人脸识别技术及应用概览全在这里
人脸识别技术的原理与应用

人脸识别技术的原理与应用人脸识别技术是一种基于特定算法将人脸图像进行检测、特征提取、匹配的过程,以从中识别出人脸信息的技术。
其应用范围十分广泛,如安防、金融、教育、医疗等领域。
本文将介绍人脸识别技术的原理和应用。
一、人脸识别技术的原理人脸识别技术的原理是基于计算机视觉技术实现的。
首先,通过摄像机拍摄到的人脸图像经过各种处理,通过面部识别算法提取出人脸的各种特征,如眼睛、鼻子、嘴巴、面部轮廓等特征。
这些特征被称为“人脸特征点”或“人脸特征向量”,它们是用数字表示的一组特征数据。
其次,通过对这些特征进行保存并进行计算,得到一个所谓的“人脸模板”,这就是用来表示一个人脸的数字化特征,也是进行比对时用来作为参照的数据。
当有新的人脸出现时,系统将提取该脸部的特征并与系统中已保存的人脸模板进行比对,系统会计算两个人脸特征数据之间的相似度,从而进行人脸识别。
为了提高人脸识别的准确率,特征提取和人脸比对是非常重要的环节。
当前,人脸识别技术主要涉及2D人脸识别和3D人脸识别两种方式。
其中,2D人脸识别是通过二维平面图像进行人脸识别,适用于静态场景;3D人脸识别借助3D建模技术,将人脸建立成三维识别模型,适用于动态场景。
二、人脸识别技术的应用1. 安防领域人脸识别技术在安防领域的应用较为广泛,可以用来进行出入检测和身份识别等方面。
例如,在公共场合如机场、车站、商场、公园等对人的出入进行监控以及对犯罪犯罪分子的追踪和抓捕等方面。
2. 金融领域人脸识别技术在金融领域中广泛应用,以增强金融机构的安全性和客户体验。
如,人脸识别技术可以用于ATM机上的实名认证、银行网站的账户登录等方面,这些应用可以极大地减轻人力负担,提高工作效率。
3. 教育领域人脸识别技术在教育领域中也逐渐被广泛应用。
例如,人脸识别技术可以用于学籍管理系统中的学生签到、考试监控等方面。
此外,也可以用于课堂表情识别、心理测量等领域,能够大大提高学生学习的效果和体验。
人脸识别技术的发展历程与应用

人脸识别技术的发展历程与应用随着科技的不断发展,人们的生活越来越依赖于科技,人脸识别技术也是近年来快速发展的一项技术。
对于许多人来说,人脸识别技术已经不是陌生的概念了。
人脸识别技术早在上世纪70年代就开始应用于生活中,而近年来随着技术不断改进和应用场景越来越广泛,人脸识别技术的发展历程也变得越来越迅速。
一、人脸识别技术的发展历程人脸识别技术的起源可以追溯到上世纪70年代,当时的技术还十分原始,只能识别二值图像上的特征点。
80年代初,随着电视技术,数字图像处理以及计算机技术的快速发展,人脸识别技术逐渐得到了改进。
1991年,首个基于人脸识别技术的商业项目诞生。
1992年,美国M.I.T推出了名为"Eigenface"的人脸识别技术,这一技术不但可以在识别人脸的基础上还可以通过图像数据的处理生成人脸图像。
进入21世纪,随着深度学习、机器学习等相关技术的快速发展,人脸识别技术的性能得到了很大的提升。
2010年,美国M.I.T 的Ryan、Evan等人提出了DeepFace系统,这一技术在Labeled Faces in the Wild(LFW)数据集进行测试,识别率达到了97.35%。
随着科技的进步,现在的人脸识别技术已经非常成熟,准确率远高于人类,而且还可以通过增加数据量和改进深度学习算法等方式提高技术的识别准确率。
二、人脸识别技术在生活中的应用1. 安防领域人脸识别技术在安防领域中得到了广泛应用,如在银行、机场、地铁站等公共场所可以看到人脸识别技术的应用。
这种技术可以通过对比数据库中的人脸信息进行识别,从而达到防止恶意进入、保障人员安全等目的。
另外,人脸识别技术还能够高效地识别危险人物,为公共安全保驾护航。
2. 消费支付领域人脸识别技术也被广泛应用在消费支付领域。
通过人脸识别技术,用户就可以直接扫描自己的脸部进行付款。
虽然这种支付方式一开始存在一定的安全隐患,但是随着技术的不断改进以及数据加密等技术的应用,许多用户便开始接受这种支付方式。
人脸识别的几种用途

人脸识别的几种用途人脸识别技术近年来得到了广泛的应用和发展,不仅在安防领域,还在医疗、金融、教育等领域得到了广泛的应用。
本文将从几个方面介绍人脸识别技术的用途。
一、安防领域在安防领域,人脸识别技术是非常重要的一项技术。
人脸识别技术可以将人脸图像与数据库中的图像进行比对,从而实现对特定人员的识别。
这种技术在监控系统中被广泛应用。
例如,在公共场所安装的监控摄像头可以通过人脸识别技术对人员进行识别,从而实现对安全隐患的排查和防范。
此外,在一些高安全要求的场所,如金融机构、政府机构等,人脸识别技术也得到了广泛应用,可以通过人脸识别技术对进出人员进行识别和授权,从而保证机构的安全。
二、教育领域在教育领域,人脸识别技术也得到了广泛应用。
例如,在考试中,人脸识别技术可以对考生进行身份识别,从而保证考试的公平性和准确性。
此外,在一些学校,人脸识别技术也被用于学生考勤,可以准确记录学生的出勤情况,从而方便教师进行管理。
三、金融领域在金融领域,人脸识别技术也得到了广泛应用。
例如,在银行、证券等金融机构,人脸识别技术可以用于客户身份识别和验证,从而保证金融交易的安全性和准确性。
此外,在一些金融机构的ATM 机上也可以应用人脸识别技术,可以通过人脸识别技术对用户进行身份认证,从而保证用户资金的安全。
四、医疗领域在医疗领域,人脸识别技术也得到了广泛应用。
例如,在医院,人脸识别技术可以用于医生和护士的身份认证,从而保证医院的安全。
此外,在一些医疗设备上也可以应用人脸识别技术,例如在一些检测设备上,可以通过人脸识别技术对患者进行身份认证,从而保证检测的准确性和安全性。
五、社交领域在社交领域,人脸识别技术也得到了广泛应用。
例如,在一些社交软件中,人脸识别技术可以用于人脸识别和人脸标记,从而方便用户进行社交互动。
此外,在一些游戏中,人脸识别技术也可以用于角色扮演,从而提升游戏的趣味性和参与性。
人脸识别技术在不同领域有着广泛的应用,可以大大提高工作效率和安全性。
人脸识别系统的原理与应用

人脸识别系统的原理与应用人脸识别技术: 人脸识别系统的原理与应用随着科技的不断发展,人脸识别技术逐渐成为我们生活中不可或缺的一部分。
本文将介绍人脸识别系统的原理和应用,并探讨其在各个领域的潜在价值。
一、人脸识别系统的原理人脸识别系统的原理基于对人脸图像的分析和比对,通过计算机算法来识别和验证一个人的身份。
其主要包括以下几个步骤:1. 图像采集:人脸识别系统首先需要获取人脸图像,常见的方法包括摄像头录制、视频监控等。
这些图像将成为后续分析的基础。
2. 图像预处理:采集到的人脸图像需要经过预处理,包括图像去噪、灰度化、尺寸标准化等。
这些步骤旨在减少图像中的干扰信息,提高后续处理的准确性。
3. 人脸检测与定位:通过算法对预处理后的图像进行人脸检测与定位,确定人脸的位置和边界框。
常用的方法包括Haar特征分类器、卷积神经网络等。
4. 特征提取与编码:通过提取人脸图像中的特征点或特征描述符,将其转化为计算机可处理的数据。
常见的方法有主成分分析、局部二值模式等。
5. 特征匹配与比对:将提取到的特征与事先存储的人脸模板进行比对,通过计算相似度来判断是否匹配。
匹配算法常用的有欧氏距离、余弦距离等。
二、人脸识别技术的应用人脸识别技术在现实生活中有着广泛的应用,以下是几个重要领域的案例:1. 安全领域:人脸识别技术可以应用于安防系统中,通过与数据库中的人脸模板比对,实现门禁、闸机等设备的自动识别和进出控制。
此外,人脸识别还可以应用于公共场所的监控系统,帮助识别可疑人员和犯罪嫌疑人。
2. 营销领域:利用人脸识别技术可以对顾客进行性别、年龄、情绪等属性的识别,从而为商家提供更精准的个性化营销服务。
例如,在广告牌、商场等场所中展示与用户属性相关的广告内容,提高广告的效果和转化率。
3. 教育领域:人脸识别技术可以应用于学校的考勤系统,实现学生的自动签到签退,提高考勤的准确性和效率。
此外,在学生的机器学习过程中,人脸识别技术也可以用于情感识别和学习行为分析,帮助教师更好地理解学生,并进行个性化的教学。
人脸识别技术原理与应用

人脸识别技术原理与应用随着人工智能技术的发展,人脸识别技术已经成为人们生活中的一部分。
从手机的解锁,到安全监控,人脸识别技术正不断地被应用于不同的领域,但是很多人并不了解人脸识别技术的原理与应用。
本文将着重介绍人脸识别技术的原理和应用。
一、人脸识别技术的原理人脸识别技术是一种通过对反映人脸特征的外貌图像进行处理来实现的技术。
它的核心原理是人脸图像处理和人工智能模型的结合。
首先,人脸图像处理是指使用计算机对人脸图像进行处理,将人脸的各个特征进行提取。
这些特征包括人脸的轮廓、眼睛、鼻子、嘴巴等。
使用人脸图像处理技术可以将人脸的各个特征提取出来,形成一个类似于人脸图像的矩阵。
然后,通过对这些特征进行分析和处理,构建人工智能模型,实现对人脸的自动识别。
人工智能模型可以学习和识别人脸的特征,比如人脸的轮廓,眼睛的大小和位置等。
通过人工智能模型,我们可以对人脸进行分类和认证。
但是,不同的人脸识别技术,使用的人脸图像处理和人工智能模型可能会不同。
这些差异会导致识别准确性的差别,所以,在人脸识别技术的开发与应用过程中需要考虑使用者的需求与场景,进行技术上的选择。
二、人脸识别技术的应用在生活中,人脸识别技术已经广泛应用于不同领域。
以下是一些常见的应用场景。
1. 安全监控:人脸识别技术可以应用在安全监控中,通过对人脸的特征进行识别,可以实现对人员进出的自动识别和监控,提高安全管理的精度和效率。
2. 移动支付:人脸识别技术可以用于移动支付场景中,用户只需要通过面容即可完成支付,提高了支付的便利性和速度。
3. 社会准入认证:在某些场合,如银行、机场、政务大厅等,需要进行身份验证和认证。
人脸识别技术可以通过对人脸的照片进行匹配和比对,识别出是否为本人,从而达到快速、准确地识别个人身份。
4. 门禁管理:人脸识别技术可以应用于门禁管理中,只有员工在系统中添加了个人人脸信息以后,才能在门禁中进行识别开门,从而有效控制进出人员,确保公司安全。
人脸识别有哪些应用场景

人脸识别技术凭借其高效、准确的特性,在多个领域得到了广泛的应用。
以下是一些主要的应用场景:
1.安防领域:人脸识别系统被广泛应用于监控和门禁系统,提高了安全性和便利性。
例如,在平安智慧城市、社区小区、写字楼、园区、工地等地方,人脸识别技术可以有效进行出入管理和安全监控。
2.零售业:人脸识别技术有助于零售商进行客户身份验证,从而提供个性化的购物体
验。
3.金融行业:人脸识别技术在金融服务领域如ATM机、手机银行等场景中发挥着重
要作用,不仅提高了安全性,也提升了便利性。
通过面部识别验证用户身份后,用户可以快速完成转账操作或其他金融服务。
4.教育领域:人脸识别技术可用于考勤系统和学生管理系统,提高管理效率。
例如,
学校可以通过识别学生的脸部特征来记录出勤情况,方便教学管理。
5.旅游行业:在景区门票、酒店入住等场景,人脸识别技术可以提高服务质量和效
率,为游客带来更好的体验。
6.娱乐产业:在电影院票务系统、游戏平台等场景,人脸识别技术可以实现个性化推
荐和互动体验,提升用户满意度。
7.医疗领域:人脸识别技术可用于医院挂号、病人识别等场景,有助于提高医疗服务
质量。
此外,人脸识别技术还广泛应用于智能商业领域、海关、边检领域、智能监狱、企业智能办公领域、建筑工地等。
需要注意的是,虽然人脸识别技术带来了诸多便利,但在使用过程中也需要关注隐私保护和信息安全问题,确保合法合规地应用这一技术。
人脸识别的应用领域

人脸识别的应用领域随着科技的不断发展,人脸识别技术逐渐应用于各个领域。
这项技术通过对个体面部特征的检测和分析,实现对身份信息的识别和验证。
人脸识别的应用领域广泛,涉及到安全、生活便利、商业等多个领域。
本文将重点探讨人脸识别技术在安防领域、公共事务和生活便利方面的应用。
一、人脸识别在安防领域的应用1. 入侵检测与报警系统:人脸识别技术可以用于监控系统中,通过对监控视频中的人脸进行识别,实现对潜在入侵者的识别和报警。
该系统可以有效提高安全防护水平,防止不法分子的入侵。
2. 边境管理和公共安全:在边境检查和公共交通场所,人脸识别技术可以用于身份验证和识别犯罪嫌疑人。
通过快速识别人脸,辅助人员对可疑人员进行排查和调查,提高边境管理和公共安全管理水平。
3. 个人身份验证和门禁系统:人脸识别技术可以用于企事业单位的门禁系统中。
只需通过扫描人脸,即可快速验证个体身份,实现快捷、安全的门禁管理,取代传统的刷卡或密码验证方式。
二、人脸识别在公共事务中的应用1. 公共交通管理:人脸识别技术可以应用于公共交通管理中,如地铁、火车站等。
通过人脸识别技术,系统可以自动识别乘客的身份,提高乘客通行速度,减少排队时间,提高交通效率。
2. 社会福利发放与管理:在社会福利发放与管理方面,人脸识别技术可以用于个人身份验证,确保福利资金准确发放到合法受助人手中,减少欺诈行为的发生。
3. 犯罪侦查与取证:在犯罪侦查与取证方面,人脸识别技术可以通过对犯罪现场监控视频中的人脸进行识别,帮助警方快速锁定嫌疑犯的身份,提高破案效率。
三、人脸识别在生活便利中的应用1. 移动支付:人脸识别技术可以用于移动支付,取代传统的密码输入方式。
用户只需通过扫描脸部,即可完成支付,提高支付速度和安全性。
2. 旅游和酒店入住:旅游和酒店行业可以利用人脸识别技术,对游客进行身份验证,提供更加便捷的入住服务,节省接待时间并增加客户满意度。
3. 教育行业:在学校和教育机构中,人脸识别技术可以用于考勤系统。
人脸识别技术的发展及应用

人脸识别技术的发展及应用随着社会的发展,安全问题也日益成为人们关注的焦点。
在各种安全保障技术中,人脸识别技术受到越来越多的关注和应用。
人脸识别技术是一种将图像处理、计算机视觉和模式识别技术相结合的技术,通过对输入的图像和视频中的人脸进行分析,进行人脸识别、检测、跟踪和识别等相关工作。
从最初的只能识别大面积黑白照片到后来的可见光、多视角、3D和细节识别等,人脸识别技术已经经历了一个相当艰难的发展历程,并取得了卓越的成果,目前已经进入了一个全新的发展时期。
一、人脸识别技术的分类目前,人脸识别技术的分类主要有三种:2D人脸识别、3D人脸识别和多模态人脸识别。
2D人脸识别是最常见和常用的一种人脸识别技术,它通过利用人脸的特征信息,如人脸轮廓、眼睛、鼻子和嘴巴等特征来识别出目标人物。
由于二维人脸图像很容易获取,而且计算简单,所以2D人脸识别技术具有较高的实际应用价值。
3D人脸识别与2D人脸识别相比,可以获取更多的人脸几何信息,从而提高识别的准确率。
它能够对人脸深度、形状、表面纹理等多种信息进行刻画,也能够适应面部表情和光照变化等情况。
然而,3D人脸识别技术需要使用相对较昂贵的设备进行采集,因此,成本仍然是一个问题。
多模态人脸识别技术则是将2D和3D人脸识别技术相结合,采用多种感知模态和算法来进行人脸识别。
这种技术可以综合多种人脸信息,如声音、手势等,从而提高识别的准确率和鲁棒性。
二、人脸识别技术的应用人脸识别技术在安防、金融、互联网和娱乐等领域中有广泛的应用。
在安防领域,人脸识别技术可以用来监测和识别不法分子,提高公共安全。
在金融领域,人脸识别技术可以用来识别和认证客户的身份,从而防止诈骗和洗钱等违法活动的发生。
在互联网领域,人脸识别技术可以用来验证用户的身份和提供更好的个性化服务。
在娱乐领域,人脸识别技术可以用来制作特效和人脸融合等有趣的应用。
其中,人脸识别技术最为广泛地应用于公安安防系统。
通过将人脸识别技术应用于视频监控系统中,能够通过摄像头获取目标人物的人脸信息,并采用人脸识别算法进行实时识别,从而迅速锁定目标并提高工作效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人脸识别技术及应用概览全在这里然而,你想过没有?未来其中一天,我们上街连手机都不用带了,只要“带脸”就行。
因为,我们正在迈向“刷脸时代”。
到时,把你的所有信息、财产都跟你的脸绑定了,出门“刷脸”就行。
今天,我们就来详细了解一下人脸识别技术:一、人脸识别概述人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。
用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。
人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等。
相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
二、三大关键技术1、基于特征的人脸检测技术通过采用颜色、轮廓、纹理、结构或者直方图特征等进行人脸检测。
2、基于模板匹配人脸检测技术从数据库当中提取人脸模板,接着采取一定模板匹配策略,使抓取人脸图像与从模板库提取图片相匹配,由相关性的高低和所匹配的模板大小确定人脸大小以及位置信息。
3、基于统计的人脸检测技术通过对于“人脸”和“非人脸”的图像大量搜集构成的人脸正、负样本库,采用统计方法强化训练该系统,从而实现对人脸和非人脸的模式进行检测和分类。
三、四大特征1、几何特征从面部点之间的距离和比率作为特征,识别速度快,内存要求比较小,对于光照敏感度降低。
2、基于模型特征根据不同特征状态所具有概率不同而提取人脸图像特征。
3、基于统计特征将人脸图像视为随机向量,并用统计方法辨别不同人脸特征模式,比较典型的有特征脸、独立成分分析、奇异值分解等。
4、基于神经网络特征利用大量神经单元对人脸图像特征进行联想存储和记忆,根据不同神经单元状态的概率实现对人脸图像准确识别。
四、十大难题1、光照问题光照变化是影响人脸识别性能的最关键因素,对该问题的解决程度关系着人脸识别实用化进程的成败。
由于人脸的3D结构,光照投射出的阴影,会加强或减弱原有的人脸特征。
尤其是在夜晚,由于光线不足造成的面部阴影会导致识别率的急剧下降,使得系统难以满足实用要求。
同时,理论和实验还证明同一个体因光照不同引起的差异,大于同一光照下不同个体之间的差异。
光照问题是机器视觉中的老问题,在人脸识别中的表现尤为明显。
解决光照问题的方案有三维图像人脸识别和热成像人脸识别。
但这两种技术还远不成熟,识别效果不尽人意。
2、姿态问题人脸识别主要依据人的面部表象特征来进行,如何识别由姿态引起的面部变化就成了该技术的难点之一姿态问题涉及头部在三维垂直坐标系中绕三个轴的旋转造成的面部变化,其中垂直于图像平面的两个方向的深度旋转会造成面部信息的部分缺失。
使得姿态问题成为人脸识别的一个技术难题。
针对姿态的研究相对比较的少,目前多数的人脸识别算法主要针列正面、准正面人脸图像,当发生俯仰或者左右侧而比较厉害的情况下,人脸识别算法的识别率也将会急剧下降。
3、表情问题面部幅度较大的哭、笑、愤怒等表情变化同样影像着面部识别的准确率。
现有的技术对这些方面处理得还不错,论是张嘴还是做一些夸张的表情,计算机都可以通过三维建模和姿态表情校正的方法把它纠正出来。
4、遮挡问题对于非配合情况下的人脸图像采集,遮挡问题是一个非常严重的问题。
特别是在监控环境下,往往被监控对象都会带着眼镜、帽子等饰物,使得被采集出来的人脸图像有可能不完整,从而影响了后面的特征提取与识别,甚至会导致人脸检测算法的失效。
5、年龄变化随着年龄的变化,一个人从少年变成青年,变成老年,他的容貌可能会发生比较大的变化,从而导致识别率的下降。
对于不同的年龄段,人脸识别算法的识别率也不同。
6、人脸相似性不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。
这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。
7、动态识别非配合性人脸识别的情况下,运动导致面部图像模糊或摄像头对焦不正确都会严重影响面部识别的成功率。
在地铁、高速公路卡口、车站卡口、超市反扒、边检等安保和监控识别的使用中,这种困难明显突出。
8、人脸防伪伪造人脸图像进行识别的主流欺骗手段是建立一个三维模型,或者是一些表情的嫁接。
随着人脸防伪技术的完善、3D面部识别技术、摄像头等智能计算视觉技术的引入,伪造面部图像进行识别的成功率会大大降低。
9、图像质量问题同样的,对于高分辨图像对人脸识别算法的影响也需要进一步的研究。
现在,我们在人脸识别时,一般采用的都是相同尺寸,清晰度很接近的人脸图片,所以图像质量问题基本可以解决,但是面对现实中更加复杂的问题,还需要继续优化处理。
10、样本缺乏基于统计学习的人脸识别算法是目前人脸识别领域中的主流算法,但是统计学习方法需要大量的训练。
由于人脸图像在高维空间中的分布是一个不规则的流形分布,能得到的样本只是对人脸图像空间中的一个极小部分的采样,如何解决小样本下的统计学习问题有待进一步的研究。
此外,现在参与训练的人脸图像库基本都是外国人的图像,有关中国人、亚洲人的人脸图像库少之又少,给训练人脸识别模型增加了难度。
五、人脸识别应用维度1、动态场景两个维度第一,1:1、1:1的定义是一个判断的作用,应用的场景其实是在金融和人证,特点是更加的精准和安全,所以现在大家不管是支付宝还是银行的人证比对、实名的业务,基本上都会用到1:1人脸的识别。
第二,1:N。
1:N更多的是在一个数据库当中或者是一个底库当中,能够找到这个人是不是在底库当中的人,所以是个识别的过程,是一个动态的,还是一个非配合的场景。
比如说在安防当中我去缉拿逃犯,我去抓到逃犯总不能让逃犯看到摄象头。
在商业场景当中也不可能让我们的VIP客户、员工、会员对着摄象头做着一遍操作,所以是动态和非配合的场景。
2、业务场景四个维度第一,盘子足够大,能够支撑公司的长远发展。
第二,数据回流。
第三,是否是高频的场景和高频的使用。
第四,是否可复制,可否从1+0转变到1+N的方式,提高效率。
3、可视化系统三个维度第一,人员通行管理。
第二,传感网络的融合。
第三,商业地产+新零售整体的融合部分。
六、人脸识别应用领域应用领域:金融、司法、安保、边检、航天、电力、教育、医疗,等。
商业化四大潜力:闸机、交通、银行、手机具体应用场景概述一金融领域1、人脸识别自主终端人工审核、自主开卡、业务变更、密码重置,等一些个人业务。
2、移动金融、销售远程身份核实验证,两个方面:用户身份的核实及金融机构的上门办理业务所需的带有人脸识别系统的便携式设备。
3、柜面系统人脸联网核验,用于银行、保险、证券等金融机构的柜面开户,等业务。
二国内机场应用三大关键点:首次尝试、登机、全面智能化标志性事件:1、2023年北京首都机场的首次尝试是国内机场开始认识人脸识别技术的第一步,而限于当时人脸识别技术的水平,不得不采用磁卡进行交叉验证,确保身份的唯一性。
在识别速度及准确率上,当时的人脸识别技术与深度学习介入后的人脸识别技术不在一个水平上。
2、2023年南京禄口机场首次尝试将人脸识别技术应用在登机上,虽然同样受限于当时的技术商业落地的水平,无法实现自助通关,却为接下去的应用提供了借鉴的想法和经验。
3、2023年12月,银川机场的全面智能化,标志机场智能化水平进入到一个新的阶段。
除了安检通关和自助登机,人脸识别及相关的计算机视觉技术被应用到动态布控、人流引导、智慧航显、VIP迎宾、轨迹检索、保洁提醒等多个方面,为2023年人脸识别技术在机场应用的爆发打下了良好的基础。
南航----国内首家运用人脸识别技术的航司CZ3384成为第一个应用新技术登机的航班。
旅客无需手持登机牌,刷脸即可快速通过登机口。
三中国式过马路问题①用上人脸识别,解决成本难题。
②坚持依法行政,防止法外之罚。
③解决路权冲突,避免运动执法。
实例:据济南警方介绍,人脸识别系统主要用于抓拍闯红灯的行人和非机动车驾驶者,在晚上也能清晰成像。
行人被“抓了现行”,闯红灯的短视频和放大后的头像将直接曝光在路口的显示屏上,呈现在公众面前。
济南启用人脸识别系统后,一个月共抓拍6200多起行人和非机动车闯红灯违法行为。
有了“黑科技”的威慑,闯红灯的行为得到了有效遏制,有一个路口每天闯红灯的人次从逾百次降到了十几次。
在重庆江北,人脸识别系统试运行以来,行人过街守法率从60%上升到97%以上。
隐患:个人信息公之于众,牵扯到泄露个人隐私的问题。
专家建议,对于人脸识别等信息采集行为,要提前向社会进行公告,告知公众已进入公共信息采集区域,违法行为将被拍摄并曝光,这样既满足了群众的知情权,也起到警示提醒作用;对采集的信息,要进行适当技术处理,对于不宜公开的隐私,应当遮蔽或不予公开。
根本:受访专家表示,由于交通设施的设置不合理导致的过马路难,往往是导致行人闯红灯的更主要原因。
有的城市道路路网规划不合理,注重主干路建设,支路和次干路密度达不到要求,导致行人和非机动车都被汇集到主干路上;有的路口红绿灯时间分配不合理,若是按规则过马路,就得有足够强的耐心和足够快的速度。
只有综合治理,解决好人与车“路权”冲突,才能从根本上破解“中国式过马路”。
四教育领域考生身份认证识别、校园、宿舍出入管理等场景。
实例:2023年高考,已有北京、四川、湖北、广东、辽宁、内蒙古等多省采用“人脸识别+指纹识别”的生物识别技术确认考生身份,防止替考、作弊事件发生。
伴随试点区域及各领域案例的拓展及运营模式的成熟,行业报告研究院预计2023年人脸识别有望迎来大规模普及。
五公安领域(1)人脸捕获与跟踪功能。
(2)人脸识别计算。
(3)人脸的建模与检索。
公安领域人脸识别产品使用主要体现在两个方面,一方面是后台动态人脸识别系统的使用,另一方面是前端人脸识别手持设备及人证对比机的使用。
六医疗领域1、社区体检应用在社区使用数字化体检设备(电子血压计、人体秤、血糖仪等)时把数据传到数去电子病历或健康档案的同时,加上就诊者的活体人脸信息之后存储,就有了真实唯一的身份识别。
在完成唯一身份认证后的每一次记录都会被记载,这样可以将就诊者情况迅速反馈给医师及就诊者本人,也方便得出最佳的理疗方案。
2、二级及以上医疗机构的应用通过在自助机、窗口、诊疗室等不同场景设置人脸识别系统,以识别的人脸信息为信息检索入口,将患者的信息档案相关联,然后就可以刷脸调取诊疗记录,等。
七智慧城市领域1、养老金领取管理利用人脸识别技术可以有效地进行人员核对,减少养老金的流失。