bc,满足ab+bc=79,求这个从长方体的体积的最大值?14、李老师带领学生参观科技馆,学生人数是5的倍数,根据规定,教师、学生按票价的一半收费,且恰好每个人所付的票价为整数,共付了1599元,问:(1)这个班有多少名学生?(2)规定的票价是每人多少元?15、如下图,ABCD是长方形,AEFG是正方形,若AB=6,AD=4,S△ADE=2,求S△ABG?16、某天爸爸开车送小红到距学校1000米的地方后,让她步行去学校,结果小红这天从家到学校用了22.5分钟,若小红骑自行车从家到学校需40分钟,她平均每分钟步行80米,骑自行车比爸爸开车平均每分钟慢800米,求小红家到学校的距离?2017年小学第十五届“希望杯”全国数学邀请赛五年级第2试答案解析一、填空题(每题5分,共60分)1、答案:20.1解析:【考查目标】小数的简便计算。

2020年第九届小学数学“梦想杯”全国数学邀请赛试卷(五年级第2试)

2011年第九届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:0.15÷2.1×56=.2.(5分)15+115+1115+11115+…+1111111115=.3.(5分)一个自然数除以3,得余数2,用所得的商除以4,得余数3.若用这个自然数除以6,得余数.4.(5分)数一数图中有个正方形.5.(5分)有一些自然数(0除外)既是平方数,又是立方数.(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个自然数的乘积).如:1=1×1=1×1×164=8×8=4×4×4.那么,1000以内的自然数中,这样的数有个.6.(5分)有一个自然数,它的最小的两个约数的差是4,最大的两个约数的差是308,则这个自然数是.7.(5分)如图,先将4黑1白共5个棋子放在圆上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的5个棋子拿掉.如此不断操作下去,圆圈上的5个棋子中最多有个白子.8.(5分)甲乙两人分别从AB两地同时相向而行,甲的速度是乙的3倍.经过60分钟,两人相遇,然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行,那么,当甲到达B地后,再经过分钟,乙到达A地.9.(5分)如图,将一个棱长为1米的正方体木块分别沿长宽高三个方向锯开1,2,3次得到24个长方形木块,这24个长方形木块的表面积的和是平方米.10.(5分)如图,小丽和小明的桶中原来各装有3千克和5千克水,依据图中的信息可知,小丽的桶最多可以装千克水,小明的桶最多可以装千克水.11.(5分)将1~2011的奇数排成一列,然后按每组1,2,3,2,1,2,3,2,1,…个数的规律分组如下(每个括号为一组):(1)(3,5)(7,9,11)(13,15)(17)(19,21)(23,25,27)(29,31)(33)…则最后一个括号内的各数之和是.12.(5分)当爷爷的年龄是爸爸年龄的2倍时,小明1岁;当爸爸的年龄是小明的年龄的8倍时,爷爷61岁.那么,爷爷比小明大岁;当爷爷的年龄是小明年龄的20倍时,爸爸的年龄是岁.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图,大小两个正方形并排放在一起,请分别在图乙和图丙中阴影标出一个几何图形(不一定是三角形,可以是任意的多边形),使它的面积等于图甲中的阴影面积.(直接作图,不写解答过程)14.(15分)甲、乙、丙、丁4人去钓鱼,共钓到25条鱼,按数量从多到少的排名是甲、乙、丙、丁.又知甲钓到的鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和.那么,甲乙丙丁各钓到几条鱼?15.(15分)A、B两地间有一条公路,甲乙两辆车分别从AB两地同时相向出发,甲车的速度是50千米/时.经过1小时,两车第一次相遇.然后两车继续行驶,各自到达B、A两地后都立即返回,第二次相遇点与第一次相遇点的距离是20千米.求:(1)AB两地的距离.(2)乙车的速度.16.(15分)观察以下的运算:若是三位数,因为=100a+10b+c=99a+9b+(a+b+c)所以,若a+b+c能被9整除,能被9整除.这个结论可以推广到任意多位数.运用以上的结论,解答以下问题:(1)N是2011位数,每位数字都是2,求N被9除,得到的余数.(2)N是n位数,每位数字都是7,n是被9除余3的数.求N被9除,得到的余数.2011年第九届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:0.15÷2.1×56=4.【解答】解:0.15÷2.1×56,=0.15×56÷2.1=0.15×8×7÷2.1=1.2×,=4.故答案为:4.2.(5分)15+115+1115+11115+…+1111111115=1234567935.【解答】解:15+115+1115+11115+11115+ (1111111115)=(10+110+1110+11110+1111110+1111110+11111110+111111110+1111111110)+5×9,=1234567890+45,=1234567935.故答案为:1234567935.3.(5分)一个自然数除以3,得余数2,用所得的商除以4,得余数3.若用这个自然数除以6,得余数5.【解答】解:设这个商除以4得余数3时所得商为x,则这个商为4x+3,这个自数数为:(4x+3)×3+2=12x+11=6×(2x+1)+5,所以若用这个自然数除以6,得余数5.故答案为:5.4.(5分)数一数图中有18个正方形.【解答】解:1个小正方形的个数为:13个;含有4个小正方形的大正方形的个数为:4;含有9个小正方形的大正方形的个数为:1.故有13+4+1=18个正方形.或直接利用公式先求中间由9个小正方形组成的正方形一共有:32+22+12=14,加上四周的4个共14+4=18个.故答案为:18.5.(5分)有一些自然数(0除外)既是平方数,又是立方数.(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个自然数的乘积).如:1=1×1=1×1×164=8×8=4×4×4.那么,1000以内的自然数中,这样的数有3个.【解答】解:既是平方数,又是立方数的数一定是完全六次方数,所以:16=1,26=64,36=729,46=4096…而46=4096超过了1000,所以共有3个.故答案为:3.科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。

第十四届(2016)希望杯五年级第2试及答案

第十四届小学“希望杯”全国数学邀请赛五年级 第2试试题2016年4月10日 上午9:00至11:00一、填空题(每题5分,共60分)。

1、=÷÷÷÷÷÷)05.004.0()04.03.0()3.02(10 .2、小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是 元.3、将1.41的小数点向右移动两位,得a ,则41.1-a 的整数部分是 .4、定义:n n m m n m ⨯-⨯=⊗,则=⊗--⊗-⊗-⊗10098866442 .5、从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是 .6、如图1,四边形ABCD 是正方形,ABGF 和FGCD 都是长方形,点E 在AB 上,EC 交FG 于点M 。

若6=AB ,∆ECF 的面积是12,则∆BCM 的面积是 .7、在一个出发算式中,被除数是12,除数小于12,则可能出现的不同余数之和是 .8、如图2,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是 .9、正方形A 、B 、C 、D 的边长一次是15,b ,10,d (b ,d 都是自然数),若它们的面积满足D C B A S S S S ++=,则=+d b .10、根据图3所示的规律,推知=M .11、一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的去法有a 种;若每次取奇数颗,若干次后刚好去完,不同的去法有b 种,则=+b a .(每次去珍珠的颗数相同)12、若A 是质数,并且4-A ,6-A ,12-A ,18-A 也是质数,则=A .二、解答题(每题15分,共60分)。

13、张强骑车从公交的A 站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A 站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟. 若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?14、如图4,水平方向和竖直方向上相邻两点之间的距离都是m ,若四边形ABCD 的面积是23,求五边形EFGHI 的面积.15、定义:[]a 表示不超过数a 的最大自然数,如[]06.0=,[]125.1=. 若[]7.039.05+=-a a ,则a 的值.16、有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?...... (3)7591181121520 27 36 47 M图3第十四届“希望杯”数学邀请赛五年级2试参考答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

www.xuedou.com
第六届小学“希望杯”全国数学邀请赛 五年级 第2试
一、填空题(每小题5分,共60分)
1、(132008+231004+83251)÷(112008+211004+81251)=

2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。如果
在盒子中从左向右放5个不同的“福娃”,那么,有 种不同的放法。

3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个
数都是这个数前面两个数之和的2倍。那么,这列数中的第10个数是

4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐
人。

5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积
是 立方厘米;(取3.14)

6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积
是 平方米。

7、如图3,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面
体的表面积是 平方厘米。

8、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,
参加B组的仅次于A组,参加C组、D组的人数相同。参加E组的人数最少,只有4人,那么,参加
B组的有 人。

9、菜地里的西红柿获得丰收,摘了全部的25时,装满了3筐还多16千克。摘完其余部分后,又装满
www.xuedou.com

6筐,则共收得西红柿 千克。
10、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。因而提前3天完成任
务。这条路全长 千米。

11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时
到达;返回时,按原计划的速度行驶280千米后,将车速提高16,于是提前1小时40分到达北京。
北京、上海两市间的路程是 千米。

12、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个
新长方体,在这些长方体中,表面积最小的是 平方厘米。

二、解答题(本大题共4小题,每小题15分,共60分)要求:写出推算过程
13、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。如6=3+3,12=5+7,
等。那么自然数100可以写成多少种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3
算作同一种形式)

14、如图4(a),ABCD是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图4(b))
拼成。那么,长方形ABCD的面积是多少平方厘米?

15、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他
们号码的和被4除所得的余数。那么2008号运动员比赛了多少场?

16、有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管。开始时,进水管以
均匀的速度不同地向蓄水池注水。后来,想打开出水管,使池内的水全部排光。如果同时打开8根出
水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水。若要在4.5
www.xuedou.com

小时内排尽池内的水,那么应当同时打开多少根出水管?
652参考答案
2011/2009;120;3344;9;100.48;200;194;7;160;21.6;1260;148;6;187.5;6;6

相关文档
最新文档