函数图像的变换——翻折
函数的图像及性质

函数图像【基础知识梳理】1.应掌握的基本函数的图象有:一次函数、二次函数、三次函数、幂函数、指数函数、对数函数等.2.利用描点法作图:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性);④画出函数的图象.3、图象变换包括图像的平移变换、伸缩变换、对称变换、翻折变换等。
(1)平移变换(左加右减,上加下减)把函数()f x 的图像向左平移(0)a a >个a 单位,得到函数()f x a +的图像, 把函数()f x 的图像向右平移(0)a a >个a 单位,得到函数()f x a -的图像, 把函数()f x 的图像向上平移(0)a a >个a 单位,得到函数()f x a +的图像, 把函数()f x 的图像向下平移(0)a a >个a 单位,得到函数()f x a -的图像。
(2)伸缩变换①把函数()y f x =图象的纵坐标不变,横坐标伸长到原来的w 1倍得()y f x ω= (0<ω<1) ②把函数()y f x =图象的纵坐标不变,横坐标缩短到原来的w1倍得()y f x ω= (ω>1)③把函数()y f x =图象的横坐标不变,纵坐标伸长到原来的w 倍得()y f x ω= (ω>1) ④把函数()y f x =图象的横坐标不变,纵坐标缩短到原来的w 倍得()y f x ω= (0<ω<1)(3)对称变换:①函数()y f x =和函数()y f x =-的图像关于x 轴对称 函数()y f x =和函数()y f x =-的图像关于y 轴对称 函数()y f x =和函数()y f x =--的图像关于原点对称函数()y f x =和函数1()y f x -=的图像关于直线x y =对称简单地记为:x 轴对称y 要变,y 轴对称x 要变,原点对称都要变。
②对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2ba x +=(4)翻折变换:①把函数y=f(x)图像上方部分保持不变,下方的图像对称翻折到x 轴上方,得到函数()y f x =的图像;②保留y 轴右边的图像,擦去左边的图像,再把右边的图像对称翻折到左边,得到函数()y f x =的图像。
上海中考数学第18题分析(翻折类)

上海中考数学第18题分析(一)——翻折类前言,函数图像的变换和几何图像的变换,我们一般归类为这几类:平移、对称、翻折、旋转、伸缩;而恰恰在初三中考试卷的18题位置,对旋转和翻折的考察更是重中之重,通过旋转和翻折的深入研究,充分的展现学生对几何知识的熟练驾驭能力和对平面图形的变换规律把握能力;一、平移、旋转、翻折知识储备1、运动的性质:运动前、后的图形全等(1)平移的性质:①对应点之间的距离等于平移的距离;②对应点之间的距离相等,对应角大小相等,对应线段的长度相等;③平移前、后的图形全等.(2)旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.(3)翻折的性质:①对应线段的长度相等,对应角的大小相等,对应点到对称轴的距离相等;②翻折前、后的图形全等二、翻折类题型总结及归纳1. 翻折定义:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化。
2. 翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。
3. 翻折总结:解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。
4. 翻折归纳:翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。
三、翻折类题型解题策略⑴图形翻折之“翻折边长”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题;5.部分题目注意分类讨论。
⑵图形翻折之“翻折角度”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题;5.利用好三角形的内角和外角性质。
函数的图像

结束
角度一 确定方程根的个数
角度二 求参数的取值范围
角度三 求不等式的解集
结束
角度一 确定方程根的个数
1.(2014· 日照一模)已知
|lg x|,x>0, f(x)= |x| 2 ,x≤0,
则函数 y=2f (x)
第四节
1.利用描点法作函数图像
函数的图像
结束
其基本步骤是列表、描点、连线,具体为:
①确定函数的定义域;②化简函数解析式;③讨论函数 的性质(奇偶性、单调性、周期性);④列表(尤其注意特 殊点、零点、最大值点、最小值点、与坐标轴的交点); ⑤描点,连线.
结束
2.利用图像变换法作函数的图像
(1)平移变换:
4.已知函数 f(x)的图像如图所示,则函数 g(x)= log 2 f(x)的定义域是________.
5.设函数 f(x)=|x+a|,g(x)=x-1,对于任意的 x∈R, 不等式 f(x)≥g(x)恒成立,则实数 a 的取值范围是________.
结束
3.函数 f(x)=2ln x 的图像与函数 g(x)=x -4x+5 的图像的交点个数为 A.3 B.2 C.1 D.0 ( )
结束
关于y轴对称 y=f(x)――――――→y=f(-x) ;
- f(- 关于原点对称 y=f(x)――――――→y= .
(4)翻折变换:
x)
去掉y轴左边图,保留y轴右边图 y=f(x)――――――――――――――――→y=f(|x|); 将y轴右边的图像翻折到左边去
留下x轴上方图 y=f(x)――――――――――――→y=|f(x)|. 将x轴下方图翻折上去
三角函数图像的变换教案

三角函数图像的变换教案一、教学目标:1. 理解三角函数图像的基本特征。
2. 掌握三角函数图像的平移、缩放、翻折等变换方法。
3. 能够运用变换方法分析三角函数图像的性质。
二、教学内容:1. 三角函数图像的基本特征:正弦函数、余弦函数、正切函数的图像。
2. 图像的平移变换:向上或向下平移、向左或向右平移。
3. 图像的缩放变换:水平方向缩放、垂直方向缩放。
4. 图像的翻折变换:水平翻折、垂直翻折。
三、教学重点与难点:1. 教学重点:三角函数图像的平移、缩放、翻折变换方法。
2. 教学难点:变换方法在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解三角函数图像的基本特征及变换方法。
2. 利用多媒体展示图像,直观地演示变换过程。
3. 引导学生通过观察、分析、归纳,自主探索图像的变换规律。
4. 运用例题讲解,让学生学会运用变换方法解决实际问题。
五、教学步骤:1. 导入新课:回顾三角函数图像的基本特征,引导学生关注图像的变换。
2. 讲解图像的平移变换:以正弦函数为例,讲解向上或向下平移、向左或向右平移的规律。
3. 讲解图像的缩放变换:以正弦函数为例,讲解水平方向缩放、垂直方向缩放的规律。
4. 讲解图像的翻折变换:以正弦函数为例,讲解水平翻折、垂直翻折的规律。
5. 运用例题,让学生学会运用变换方法解决实际问题。
6. 课堂练习:让学生独立完成一些图像变换的练习题,巩固所学知识。
8. 布置作业:布置一些有关三角函数图像变换的练习题,让学生课后巩固。
六、教学评价:1. 通过课堂讲解、练习和作业,评价学生对三角函数图像变换的理解和掌握程度。
2. 观察学生在解决问题时的思维过程和方法,评估他们的分析和应用能力。
3. 收集学生的课堂表现和互动情况,评价他们的参与度和合作精神。
七、教学拓展:1. 探讨三角函数图像变换在实际应用中的例子,如电子音乐合成器的波形调整、工程结构的优化设计等。
2. 引入高级数学工具,如计算机软件,让学生学会使用这些工具进行三角函数图像的变换和分析。
二次函数图像的转化与性质

二次函数图像的转化与性质二次函数是初中数学中的重要内容,它的图像具有独特的特点和性质。
在学习二次函数时,我们不仅需要了解它的基本形式和图像特点,还需要学习如何进行图像的转化。
本文将介绍二次函数图像的转化方法以及转化后的性质,帮助中学生更好地理解和应用二次函数。
一、平移变换平移变换是指将二次函数的图像沿着横轴或纵轴方向移动一定的单位长度。
平移变换可以改变二次函数图像的位置,但不改变其形状。
常见的平移变换有水平平移和垂直平移两种。
1. 水平平移水平平移是指将二次函数的图像沿着横轴方向移动。
具体操作是,在二次函数的自变量x中加上一个常数h,即可实现水平平移。
例如,对于二次函数y=x^2,若要将其向右平移2个单位,则可得到新的函数y=(x-2)^2。
这样,二次函数的图像将整体向右平移2个单位。
2. 垂直平移垂直平移是指将二次函数的图像沿着纵轴方向移动。
具体操作是,在二次函数的因变量y中加上一个常数k,即可实现垂直平移。
例如,对于二次函数y=x^2,若要将其向上平移3个单位,则可得到新的函数y=x^2+3。
这样,二次函数的图像将整体向上平移3个单位。
二、翻折变换翻折变换是指将二次函数的图像沿着横轴或纵轴方向翻折。
翻折变换可以改变二次函数图像的形状,但不改变其位置。
常见的翻折变换有关于x轴翻折和关于y 轴翻折两种。
1. 关于x轴翻折关于x轴翻折是指将二次函数的图像沿着x轴翻折。
具体操作是,将二次函数的因变量y取相反数,即可实现关于x轴翻折。
例如,对于二次函数y=x^2,若要将其关于x轴翻折,则可得到新的函数y=-x^2。
这样,二次函数的图像将关于x 轴对称。
2. 关于y轴翻折关于y轴翻折是指将二次函数的图像沿着y轴翻折。
具体操作是,将二次函数的自变量x取相反数,即可实现关于y轴翻折。
例如,对于二次函数y=x^2,若要将其关于y轴翻折,则可得到新的函数y=(-x)^2。
这样,二次函数的图像将关于y 轴对称。
三、性质分析通过平移变换和翻折变换,我们可以改变二次函数图像的位置和形状,从而得到新的二次函数。
函数图象的变换

3.合理处理识图题与用图题
(1)识图
对于给定函数的图象,要能从图象的 左右、上下分布范围、变化趋势、对 称性等方面研究函数的定义域、值域、 单调性、奇偶性、周期性,注意图象 与函数解析式中参数的关系.
从图象的左右分布,分析函数的定义域;从 图象的上下分布,分析函数的值域;从图象 的最高点、最低点,分析函数的最值;从图 象的对称性,分析函数的奇偶性;从图象的 走向趋势,分析函数的单调性、周期性等.
2.已知x1是方程xlg x=2008的根,x2是方程 x10x=2008的根,则x1x2等于( )
正确的一组是( C )
A. (4) (1) (2) (3) C. (1) (4) (2) (3)
B. (1) (4) (3) (2) D. (3) (4) (2) (1)
例2 设a<b,函数 y=(x-a)2(x-b)的图象可能是
( C)
解析 当x>b时,y>0,x<b时,y≤0.故选C.
(1)函数y=
8.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,
f(x)=x,且在[-1,3]内,关于x的方程
f(x)=kx+k+1
( 1 ,0)
3 (k∈R,k≠-1)有四个根,则k的取值范围是
.
三、解答题 10.已知g(x)=x(2-x)(0≤x<1),g(1)=0,若函数
y=f(x)(x∈R)是以2为周期的奇函数,且在[0,1] 上f(x)=g(x),作出函数y=f(x)(-2≤x≤2)的图象 并 求其表达式. 解 ①x∈[0,1)时,f(x)=g(x)=x(2-x); ②∵f(x)为奇函数,当x=1时, f(1)=g(1)=0,∴f(-1)=0=f(1), ③若x∈(-1,0],则-x∈[0,1), ∴g(-x)=-x(2+x), 又∵f(-x)=g(-x)且f(x)为奇函数, ∴f(-x)=-f(x)=-x(2+x),
高一数学寒假讲义之函数的图像及变换提高(学生版)
函数y=f(a+x)的图像与函数y=f(a-x)的图像关于直线x=a对称;
函数y=f(a+x)的图像与函数y=f(b-x)的图像关于直线x=a+b/2对称;
函数y=f(x)的图象关于点(a,b)的对称图形是函数y=2b-f(2a-x)的图象。
【试题来源】
【题目】已知函数 的定义域为 ,并且满足 .
①证明函数 的图象关于直线 对称;
②若 又是偶函数,且 时, ,求 时 的=m(x+ )的图象与函数h(x)= (x+ )+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+ 在区间(0,2]上为减函数,求实数a的取值范围
【试题来源】
【题目】设函数 的图象为 、 关于点A(2,1)的对称的图象为 , 对应的函数为 , (Ⅰ)求函数 的解析式,并确定其定义域;
(Ⅱ)若直线 与 只有一个交点,求 的值,并求出交点的坐标.
【试题来源】
【题目】作出下述函数图象:
(1) (2)
【试题来源】
【题目】函数 在 上递减,那么 在 上
知识梳理
知识点一:函数图像的对称变换
函数y=f(-x)的图象与y=f(x)的图象关于y轴对称(即把(x,y)换成(-x,y));
函数y=-f(x)的图象与y=f(x)的图象关于x轴对称;(即把(x,y)换成(x,-y))
函数y=-f(-x)的图象与y=f(x)的图象关于原点对称(即把(x,y)换成(-x,-y));
高一提高课程
“函数的图像及变换”
学生姓名
授课日期
教师姓名
授课时长
第七讲函数图像及函数与方程解析版
第七讲:函数图像、函数与方程【考点梳理】 1、函数的图象 (1)平移变换:0,0,||()()a a a a y f x y f x a ><=−−−−−−→=-向右移个单位向左移个单位 0,0,||()()+b b b b y f x y f x b ><=−−−−−−→=向上移个单位向下移个单位(2)伸缩变换:101,11,()()y f x y f x ωωωωω<<>=−−−−−−−−−−−−−→=纵坐标不变,横坐标伸长为原来的倍纵坐标不变,横坐标缩短为原来的倍1,01,()()A A A A y f x y Af x ><<=−−−−−−−−−−−−→=横坐标不变,纵坐标伸长为原来的倍横坐标不变,纵坐标缩短为原来的倍(3)对称变换:()()x y f x y f x =←−−−−→=-关于轴对称()()y y f x y f x =←−−−−→=-关于轴对称()()y f x y f x =←−−−−→=--关于原点对称(4)翻折变换:()(||)y y y y f x y f x =−−−−−−−−−−−→=去掉轴左侧图象,保留轴及右侧图象将轴右侧的图象翻折到左边()|()|x x y f x y f x =−−−−−−−−−→=保留轴及其上方图象将轴下方的图象翻折到上方去2、函数与方程(1)判断二次函数()f x 在R 上的零点个数,一般由对应的二次方程()0f x =的判别式0,0,0∆>∆=∆<来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数()f x 在[,]a b 上的图象是连续不断的一条曲线,且是单调函数,又()()0f a f b ⋅<,则()y f x =在区间(,)a b 内有唯一零点.【典型题型讲解】考点一:函数的图像【典例例题】例1.(多选题)在同一直角坐标系中,函数()()()10,1,xf x a a ag x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC【方法技巧与总结】1.熟练掌握高中八个基本初等函数的图像的画法2.函数的图像变换:平移,对称、翻折变换 【变式训练】1.已知图①中的图象是函数()y f x =的图象,则图②中的图象对应的函数可能是( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--【答案】C 【详解】图②中的图象是在图①的基础上,去掉函数()y f x =的图象在y 轴右侧的部分, 然后将y 轴左侧图象翻折到y 轴右侧,y 轴左侧图象不变得来的, ∴图②中的图象对应的函数可能是(||)y f x =-. 故选:C.2.已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,3.若函数()xf x a =(0a >且1a ≠)在R 上为减函数,则函数()log 1a y x =-的图象可以是( )A .B .C .D .【答案】D 【详解】因为函数()xf x a =(0a >且1a ≠)在R 上为减函数.所以01a << .因为函数()log 1a y x =-,定义域为()()11,-∞-+∞,故排除A 、B.当1x >时,函数()()log 1log 1a a y x x =-=-在1,上单调递减.当1x <-时, 函数()()log 1log 1a a y x x =-=--在()1-∞-单调递增. 故选:D.由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.4.函数()ln f x x x =的图象如图所示,则函数()1f x -的图象为( )A .B .C .D .【答案】D 【详解】将函数()f x 的图象作以y 轴为对称轴的翻折变换,得到函数()f x -的图象,再将图象向右平移一个单位,即可得到函数()()()11f x f x -=--的图象. 故选:D .考点二:求函数的零点或零点所在区间判断【典例例题】例1.已知函数()f x 满足()()1f x f x =--,且0x 是()e x y f x =+的一个零点,则0x -一定是下列函数的零点的是( )A .()e 1xy f x =-B .()e 1xy f x =--C .()1e xy f x =+ D .()e xy f x =-【答案】A 【详解】 因为()()1f x f x =--,所以()()f x f x -=-,所以函数()f x 是奇函数.由已知可得()00e 0x f x +=,即()00e x f x =-.所以()00e 1x f x -=-,所以()00e 1x f x --=,故0x -一定是()e 1x y f x =-的零点,故A 正确,B错误; 又由()00e1x f x --=,得()001e x f x --=,所以()0011120e e e e x x x x f x -----+=+=≠,故C 错误;由()()000000e e e e 0x x x x f x f x -----=--=-≠,故D 错误.故选:A .例2.函数()e 26xf x x =+-的零点所在的区间是( )A .()3,4B .()2,3C .()1,2D .()0,1【答案】C 【详解】函数()e 26x f x x =+- 是R 上的连续增函数, 2(1)e 40,(2)e 20f f =-<=->,可得(1)(2)0f f <,所以函数()f x 的零点所在的区间是(1,2). 故选:C【方法技巧与总结】求函数()x f 零点的方法:(1)代数法,即求方程()0=x f 的实根,适合于宜因式分解的多项式;(2)几何法,即利用函数()x f y =的图像和性质找出零点,适合于宜作图的基本初等函数. 【变式训练】1.已知函数()()21,01,0x x f x x x ⎧-≥⎪=⎨+<⎪⎩,则1()2y f x =-的所有零点之和为( )A B C .2 D .0【答案】D 【详解】0x ≥时,由21(1)02x --=得1x =±,0x <时,由1102x +-=得12x =-或32x =-,所以四个零点和为1311022-=. 故选:D .2.已知函数()24x f x x =+-,()e 4x g x x =+-,()ln 4h x x x =+-的零点分别是a ,b ,c ,则a ,b ,c 的大小顺序是( ) A .a b c << B .c b a << C .b a c << D .c a b <<【答案】C 【详解】 由已知条件得()f x 的零点可以看成2x y =与4y x =-的交点的横坐标,()g x 的零点可以看成e x y =与4y x =-的交点的横坐标,()h x 的零点可以看成ln y x =与4y x =-的交点的横坐标,在同一坐标系分别画出2x y =,e x y =,ln y x =,4y x =-的函数图象,如下图所示, 可知c a b >>, 故选:C .3.(2022·广东广州·二模)函数()sin ln 23f x x x π=--的所有零点之和为__________. 【答案】9【详解】由()0sin ln |23|x x f x π=⇔=-,令sin y x =π,ln 23y x =-, 显然sin y x =π与ln 23y x =-的图象都关于直线32x =对称, 在同一坐标系内作出函数sin y x =π,ln 23y x =-的图象,如图,观察图象知,函数sin y x =π,ln 23y x =-的图象有6个公共点,其横坐标依次为123456,,,,,x x x x x x , 这6个点两两关于直线32x =对称,有1625343x x x x x x +=+=+=,则1234569x x x x x x +++++=, 所以函数()sin ln 23f x x x π=--的所有零点之和为9. 故答案为:94.若2log 3x x ⋅=,23y y ⋅=,ln 3z z ⋅=,则x 、y 、z 由小到大的顺序是___________. 【答案】y x z << 【详解】依题意,0,0,0x y z >>>,223log 3log x x x x ⋅=⇔=,3232y yy y ⋅=⇔=,ln 3z z ⋅=3ln z z⇔=,因此,2log 3x x ⋅=成立的x 值是函数12log y x =与43y x=的图象交点的横坐标1t , 23y y ⋅=成立的y 值是函数22x y =与43y x=的图象交点的横坐标2t , ln 3z z ⋅=成立的z 值是函数3ln y x =与43y x=的图象交点的横坐标3t , 在同一坐标系内作出函数1223log ,2,ln xy x y y x ===,43y x=的图象,如图,观察图象得:213t t t <<,即y x z <<,所以x 、y 、z 由小到大的顺序是y x z <<. 故答案为:y x z <<6.函数2()log f x x x =+的零点所在的区间为( ) A .11,32⎛⎫ ⎪⎝⎭B .12,23⎛⎫ ⎪⎝⎭C .23,34⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭【答案】B 【详解】2()log f x x x =+为(0,)+∞上的递增函数,222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B考点三:函数零点个数的判断【典例例题】例1.函数()32,03e ,0xx x f x x x ⎧+≤=⎨-+>⎩的零点个数为___________. 【答案】2 【详解】当0x ≤时,令320x +=,解得x =0<,此时有1个零点;当0x >时, ()3e x f x x =-+,显然()f x 单调递增,又1215e 0,(1)2e>022f f ⎛⎫=-+<=-+ ⎪⎝⎭,由零点存在定理知此时有1个零点;综上共有2个零点.故答案为:2.例2.定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【详解】∴()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.2.利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案3.利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。
@高一学生,高一数学函数图像知识点,太实用了
@高一学生,高一数学函数图像知识点,太实用了一、基本初等函数的图像1.一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数当底数不同时,对数函数的图像是这样变换的6.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。
二、函数图像的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?下面我们一起来看一看:通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x轴上的变换,那就一定要看x这个符号有啥变化。
所以,我们可以得出:第一步,翻折变换;第二步,对称变换;第三步,平移变换。
有的同学说,第一步是对称变换,也就是先在x上加负号,但是接下来的话,再进行翻折变换,就相当于在-x上加绝对值了,而这个并不是我们学过的规律,所以后面就无法进行变换了,这样也就错了。
中考复习函数专题30 函数图象的平移与变换(老师版)
专题30 函数图象的平移与变换知识对接考点一、函数图象的变换一 、平移变换函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种:①沿水平方向左右平行移动②沿竖直方向上下平行移动1.利用描点法作函数的图象的基本步骤:①确定函数的定义域②简化函数的解析式③讨论函数的性质(奇偶性、单调性、最值等)④画出函数的图象2.图象的平移变换①)0)((>-=a a x f y 的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)0)((>+=a a x f y 的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到②)0()(>±=h h x f y 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到注意:(1)可以将平移变换化简成口诀:左加右减,上加下减(2)谁向谁变换是)(x f y =→)(a x f y -=还是)(a x f y -=→)(x f y =二、对称变换图象的对称性是函数在对称区间上值域具有不同特点的直观反应,函数图象的对称性反应在两个方面,一是两个函数图象间的对称情况,二是一个函数图象本身的对称情况。
两个函数图象间的对称情况有两种形式:一是两图关于某条直线对称,二是两图象关于某点呈中心对称。
①)(x f y =与)(x y -=)的图象关于y 轴对称②)(x f y =与)(x y -=的图象关于x 轴对称③)(x f y =与)(x y -=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将)(x f y =的)图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。
⑤()x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 y f (x) 保留x轴上方图像,再将x轴
下方图像对称翻折到x轴上方
y f (x)
五、适应练习Ⅱ
分别作出下列函数的图像:
1、 y x2 4x 3
2、 y x2 4 x 3
解:1、y
x2
4x
3
保留x轴上方图像,再将x轴 下方图像对称翻折到x轴上方
y x2 4x 3
2、y
x2
4x
y log2x 1 {x | x 0}
(0,1] [0,)
偶
增区间(: ,0) 减区间(: 0, )
非奇非偶 增区间(: 2,) 减区间(: 0,2)
六、实例讲解
例2:求关于x的方程 x2 2x 3 a(a R) 的不同实根的个数。
解:在同一坐标 系中,作出 y=|x2+2x-3|和 y=a的图像。
3
保留y轴右侧图像,再将y轴 右方图像对称翻折到y轴左方
y
x2
4x
3
y
4 y x2 4x 3
注意区分
y x2 4x 3
y
4
0,3 3
y f ( x )与
0,3 3
-4 -3 -2 -1
2
2,1
1
1,0 3,0
y f (x) 的表
现形式哦!
3,0
2
1,0 1 1,0 3,0
01 2 3 4 x
画出函数yy lloogg22xx的图像,并指出它与 y log 2 x 的图像有何联系?
y
log
x 2
y
4
3 y log 2 x
2
y
4 y log 2x
3
2
1
1,0 1,0
-4 -3 -2 -1 0 1 -1
-2
-3
2 34 x
y log2 x
-4 -3 -2 -1
y log 2 x
1
-3 -2 -1
01 2 3 x -1
-2 y=a(a=0) -3 有两个交点
-4
七、抽像概括
1、图像变换法:
(1)对称变换法
(2)翻折变换法
y f (x)
关于y轴对称
y f (x)
关于x y
轴对称
f (x)
关于直线 y f 1(x)
y=x对称
关于原点对称
y f (x)
y f(x)
保留y轴右侧图像, 再将y轴右方图像对 称翻折到y轴左方
(1)x 2
保留y轴右侧图像,再将y轴
y
4
1,2
3
y (1)x
2
2
1, 1 2
1 1, 1 0,1 2
-4 -3 -2 -1 0 1 2 3 4 x
-1
y (1) x 2
-2
-3
y y log2x 1
-4 -3 -2 -1
4
y log 2 x
3
右方图像对称翻折到y轴左方 y (1) x
y
4 3
y 3x
y 3x1 1,1
2
10,11,1
y 3 x1
-4 -3 -2 -1 0 1 2 3 4 x
-1
-2
-3
y 3x
y
4 3
y 3xBiblioteka 201,1 1,1
y 3 x1
-4 -3 -2 -1 0 1 2 3 4 x
-1
-2
-3
注意:当自变 量的系数为负 时,注意平移 变换的方向
四、问题探究Ⅱ
2
2
1,1
1
1,0
4,2 4,1
2、y log 2 x
向下移1 个单位
y log 1 x 0 1 2 1 ,1 3 4
保留x轴上方图 -1 2 1,1
y log 2 x 1
x 2
像,再将x轴 -2 1 ,2 下方图像对称翻 2
-3
折到x轴上方 y log2x 1
y (1)x 2
R
上加下减
问题思考:
1、如何由函数 y 3x 的图像得到函数y 3 (1)x 的图像? 3
2、如何由函数 y x2 4x 3 的图像作出函数y x2 4x 3 的图像?
二、问题探究Ⅰ
在同一坐标系下作出函数 y 2x与yy 222x,xx 的图像,观察函数图
像的特征,你能得出什么结论?
1,0
01 2 3 4 x
-1
-2 -3
y log 2x
y log 2 x
lloogg22xx((xx
0) 0)
函数图像的翻折变换规律:
y
log 2x
log log 2
2 x
x (x 1) (0 x
1)
由 y f (x) 保留y轴右侧图像,再将y轴
右方图像对称翻折到y轴左方
y f(x)
y f (x)
(x,y)换成(-x,y)
2、y f (x) 关于x轴对称 y f (x)
(x,y)换成(x,-y)
3、y f (x) 关于原点对称 y f (x)
(x,y)换成(-x,-y)
三、适应练习Ⅰ
1、 y x2 与 y x2 的图像关于____x__轴_______对称;
2、 f (x) 2x1 与g(x) 21x 的图像关于___y__轴________对称;
3、如何由函数 y 3x 的图像得到函数 y 3 (1)x
解:
y 3 (1)x 3 3x 3x1
3
3
y 3x 向左移1个单位 y 3x1 关于y轴对称
的图像?
y 3 x1
或:y 3x 关于y轴对称 y 3 x 向右移1个单位 y 3(x1) 3x1
由图可知:
y=a(a=4) 有三个交点
y=a(0<a<4) 有四个交点
y=a(a>4) y 有二个交点
4 3 2 1
当a<0时, 方程无解;
当a=0时, 方程有两个解;
当0<a<4时,方程有四个解;
y=a(a<0) 没有交点
当a>=4或时a,=方0时程,有方三程个有解两;个解.
当a>4时, 方程有两个解.
y
4 3
y 2x
2
y 2x
1
-2 -1 0 1 2 x
-1
-2
-3
y
4
3
y 2x
2
1
-2 -1 0 1 2 x
-1
y 2x -2
-3
y4
3 2 1
y 2x
-2 -1
01 2 x
-1
-2 y 2 x
-3
关于y轴对称
关于x轴对称
关于原点对称
函数图像的对称变换规律:
关于y轴对称
1、 y f (x)
-4 -3 -2 -1 0 1 2 3 4 x
-1 2,1
-2
2,1 -1 2,1
-2
-3 y x2 4x 3
y x2 4 x 3 -3
图1
图2
六、实例讲解
例1、作出下列函数的图像,并指出函数的定义域、值域、奇偶性、单调性:
1、y ( 1 ) x 2
2、 y log2x 1
解:1、y
函数图像的变换
一、新课引入
函数图像的平移变换规律: 本质上是函数图像上的每个点的平移
y f (x) y f (x)
y f (x a)
a0
a0
向左平移 a 个单位
向右平移
a
个单位
左右平移
左加右减
y f (x) k
k0
k 0
向上平移 k 个单位 上下平移
向下平移
k
个单位