2013年希望杯全国数学邀请赛答案
希望杯第4-13届小学六年级全国数学竞赛初赛复赛题及解答

2006年第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A 的小数点向右移动两位,得到数B 。
那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。
则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。
第十一届小学“希望杯”全国数学邀请赛五年级第1试题目及答案

第十一届小学“希望杯”全国数学邀请赛五年级第1试1.计算:5.62×49-5.62×39+43.8= 。
12.规定a△b=a÷(a+b),那么2△1.8=。
53.若干个数的平均数是2013,增加一个数后,平均数仍是2013,则增加的这个数是。
4.如果三位数3□2是4的倍数,那么□里能填的最小的数是,最大的数是。
5.观察下图,?代表的数是。
1 3 5 7 9 8 6 4 22 4 6 8 7 5 33 5 7 6 44 6 5?6.小明在计算一个整除的除法算式时,不小心将除数18看成15,得到的商是24,则正确的商是。
7.将100块糖分成5份,使每一份的数量依次多2,那么最少的一份有糖块,最多的一份有糖块。
8.一件商品,对原价打九折和打七折后的售价相差5.4,那么此商品的原价是元。
9.有26个连续的自然数,如果前13个数的和是247,那么,后13个数的和是。
10.在三位数253,257,523,527中,质数是。
11.14个棱长为1的正方体在地面上堆成如图1所示的几何体,将它的表面(包括与地面接触部分)染成红色,那么红色部分的面积是。
12.如图2,若梯形ABCD的上底AD长16厘米,高BD长21厘米,并且BD=3DE,则三角形ADE的面积是平方厘米,梯形的下底BC长厘米。
13.小丽将一些巧克力装入大,小两种礼盒中的一种礼盒内,如果每个小礼盒装5块巧克力,那么剩下10块;如果每个大礼盒装8块巧克力,那么少2块。
已知小礼盒比大礼盒多3个,则这些巧克力共有块。
14.从甲地到乙地,小张走完全程用2个小时,小李走完全程用1个小时。
如果小张和小李同时从甲地出发去乙地,后来,在某一时刻,小张未走的路程恰好是小李未走的路程的2倍,那么此时他们走了分钟。
15.有16盒饼干,其中15盒的重量(含盒子)相同,另有1盒少了几块,如果用天平称,那么至少称次就一定能找出这盒饼干。
16.编号1~10的10名篮球运动员轮流进行三人传球训练,第1轮由编号(1,2,3)的队员训练,然后依次是编号(4,5,6)(7,8,9)(10,1,2),…的队员训练,当再次轮到编号(1,2,3)的队员时,将要进行的是第轮训练。
2013希望杯六年级第二试

第十一届小学“希望杯”全国数学邀请赛六年级 第2试试题2013年4月14日 上午9:00-11:00一、填空题(每题5分,共60分)1. 计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷= 【解答】110062【解析】原式3452012201323420112012=⨯⨯⨯⨯⨯ 20132= 110062=2. 计算:11.53.1657.0512+++= 【解答】4165【解析】原式111.5357.05612=+++ 1.58.257.05=+++16.8=3. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点 千米。
(答案取整数)【解答】128【解析】设距离是x ,列方程得:11.53.87 5.94x x -=。
整理得:5.94 3.8711.5 3.87 5.94x x -=⨯⨯,解得:128x =。
4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有 袋。
【解答】1200【解析】(1)已售出的占全部的:33134=+ (2)超市购进的这批食盐有:342040%12004⎛⎫÷-= ⎪⎝⎭(袋)。
5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有 个。
【解答】3【解析】(1)422,224,=⨯+=符合条件;(2)3222222,2222232=⨯⨯⨯⨯++++≠+,不符合条件。
2013年第24届希望杯全国数学邀请赛初一第2试试题(含答案word)

第24届“希望杯”全国数学邀请赛初一 第2试试题2013年4月14日 上午9:00至11:00一、选择题(每小题4分,共40分)1.2011年我国国同内生产总值达47.3万亿元,将这个数据用科学记数法表示是( )A.101073.4⨯元B. 111073.4⨯元C. 121073.4⨯元D. 131073.4⨯元2.某天,黑河凌晨的温度比上午9点的温度低12℃,中午12点的温度比凌晨的温度高20℃,晚上9点的温度比中午12点的温度低19℃,若当天上午9点的温度记为a ℃,则当天晚上9点的温度应记为( )A.℃)32(-aB. ℃)11(-aC. ℃)32(a -D. ℃)11(a -3.若09)1()1(22=+++-x y x y 是关于x 的一元一次方程,则代数式y y x y x +-+)2)(4(的值是( )A.54B.56C.169D.1714.已知a 是整数,则下列代数式中,值不可能是整数的为( ) A.912-a B.223-a C.61062--a a D.322-a 5.如图1,取一张长方形的纸片ABCD(AB=9,AD=5);向右上方翻折AD ,使AD 恰好落在AB 边上的D '处,压平后折痕交CD 于点E ,再将D BCE '沿E D '向左翻折压平后得D E C B ''',C B ''交AE 于点F ,则此时形成的四边形D FE B ''的面积是( )A.20B.16C.12D.8 6.△ABC 的内角分别为∠A ,∠B ,∠C ,若∠1=∠A+∠B ,∠2=∠B+∠C ,∠3=∠C+∠A ,则∠1,∠2,∠3中( )A.至少有一个锐角B.三个都是钝角C.至少有两个钝角D.可以有两个直角7.方程1|12||1|=-++x x 的整数解的个数为( )A.0B.1C.2D.38.If <a> represents the largest prime number not more than a ,then the value of the expression < ( <8> × <3> × <4>)> × <4> × <12> is ( )A.1353B.2013C.2079D.46089.公交车上显示线路号码的每个数字都是由七个同样的液晶组成,若某线路号码是两位数,并且是两个质数之积,但由于液晶条坏了一个,不能发光,显示成“51”路(如图2),则符合要求的质数中最小的一个是( )A.3B.5C.7D.1110.如图3,边长分别为8cm 和6cm 的两个正方形ABCD 与BEFG 并排放在一起,连接EG 并延长交AC 于K ,则△AKE 的面积是( )A.48cm 2B.49cm 2C.50cm 2D.51cm 2F B'D'A D'A D A D B C C B B C E 图1 KG F E D 8EC A F 图3 图4二、填空题(每小题4分,共40分)11.若a 表示x 与y 的和的平方,b 表示x 与y 的平方和,则当a=49,b=25时,xy=________;12.如图4,长方形ABCD 的长DC=8,宽AD=5,E 是AB 的中点,点F 在BC 上,已知△DEF 的面积为16,则点D 到直线EF 的距离为__________________13.若abc 都是质数,其中a 最小,且a+b+c=44,ab+3=c ,则ab+c=__________14.If a+3=b -9=c+6,then the value of 222)()()(a c c b b a -+-+- is ___________15.奇奇开车从北京去少林寺旅游,在高速公路和非高速公路上的行驶速度分别是120千米/时,60千米/时. 若奇奇驶完全用了6小时,其中在高速公路上行驶的路程是在非高速公路上行驶的路程的6倍,则全程长____________千米;16.如图5,在直角△ABC 的两直角边AC 、CB 上分别作正方形ACDE 和CBFG ,AF 交BC 于W ,连接GW ,若AC=14,BC=28,则__________=∆AGW S ;17.用2,0,1,3组成一个自然数,且每个数字至少用一次,其中可被225整除的最小的数是_________________.18.如图6,梯形ABCD 中,AD ∥BC ,BA=AD=DC ,BC=2AD ,若平行于底边的一条直线EF 把梯形分成周长相等的两部分,则___________=EF AE19.已知0≠abc ,若||4||3||2c c b b a a m ⨯⨯=,则__________122=++m m 20.在图7(1)中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图7(1)能变为图7(2),则图7(2)中A 格内的数是__________;(1) (2)三、解答题(每题都要写出推算过程)21.(本题满分10分)两个同样的圆柱形水池A 和B ,深度都是1.2米,1号抽水机18分钟可将A 池注满,2号抽水机24分钟可将A 池的满池水注入B 池,现在,若A 池中储有61池水,B 池没有水,同进打开1号,2号抽水机,当A 池水深0.6米时,同时关闭两个抽水机,求此时B 池的水深;F E B C 图5 图6 图722.(本题满分15分)如图8,E 、F 分别是平行四边形ABCD 的边AB 、BC 的中点,DE 与AF 交于点P ,点Q 在线段DE 上,且AQ ∥PC ,求梯形APCQ 的面积与平行四边形ABCD 的面积的比值;23.(本题满分15分)如图9,边长为1的等边三角形ABC 从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在x =2013处时,三角形停止滚动.(1)落在x =2013处的点是三角形ABC 的哪个顶点?说明理由;(2)在滚动过程中,点A 走过的路程是多少?(3)若在滚动的过程中A 走过的路程是某个圆的周长,求这个圆的半径.B 图8图9。
历届(9—13届)希望杯五年级答案及解析

历届五年级希望杯答案及解析2010年第八届2011年第九届1、解:原式=1.25 ×31.3 ×3 ×8 = 100 ×93.9 = 9392、解:将循环节多写一次即可逐位比较3、解:十位数之前应该有1 + 2 + 3 +……+9 = 45位。
1位数有9位,10—19有20位,20—27有16位,所以十位数的开头应为28,为28293031324、解:从A到B一定会经过三步,第一步要从A走到中间,最后一步应该是从中间走到B,而第二步为从中间走到中间只能有一种走法。
从A到中间一条线上共有5种走法,从B到中间一条线上也有5种走法。
所以共有5 ×1 ×5 = 25种走法。
5、解:在3 ×4的长方形中有20个横平竖直的正方形。
斜着的有1 ×1正方形17个,2 ×2的正方形8个,还有1个3 ×3的大正方形。
共46个。
6、解:47 ÷b = c ……c ,即b ×c + c = 47,即c ×( b + 1 ) = 47,所以c一定是47的约数,c为47肯定不符合条件,所以c = 1,即除数是46,余数是1.7、解:能被90整除说明即能被9整除也能被10整除,被10整除说明最后一位是0,被9整除说明数字和应为9的倍数,即2 + 0 + 1 + 1 + a +0 是9的倍数,所以a = 5,即后两位是50.8、解:约数个数为奇数说明这个自然数为完全平方数,1000以内最大的完全平方数是31²= 9619、解:首先最下面的一个角肯定没有,最上面的中部也会少一部分,所以是丁。
10、解:一圈共400米,甲是乙速度的1.5倍,所以甲共走了240米,乙走了160米。
DE为60米,CE为40米。
SADE = 3000平方米,SBCE = 2000平方米,差为1000平方米。
11、解:弟弟如果不多跑半小时应比哥哥少跑80 ×30 — 900 = 1500米,所以哥哥共跑了1500 ÷(110—80)= 50分钟,共跑了50 ×110 = 5500米。
2013年希望杯数学竞赛试题答案

1、“a 的 3 倍与 b 的的和”用代数式表示为2、被 3 除商为 n 余 1 的数是3、某电影院第一排有x个座位,后面每一排都比前一排多2个座位,则第n排有个座位。
4、某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P千米的路程(P>7)所需费用是()A、5+1.5PB、5+1.5C、5-1.5PD、5+1.5(P-7)5、用代数式表示(1)比a的倒数与b的倒数的和大1的数(2)与的和的20%(3)比x与y的积的倒数的4倍小3的数(4)a,b两数的平方和除以a,b两数的和的平方◆典例分析例:用代数式表示:(1)如果两数之和为20,其中一个数用字母表示,那么这两个数的积为。
(2)设为整数,则三个连续的偶数:。
(3)比的平方大的数。
(4)某产品的生产成品由元下降后是元(5)梯形的上底是,下底是上底的倍,高比上底小,则这个梯形的面积为。
解:(1);(2),,;(3);(4);(5)。
评析:(1)根据两数之和为20,先表示出另一个数为,然后将两个数相乘,但要注意不能忘记在上加上括号;(2)首先是一个偶数的表示方法:,其次是相邻的两个偶数相差为2;(3)一是注意先读先写,二是“大”的意思用符号表示为“+”;(4)本例应注意避免将“由元下降”错误表示为“ ”。
正确理解是在元的基础上下降了5%x元,即;(5)先由题意分别表示下底= ,高= ,然后利用梯形面积公式列出式子:。
◆课下作业●拓展提高1、百货大楼进了一批花布,出售时要在进价的基础上加上一定的利润,其数量x与售价y之间的关系如下表:数量x(米)1 2 3 4 …售价y(元)8+0.3 16+0.6 24+0.9 32+1.2 …下列用数量x表示与售价y的公式中,正确的是( )A、 B、 C、 D、2、一台电视机成本a元,销售价比成本价增加,因库存积压,所以就按销售价的出售,那么每台实际售价为()A、B、C、D、3、比和的差的一半大的数应表示为。
2013年希望杯六年级二试试题及标准答案

第十一届小学“希望杯”全国数学邀请赛六年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1.计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷=2.计算:11.5 3.1657.0512+++=3. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点千米。
(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有袋。
5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有个。
6. 如图1,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是。
7. 有两列火车,车长分别时125米和115米,车速分别是22米/秒和18米/米,两车相向行驶,从两车车头相遇到车尾分别需要秒。
8. 老师让小明在100米的环形跑道上按照如下的规律插上一些棋子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备多少面旗子?9. 2013201320132013201312345++++除以5,余数是。
(注:2013a表示2013个a相乘)10.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是1527,那么去掉的数是。
11. 若A、B、C三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人。
第四讲 2013小学“希望杯”全国数学邀请赛-赛前集训专题系列-4年级05-盈亏问题

2012小学“希望杯”全国数学邀请赛-赛前集训专题系列(四年级)专题之:盈亏问题【名师导航】:在生活中有这样一些问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;如果每人少一些,物品就有剩余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清楚盈和亏两次分得差的关系。
此类问题常用比较法,最好把两次分配情况用简略的文字对齐罗列出来,这样便于比较分析。
其数量关系是:(1)(盈+亏)÷两次分配差=份数,(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分的数量×份数+盈=总数量或每次分的数量×份数-亏=总数量非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解答时一定要把两次分配方案进行比较,找到盈、亏的数量分别是多少?有些盈亏的量需转化后方可用公式直接解答。
【例题精讲】:例1、一个植树小组植树,如果每人栽6棵,还剩下14棵;如果每人栽8棵,就缺4棵。
这个植树小组多少人?一共有多少棵树?解答:每人栽6棵,多14棵------盈每人栽8棵,少4棵-------亏份数即总人数:(14+4)÷(8-6)=9(人)总数量即总棵数:9×6+14=68(棵)例2、学校将一批铅笔奖励给三好生,如果每人奖励9支,则缺45支;如果每人奖励7支,则缺7支。
三好生有多少人?铅笔有多少支?解答:每人9支,少45支----亏每人7支,少7支-----亏份数即总人数:(45―7)÷(9-7)=19(人)总数量即总支数:19×7-7=126(支)例3:有一些少先队员到山上去植树,如果每人植16棵,还有24棵没有植;如果每人植19棵,还有6棵没有植。
问有多少名少先队员?有多少棵树?解答:每人16棵,多24棵每人19棵,多6棵总人数:(24-6)÷(19-16)=6(名)总棵数:6×16+24=120(棵))例4:学校给一批新入学的学生分配宿舍,如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题。
(,每题2分,共24分)
1、一个数亿位上是最大的一位数、千万位上是6,万位上是最小的合数,千位上是最小的质数,其余数位上是0,这个数是(),四舍五入到亿位记作()亿。
2、一批货物按2:3:5分配给甲、乙、丙三个商店。
( )商店分得这批货物的1/2,乙商店分得这批货物的( )%。
3、()÷()= 15()= 0.6 = (): 15=( )%
4、12小时12分=()小时112 公顷=()平方米
5、六年级一班男生人数的正好和女生的相等,男生和女生的人数比是():(),已知男生32人,女生()人。
6、在12 、13 、14 、15 、16 这五个数中,选出其中的四个数,写出一个比例式:
()。
7、正方体棱长的总和是48厘米,它的表面积是()平方厘米,体积是(
)立方厘
8、一本故事书有300页,小明第一天看了这本书的20%,第二天接着看,小明第二天要从第()页开始看。
9、在一幅表示某学校学生人数的条形统计图中,纵轴“5格”表示一年级有250人,那么五年级有300人,在纵轴上应该用()格表示。
10、一辆汽车从甲地开往乙地用15小时,返回时这辆汽车每小时行全程的112 ,这辆汽车往返时间比是(),往返速度比是()。
11、线段比例尺02505007501000千米改写成数字比例尺是(),在这幅图上量得北京到上海的距离是 4.2厘米,北京到上海的实际距离是()千米
12、如右图所示,把底面直径是8厘米,高是20厘米
的圆柱切成若干等分,拼成一个近似的长方体。
这个近似长方体的表面积是( )
平方厘米,体积是( )立方厘米。
二、判断题。
(每题2分,共10分)
1、王师傅生产110个零件,其中100个是合格产品,合格率是100%。
()
()
2、一个圆柱体的铁块重60克,从这个圆柱体上截下一个最大的圆锥体,剩下部分的铁块
的重量是20克。
()
3、如果x×2/3=y×3/4,那么x:y=2/3:3/4。
()
4、工作时间一定,制造每个零件的时间和零件个数成正比例。
()
5、一个圆柱形的底面积扩大3倍,高不变,体积也扩大3倍。
( )
三、选择题。
(每题2分,共12分)
1、小明有若干张10元、5元的纸币,这两种纸币的张数相同,那么王小明可能有()元钱。
①50 ②51 ③75 ④100
2、估计与288.9×1.756的积最接近的数是()。
①400 ②500 ③600 ④1000
3、一个长方形的框架,如果把它拉成一个平行四边形,它的周长和面积()。
①周长不变,面积变大②周长不变,面积也不变
③周长变小,面积变小④周长不变,面积变小
4、把一张正方形的纸连续对折4次,折后的每一小块占这张正方形纸的()。
①14 ②18 ③116 ④132
5、下列各数量关系中,成正比例关系的有()。
①路程一定,时间和速度。
②圆的半径和它的面积。
③运送一批货物,运走的吨数和剩下的吨数。
④买同样的书,应付的钱数与所买的本数。
6、有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体表面积和原来的表面积相比较,()。
①大了②小了③不变④无法确定
四、计算。
(共27分)
1、直接写出得数。
(每题0.5分,共4分)
1787-998=58 +0.25=1021 ×35 =21÷37 =
59 ×15 ÷59 ×15 = 18 ÷18 ÷18 =111 ×12.1-1= 35 +25 ÷15 =
2、用递等式计算。
(每题2.5分,共10分)
①987+104×65-1747 ②3763 ÷7 +17 ×2663
③( 79 +421 -37 )×6.3 ④15÷〔( 57 -12 )÷328 〕-0.5
3、求未知数X。
(每題2分,共6分)
0.4 X-0.4×10.8 =20 13 X+34 X =1348 56 : X = 34 : 25
4、画出面积相等的长方形、三角形、平行四边形和梯形各一个。
(4分)
5、如右图,直角梯形中,高是5厘米,下底是14厘米,求阴影部分的面积?(3分)
五、解决问题。
(27分)
1、只列综合算式,不必解答。
(每小题2分,共6分)
①某一天,李叔叔上午工作4小时,下午工作3小时,共加工零件1400个。
如果李叔叔每小时生产的零件个数是不变的,那么李叔叔上午生产多少个零件?
长江机床厂五月份生产机床650台,比四月份多生产机床150台。
五月份增产百分之几?
③在一张比例尺是5:1的零件设计图上,量得某个零件的长度是6厘米,这个零件的实际长度是多少厘米?
2、小星生日那天,妈妈给小星买了一套衣服和一双运动鞋共用去540元,已知一套衣服的价钱是一双运动鞋的1.7倍,一套衣服和一双运动鞋的价钱各是多少元?(用方程方法解决问题)(5分)
3、李师傅计划加工2620个零件,已经加工了5天,每天加工260个,剩下的要4天完成,平均每天加工多少个零件?(用算术、方程两种方法解答) (5分)
4一个圆锥形麦堆,底面周长12.56米,高1.5米,每立方米小麦重735千克,这堆小麦重多少千克?(保留整千克)
5、李老师带240元钱去买一批笔记本。
在甲商店,看到一种标价为8元的笔记本,李老师感到很满意,问营业员怎么买?营业员说:“买十本送一本”。
到了乙商店,看到同样的笔记本,营业员介绍说:“每本8元,十本起,可打九折”。
根据以上信息请你算一下,李老师到那家商店购买合算,为什么?(6分)
文章来源。