平方根与立方根知识点小结
中考数学《平方根和立方根》知识点及练习题

平方根和立方根一.知识梳理:1.平方根定义1:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
a 叫做被开方数。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
定义2:正数a 的正的平方根叫做a a ”, 性质1:正数和零的算术平方根都只有一个,零的算术平方根是零。
性质2:算术平方根a 的双重非负性:①a ≥0 ; ②0≥a定义3:求一个数a 的平方根的运算,叫做开平方。
2.立方根定义1:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
即如果x 3=a ,那么x 叫做a 3a x =。
性质1:正数有一个正的立方根;负数有一个负的立方根;零的立方根是零。
性质2:33a a -=-,三次根号内的负号可以移到根号外面。
定义2:求一个数的立方根的运算,叫做开立方3. 实数大小的比较(1)正数大于0,负数小于0,正数大于负数;两个负数比较大小,绝对值大的反而小。
(2)实数大小比较的几种常用方法①作差法:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0.②作商法:设a 、b 是两正实数,;1;1;1b a b a b a b a b a b a <⇔<=⇔=>⇔> ③平方法:设a 、b 是两负实数,则b a b a <⇔>22④近似值法:记住这些数值:236.25732.13414.12≈≈≈;;二.课后作业1.9的算术平方根是 ;4的平方根是 。
2.-8的立方根是 ;立方根是它本身的数是______3.25的算术平方根是_____,64的立方根是5.比较大小:-3.14 π-;23。
6. 22(3)0y z -+-=,则xyz 的立方根是________7.23-的相反数是 ,绝对值是 ,倒数是 。
七年级数学下册平方根与立方根【九大题型】(举一反三)(人教版)

专题6.1 平方根与立方根【九大题型】【人教版】【题型1 平方根、立方根的概念及表示】 (1)【题型2 平方根性质的运用】 (2)【题型3 开平方、开立方的运算】 (4)【题型4 利用开平方、开立方解方程】 (5)【题型5 算术平方根的概念及非负性】 (7)【题型6 开方运算中的小数点移动规律】 (8)【题型7 平方根与立方根综合】 (10)【题型8 算术平方根、立方根的应用】 (11)【题型9 算术平方根、立方根的规律探究】 (13)【例1】(2022春•海淀区校级期中)下列各数中,一定没有平方根的是()A.﹣a B.﹣a2+1C.﹣a2D.﹣a2﹣1【分析】根据平方根的被开方数不能是负数,可得答案.【解答】解:在﹣a,﹣a2+1,﹣a2,﹣a2﹣1中,﹣a2﹣1是负数,没有平方根.故选:D.【变式1-1】(2022春•鞍山期末)下列说法正确的是()A.﹣1是1的平方根B.﹣1是-1的平方根C.﹣1是1的立方根D.﹣1没有立方根【分析】根据平方根和立方根的概念与性质进行辨别即可.【解答】解:∵±1都是1的平方根, ∴选项A 符合题意; ∵-1没有平方根, ∴选项B 符合题意; ∵1的立方根是1, ∴选项C 不符合题意; ∵﹣1的立方根是﹣1, ∴选项D 符合题意, 故选:A .【变式1-2】(2022春•应城市期末)下列各式中,正确的是( ) A .−√−9=3B .√−273=−3C .√183=±12D .√83=−2【分析】根据算术平方根、平方根、立方根的定义解决此题. 【解答】解:A .−√−9无意义,故A 不符合题意. B .√−273=−3,故B 符合题意. C .√183=12,故C 不符合题意. D .√83=2,故D 不符合题意. 故选:B .【变式1-3】(2022春•高安市期中)下列叙述中,错误的是( ) A .0只有一个平方根 B .若x 2=3,则x =±√3C .√64的立方根是2D .512的立方根是±8【分析】根据立方根与平方根的定义即可求出答案. 【解答】解:A 、0只有一个平方根,故A 不符合题意. B 、若x 2=3,则x =±√3,故B 不符合题意. C 、√64=8,8的立方根是2,故C 不符合题意. D 、512的立方根是8,故D 符合题意. 故选:D .【例2】(2022春•临洮县期中)一个正数x 的两个平方根分别是2a ﹣1与﹣a +2,求a 的值和这个正数x 的值.【分析】正数x 有两个平方根,分别是﹣a +2与2a ﹣11,所以﹣a +2与2a ﹣1互为相反数;即﹣a +2+2a ﹣1=0解答可求出a ;根据x =(﹣a +2)2,代入可求出x 的值.【解答】解:∵正数x有两个平方根,分别是﹣a+2与2a﹣1,∴﹣a+2+2a﹣1=0解得a=﹣1.所以x=(﹣a+2)2=(1+2)2=9.【变式2-1】(2022•工业园区期中)一个正数M的两个平方根分别是2a+3和2b﹣1,求(a+b)2022.【分析】利用正数的平方根有2个,且互为相反数求出a+b的值,代入原式计算即可得到结果.【解答】解:根据题意得:2a+3+2b﹣1=0,整理得:a+b=﹣1,则原式=1.【变式2-2】(2022春•孟村县期中)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是﹣4;(2)若m2x+(m+b)2x=4,则x=√2.【分析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解答】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=√2.故答案为:(1)﹣4;(2)√2.【变式2-3】(2022春•建安区期中)若a是(﹣4)2的平方根,b的一个平方根是2,则代数式a+b的值为()A.8B.0C.8或0D.4或﹣4【分析】先依据平方根的定义和性质求得a、b的值,然后依据有理数的加法法则求解即可.【解答】解:∵a是(﹣4)2的平方根,∴a=±4.∵b的一个平方根是2,∴b=4.∴当a=4,b=4时,a+b=8;当a=﹣4,b=4时,a+b=0.故选:C.【例3】(2022春•雨花区校级月考)根据图中呈现的运算关系,可知a=﹣2020,b=﹣2020.【分析】利用立方根和平方根的定义及性质即可解决问题.【解答】解:依据图中呈现的运算关系,可知2020的立方根是m,a的立方根是﹣m,∴m3=2020,(﹣m)3=a,∴a=﹣2020;又∵n的平方根是2020和b,∴b=﹣2020.故答案为:﹣2020,﹣2020.【变式3-1】(2022春•绥棱县期末)已知x、y为实数,且满足√1+x+√1−y=0,那么x2022﹣y2022=0.【分析】根据√1+x+√1−y=0,且√1+x与√1−y均大于等于0,以此解出x、y值进而计算出结果.【解答】解:∵√1+x+√1−y=0,且√1+x与√1−y均≥0,∴1+x=0,1﹣y=0,得x=﹣1,y=1,x2022﹣y2022=(﹣1)2022﹣12022=1﹣1=0,故答案为:0.【变式3-2】(2022春•五常市期末)1106的平方根是±11000,﹣27的立方根是﹣3.【分析】根据平方根、立方根的定义进行计算即可.【解答】解:1106的平方根为±√1106=±1103=±11000;﹣27的立方根为√−273=−3,故答案为:±11000,﹣3.【变式3-3】(2022春•龙岩期末)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.2√2B.2C.√2D.±√2【分析】直接利用立方根以及算术平方根、无理数的定义分析得出答案.【解答】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是√2,即y=√2.故选:C.【题型4 利用开平方、开立方解方程】【例4】(2022•靖江市期末)求出下列x的值:(1)4x2﹣9=0;(2)8(x+1)3=125.【分析】(1)移项,把二次项系数化为1,开平方求出x;(2)把二次项系数化为1,开立方求出x.【解答】解:(1)4x2﹣9=0,4x2=9,x2=94,x1=32,x2=−32;(2)8(x+1)3=125,(x+1)3=1258,x+1=52,x=1.5.【变式4-1】(2022春•阆中市期中)(1)已知4(x﹣3)2=64,求x的值.(2)已知(x+1)3+27=0,求x的值.【分析】(1)根据题意可化为(x﹣3)2=16,根据平方根的定义可得x﹣3=±√16,计算即可得出答案;(2)根据题意可化为(x+1)3=﹣27,根据立方根的定义可得x+1=√−273,计算即可得出答案.【解答】解:(1)4(x﹣3)2=64,(x﹣3)2=16,x﹣3=±√16,x﹣3=±4,x﹣3=4或x﹣3=﹣4,x=7或x=﹣1;(2)(x+1)3+27=0,(x+1)3=﹣27,x+1=√−273,x+1=﹣3,x=﹣4.【变式4-2】(2022春•安陆市期中)求x的值:(1)2x2=50;(2)(x+1)3+3=−38.【分析】(1)根据等式的性质以及平方根的定义就求出答案;(2)根据等式的性质以及立方根的定义即可求出答案.【解答】解:(1)2x2=50,两边都除以2得,x2=25,根据平方根的定义得,x=±5;(2)(x+1)3+3=−38,移项得,(x+1)3=−38−3,合并同类项得,(x+1)3=−278,根据立方根的定义得,x+1=−32,解得x=−52.【变式4-3】(2017秋•金牛区校级月考)解方程:若(x﹣1)2﹣1=8,则x=﹣2或4;若x3−827=0,则x=23.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)方程变形后,利用立方根定义开立方即可求出x的值.【解答】解:(1)(x﹣1)2﹣1=8,(x﹣1)2=9,x﹣1=±3,x=﹣2或4;(2)x3−827=0,x3=8,27x=2.3.故答案为:﹣2或4;23A.(x2+4)4B.(x2+4)2C.x2+4D.√x2+4【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.我们把正的平方根叫a的算术平方根,由此即可求出√(x2+4)2的算术平方根.【解答】解:∵√(x2+4)2=x+4,∴√(x2+4)2的算术平方根是√x2+4.故选:D.【变式5-1】(2022春•巴彦县期末)若x﹣5有算术平方根,则x满足的条件是x≥5.【分析】根据非负数有平方根列式求解即可.【解答】解:根据题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.【变式5-2】(2022春•宁县期末)若√7−x为整数,x为正整数,则x的值为3或6或7.【分析】根据算术平方根的定义解决此题.【解答】解:由题意得,7﹣x≥0.∴x≤7.∵x为正整数,∴x可能为1、2、3、4、5、6、7.∵√7−x为整数,∴x=3或6或7.故答案为:3或6或7.【变式5-3】(2022春•椒江区期末)我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术方根都是整数,则称这三个数为“完美组合数”.例如:﹣9,﹣4,﹣1这三个数,√(−9)×(−4)=6,√(−9)×(−1)=3,√(−4)×(−1)=2,其结果6,3,2都是整数,所以﹣1,﹣4,﹣9这三个数称为“完美组合数”.(1)﹣18,﹣8,﹣2这三个数是“完美组合数”吗?请说明理由.(2)若三个数﹣3,m,﹣12是“完美组合数”,其中有两个数乘积的算术平方根为12,求m的值.【分析】(1)对于三个互不相等的负整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“完美组合数”,由此定义分别计算可作判断;(2)分两种情况讨论:①当√−3m=12时,②当√−12m=12时,分别计算即可.【解答】解:(1)﹣18,﹣8,﹣2这三个数是“完美组合数”,理由如下:∵√(−18)×(−8)=12,√(−18)×(−2)=6,√(−8)×(−2)=4,∴﹣18,﹣8,﹣2这三个数是“完美组合数”;(2)∵√(−3)×(−12)=6,∴分两种情况讨论:①当√−3m=12时,﹣3m=144,∴m=﹣48;②当√−12m=12时,﹣12m=144,∴m=﹣12(不符合题意,舍);综上,m的值是﹣48.【题型6 开方运算中的小数点移动规律】【例6】(2022春•遵义期末)如下表,被开方数a和它的算术平方根√a的小数点位置移动符合一定的规律,根据规律可得m,n的值分别为a0.06250.625 6.2562.5625625062500625000√a0.250.791m n2579.1250791(注:表中部分数值为近似值)()A.m=0.025,n≈7.91B.m=2.5,n≈7.91C.m≈7.91,n=2.5D.m=2.5,n≈0.791【分析】根据二次根式的乘法法则以及算术平方根的定义解决此题.【解答】解:由题意得,√0.0625=0.25,√0.625≈0.791,√6.25=m,√62.5=n.∵√6.25=√0.0625×100=√0.0625×10=0.25×10=2.5, √62.5=√0.625×100=√0.625×10≈0.791×10≈7.91, ∴m =2.5,n ≈7.91. 故选:B .【变式6-1】(2022•乐清市校级期中)(1)填表:a0.000001 0.001 1 1000 1000000 √a 30.010.1110100(2)由上你发现了什么规律?用语言叙述这个规律.被开方数的小数点每向右移动三位,相应的立方根的小数点就向 右 移动 1 位; (3)根据你发现的规律填空:①已知√33=1.442,则√30003= 14.42 ; ②已知√0.0004563=0.07696,则√4563= 7.696 . 【分析】(1)开立方运算,然后填表即可; (2)根据表格信息,可得答案; (3)根据(2)的规律求解即可. 【解答】解:(1)如表格所示;(2)被开方数的小数点每向右移动三位,相应的立方根的小数点就向右移动1位; (3)①已知√33=1.442,则√30003=14.42; ②已知√0.0004563=0.07696,则 √4563=7.696;【变式6-2】(2022春•岳麓区校级期中)已知√25.36≈5.03587,√253.6≈15.92482,则√253600≈ 503.587 (结果保留3位小数).【分析】根据算术平方根的定义,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位,进行解答即可. 【解答】解:√25.36≈5.03587, √253600 =√25.36×104, =√25.36×√104, =5.03587×100, =503.587. 故答案为:503.587.【变式6-3】(2022•无棣县期末)先填写下表,观察后回答下列问题:a… ﹣0.001 0 0.001 1 1000 … √a 3…﹣0.11…(1)被开方数a 的小数点位置移动和它的立方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:√a 3=−50,√0.1253=0.5,你能求出a 的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可; (2)依据规律进行计算即可. 【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位; (2)能求出a 的值; ∵√0.1253=0.5, ∴√−0.1253=−0.5,由﹣0.5和﹣50,小数点向右移动了2位,则﹣0.125的小数点向右移动6位, ∴a =﹣125 000【题型7 平方根与立方根综合】【例7】(2022春•海珠区校级期中)一个正数m 的两个平方根分别为1﹣3a 和a +5,则这个正数m 的立方根是 4 .【分析】一个正数的两个平方根互为相反数,根据互为相反数的两个数的和为0,列出方程求出a ,再求出平方根,然后根据平方根的平方求出m ,最后求m 的立方根. 【解答】解:根据题意,得:(1﹣3a )+(a +5)=0, 1﹣3a +a +5=0, ﹣3a +a =﹣1﹣5, ﹣2a =﹣6, a =3.∴a +5=3+5=8, ∴m =82=64, ∴64的立方根为4. 故答案为:4.【变式7-1】(2022春•海珠区期末)若实数5x +19的立方根是4,则实数3x +9的平方根是 ±6 .【分析】根据立方根的定义列出方程求出x ,然后求出3x +9的值,最后求它的平方根即可.【解答】解:∵5x +19的立方根是4, ∴5x +19=43=64, ∴x =9,∴3x+9=3×9+9=36,∴36的平方根为±6,故答案为:±6.m−2是n﹣m+3的算术平方根,B=【变式7-2】(2022春•兴仁市月考)已知A=√n−m+3m−2n+3是m+2n的立方根,求B﹣A的平方根.√m+2n【分析】首先利用算术平方根的定义以及结合立方根的定义得出n,m的值,进而利用平方根的定义求出答案.【解答】解:由题意得:m﹣2=2,m﹣2n+3=3,解得:m=4,n=2,3=2,则A=√2−4+3=1,B=√4+2×2∴B﹣A=2﹣1=1,则B﹣A的平方根为:±1.【变式7-3】(2022•兴化市月考)若a、b满足a2=9,b3=﹣8,则a﹣b的值为5或﹣1.【分析】根据平方根与立方根的定义即可求出答案.【解答】解:由题意可知:a=±3,b=﹣2,当a=3时,原式=3﹣(﹣2)=3+2=5.当a=﹣3时,原式=﹣3﹣(﹣2)=﹣1.故答案为:5或﹣1.【题型8 算术平方根、立方根的应用】【例8】(2022•桥西区校级期中)解答下列应用题:(1)某房间的面积为17.6m2,房间地面恰好由110块相同的正方形地砖铺成,每块地砖的边长是多少?(2)已知第一个正方体水箱的棱长是60cm,第二个正方体水箱的体积比第一个水箱的体积的3倍还多81 000cm3,则第二个水箱需要铁皮多少平方米?【分析】(1)先求出一块地砖的面积,再求出边长即可;(2)先求出第一个正方体水箱的体积,再根据第二个正方体水箱的体积比第一个水箱的体积的3倍还多81 000cm3,求出第二个水箱的棱长,进而求出表面积即可.【解答】解:(1)每块地砖的面积为:17.6÷110=0.16(m2),所以正方形地砖的边长为:√0.16=0.4(m).答:每块地砖的边长是0.4m;(2)由题意可知,第一个正方体水箱的体积为:603=216000(cm3),所以第二个正方体水箱的体积为:3×216000+81000=729000(cm3),3=90(cm),所以第二个正方体水箱的棱长为:√729000所以需要铁皮90×90×6=48600cm2=4.86m2.【变式8-1】(2022秋•沂源县期末)有一个底面为正方形的水池,水池深2m,容积为11.52m3,则此水池底面正方形的边长为()A.2.4m B.4.2m C.9.25m D.13.52m【分析】设水池底面正方形的边长为xm,由题意得2x2=11.52,再根据算术平方根的定义求得x=2.4.【解答】解:设水池底面正方形的边长为xm.由题意得,2x2=11.52.∴x=2.4.∴此水池底面正方形的边长为2.4 m.故选:A.【变式8-2】(2022•南安市校级月考)要制造一个长方体箱子,底面为正方形,体积为0.25m3,且长方体的高是底面边长的2倍.(1)求长方体的底面边长;(2)求长方体的表面积.【分析】(1)设出地面边长,然后根据高是底面边长的2倍表示出高,利用正方体的体积公式求得底边长即可;(2)利用其表面积的计算方法求得其表面积即可.【解答】解:(1)设底面边长为xm,则高为2x(m),则x2•2x=0.25解得:x=0.5,故长方形的底面边长为0.5m;(2)S全=2S底+4S侧=2×0.25+4×0.5=2.5m2【变式8-3】(2022春•奈曼旗期中)小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.【分析】根据长方形的面积,可得一个元二次方程,根据解方程,可得长方形的边长,根据长方形的边长与正方形的边长的比,可得答案.【解答】解:能做到,理由如下设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588x2=49,x>0,x=√49=7∴4x=4×7=28 (cm)3x=3×7=21(cm)∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,答:桌面长宽分别为28cm和21cm.【题型9 算术平方根、立方根的规律探究】【例1】(2022春•崇川区校级期中)将1、√2、√3、√6按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(12,3)表示的两数之和是1+√2.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n 个数到底是哪个数后再计算.【解答】解:(5,4)表示第5排从左向右第4个数是√2,×11×(11+1)=66(个).∵前11排共有12∴(12,3)表示第12排从左向右第3个数是第69个数,每4个数一个循环,∴69÷4=17……1,∴(12,3)表示的数是1,两数之和是1+√2.故答案为:1+√2.【变式1-1】(2022春•青山区期中)请先在草稿纸上计算下列四个式子的值:①√13;②√13+23;③√13+23+33;④√13+23+33+43,观察你计算的结果,用你发现的规律写出下面式子的值:√13+23+33+⋯+263=351.【分析】先计算出前4个式子的值,据此得出√13+23+33+⋯⋯+n 3=1+2+3+……+n ,据此求解可得.【解答】解:∵①√13=1;②√13+23=3=1+2;③√13+23+33=6=1+2+3;④√13+23+33+43=10=1+2+3+4,……∴√13+23+33+⋯+263=1+2+3+ (26)(1+26)×262=351,故答案为:351.【变式1-2】(2022春•孝义市月考)据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚给出了如下方法:(1)由103=1000,1003=1000000,确定√593193是两位数;(2)由59319个位上的数是9,确定√593193个位上的数是9;(3)划去59319后面的三位319得到59,而33=27,43=64,由此确定√593193十位上的数是3.请你类比上述过程,确定21952的立方根是 28 .【分析】根据题目提供的方法,类推确定21952的立方根.【解答】解:(1)由103=1000,1003=1000000,确定√219523是两位数;(2)由21952个位上的数是2,确定√219523个位上的数是8;(3)划去21952后面的三位952得到21,而23=8,33=27,由此确定√219523十位上的数是2,所以√219523=28,故答案为:28.【变式1-3】(2022春•越秀区校级期中)将一组数√3,√6,√9,√12,⋯,√180,按下面的方式进行排列:√3,√6,√9,√12,√15,√18√21,√24,√27,√30,√33,√36⋯⋯若√12的位置记为(1,4),√24的位置记为(2,2),则这组数据中最大的有理数的位置记为 (8,6) .【分析】观察数据的规律为3的倍数的算术平方根,6个为一排,共10列,其中最大的有理数应该为12,据此规律解答即可.【解答】解:∵这组数据是3的倍数的算术平方根,其中最大的有理数是√144=12, 又√144在第八行第六列,∴这组数据中最大的有理数√144的位置记为(8,6),故答案为:(8,6).。
讲解详细讲解平方根和立方根的概念运算规则和注意事项解答学生提出的疑问

讲解详细讲解平方根和立方根的概念运算规则和注意事项解答学生提出的疑问平方根和立方根是数学中重要的概念,它们在各个学科领域都有广泛的应用。
在本文中,我们将详细讲解平方根和立方根的概念、运算规则以及需要注意的事项,以解答学生们提出的疑问。
一、平方根的概念和运算规则平方根是指一个数的平方等于该数的非负根。
即,对于任意非负数x和非负数a,若a的平方等于x,那么我们称a是x的平方根。
用符号表示,可以写作√x=a。
平方根的运算规则如下:1. 非负数的平方根是唯一的。
即,一个非负数x只有一个非负平方根。
2. 负数没有实数平方根。
平方根的定义要求平方根是非负的,因此负数没有实数平方根。
3. 平方根运算具有交换律和结合律。
即,对于任意非负数x和y,有√(x*y)=√x*√y和√(x/y)=√x/√y。
4. 平方根运算满足开方运算法则。
即,对于任意正数x和正整数n,平方根运算和幂运算可以互相转换,即√(x^n)=(√x)^n。
二、立方根的概念和运算规则立方根是指一个数的立方等于该数的非负根。
即,对于任意数值x 和非负数a,若a的立方等于x,那么我们称a是x的立方根。
用符号表示,可以写作³√x=a。
立方根的运算规则如下:1. 实数的立方根是唯一的。
即,一个实数x只有一个实立方根。
2. 负数的立方根是存在的。
与平方根不同,负数是存在实数立方根的,例如-8的立方根是-2,因为(-2)^3=-8。
3. 立方根运算具有交换律和结合律。
即,对于任意数值x和y,有³√(x*y)=³√x*³√y和³√(x/y)=³√x/³√y。
4. 立方根运算也满足开方运算法则。
即,对于任意正数x和正整数n,立方根运算和幂运算可以互相转换,即³√(x^n)=(³√x)^n。
三、注意事项在计算平方根和立方根时,需要注意以下几点:1. 平方根和立方根的符号。
平方根是指非负根,因此其结果为正数或零。
初中数学-春季班-人教版-初一(学生版) 第4讲 平方根与立方根--提高班

第4讲平方根、立方根知识点1 算术平方根1.如果一个正数x的平方等于a,即ax=2,那么这个正数x叫做a的算术平方根. ()0≥a a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0 ,即00=.2.规律小结算术平方根具有双重非负数:(1)被开方数具有非负性,即0≥a;(2)本身具有非负性:即.0≥a注:具有非负数才有算术平方根,而负数没有算术平方根.【典例】例1 (2020秋•辉县市校级期中)如果a是2021的算术平方根,则2021100的算术平方根是()A.10aB.100aC.10a±D.210a【方法总结】本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.例2(2020春•威县期末)小辰想用一块面积为2100cm的正方形纸片,沿着边的方向裁出一块面积为290cm的长方形纸片,使它的长宽之比为5:3.小辰能否用这张正方形纸片裁出符合要求的纸片?若能请写出具体栽法;若不能,请说明理由.【方法总结】本题考查了一元二次方程的应用以及算术平方根,解题的关键是先求出所裁出的长方形纸片的长.【随堂练习】1.(2020 1.421267≈⋯≈⋯ 4.494441确到0.1)≈___________.2.(2020秋•滨湖区期中)已知21+-的算术平方根为4.a ba-的平方根为3±,31(1)求a、b的值;(2)求2+的算术平方根.a b知识点2 平方根开平方1.平方根:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,x=2,那么x叫做a的平方根.即如果a±”,读作“正、负根号a”正数a的平方根表示为“a2.平方根与算术平方根的区别与联系3.开平方:求一个数a 的平方根的运算,叫做开平方.开平方是一种运算,它与平方运算是互逆运算,开平方运算的结果就是平方根,我们就是利用开平方与平方的互逆运算关系求平方根.【典例】例1 (2020春•丛台区校级月考)求下列各式中的:(x )(1)29250x -=;(2)24(21)36x -=.A .53x =和2x = B .53x =-和2x =或1x =- C .53x =±和1x =- D .53x =±和2x =或1x =-【方法总结】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.例2 (2020秋•雁塔区校级月考)若x ,y 210y -=,【方法总结】本题考查了算术平方根以及平方根,解题时注意:一个正数的两个平方根互为相反数.【随堂练习】1.已知一个正数m 的两个不同的平方根是1a -与52a -,求a 和m 的值.2.(2020秋•滨湖区期中)已知21a -的平方根为3±,31a b +-的算术平方根为4.(1)求a 、b 的值;(2)求2a b +的算术平方根.知识点3 立方根1.一般地,如果一个数x 的立方等于a ,那么这个数x 叫做a 的立方根或三次方根,这就是说,如果3x a =,那么x 叫做a 的立方根.2.一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方.3.理解立方根的概念需注意两点:(1)任意数a ;(2)判断一个数x 是不是某数a 的立方根,就看3x 是不是等于a.4. 立方根的性质(1)正数的立方根是正数,负数的立方根是负数,0的立方根是0 .(2)3333a a -=-(3)a a =33)(5.开立方:求一个数立方根的运算,叫做开立方.说明:开立方和立方互为逆运算,借助立方运算,我们可以求任意数的立方根. 【典例】例1 (2020秋•嵊州市期中)已知某正数的两个平方根分别是1-和4a -,12b -的立方根为2.(1)求a ,b 的值.(2)求a b +的平方根.【方法总结】本题主要考查了平方根与立方根,注意一个正数有两个平方根,这两个平方根互为相反数. 例2 (2020秋•碑林区校级月考)已知21a -的平方根是3±,31a b +-的算术平方根是4,求2a b +的立方根.【方法总结】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.【随堂练习】1.(2020春•嘉陵区期末)如果37(1)18x -+=,试求x 的值.2.(2020春•鱼台县期末)正数x 的两个平方根分别是2a -,27a -.(1)求a 的值;(2)求1x -这个数的立方根.3.(2020春•盐池县期末)已知21a +的平方根是3±,324a b +-的立方根是2-,求458a b -+的立方根.综合运用1.(20200=,则2020()a b -的值为( )A .1B .1-C .1±D .02.(2020a b +的值为______.3.(2020秋•金牛区校级月考)互为相反数,z 是64的平方根,求x y z-+的平方根.4.(2020春•潮安区期中)有一个边长为9cm 的正方形和一个长为24cm 、宽为6cm 的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?5.(2020秋•宝应县期中)求下列各式中x 的值.(1)2(1)2x +=;(2)329203x +=.6.(2020秋•荥阳市期中)已知21x +的算术平方根是04,z 是27-的立方根, 求2x y z ++的平方根.7.(2020秋•吴江区期中)(1)若实数m 、n 满足等式|2|0m -,求23m n +的平方根;(2)已知8y8.(2020春•渝水区校级月考)已知一个正数m 的平方根为21n +和43n -.(1)求m 的值;(2)2|3|()0a c n --=,a b c ++的立方根是多少?。
初二数学立方根平方根知识点总结归纳

初二数学立方根平方根知识点总结归纳立方根知识点总结知识要领:如果一个数x的立方等于a,即x的三次方等于a(x^3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根。
立方根读作“三次根号a”其中,a叫做被开方数,3叫做根指数。
(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。
求一个数a的立方根的运算叫做开立方。
立方根的性质:⑴正数的立方根是正数.⑵负数的立方根是负数.⑶0的立方根是0.一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(cube root,也叫做三次方根)。
如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
立方和开立方运算,互为逆运算。
互为相反数的两个数的立方根也是互为相反数。
负数不能开平方,但能开立方。
立方根如何与其他数作比较? ⑴做这两个数的立方⑵作差⑶比较被开方数(如三次根号3大于三次根号2)任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个.平方根与立方根的区别与联系一、区别⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。
⑵ 被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。
⑶ 结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。
二、连系二者都是与乘方运算互为逆运算《平方根与立方根》知识点归纳平方根:概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。
就是2说,如果x=a,那么x就叫做a的平方根。
如:23与-23都是529的平方根。
2因为(±23)=529,所以±23是529的平方根。
问:(1)16,49,100,1 100都是正数,它们有几个平方根?平方根之间有什么关系? (2)0的平方根是什么?概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
平方根和立方根

七年级数学下册实数--平方根【知识点总结】1.乘方:“n a ”.乘方的结果叫做幂,a 叫做底数,n 叫做指数,读作a 的n 次方或a 的n 次幂.2.平方:“2a ”,读作a 的平方或a 的二次方.3.平方的性质:任何数的平方都是;算术平方根概念:一般地,如果等于a ,那么这个数叫做a 的,也就是说,如果x 2=a ,(x>0)那么x 叫做a 的算术平方根.则a x =算术平方根性质:(1)非负性:(2)个数性质:的算术平方根据都只有一个;(3)还原性质:当0≥a 时,2)(a =,即非负数算术平方根的平方等于该非负数完全平方数:能够完全开方开的尽的数。
如1,4,9,16,...平方根概念:一般地,如果等于a ,那么这个数叫做a 的,也就是说,如果x 2=a ,那么x 叫做a 的平方根.则=x 开平方:求一个数...a 的平方根的运算.......叫做开平方.即求a ±的运算叫开平方. 表示方法:一个正数a 的平方根表示为a ±;若x 2=a (a >0)则x=a ±。
平方根的性质:(1)个数性质:(2)还原性质:(由定义得出)当a ≥0时(a ±)2=,即:非负数的平方根的平方等于该数【经典例题】【例1】计算:12=;22=;32=;42=;52=;62=;72=;82=;92=;112=;122=;132=;142=;152=;162=;172=;182=;192=;2≈;3≈;5≈;6≈;7≈;10≈【例2】求下列各式的值:(1)144(2)-36121(3)±00001.(4)214116+ 【例3】判断下列语句是否正确,正确的打“√”,错误的画“×”,并将错误改正。
(1)7是()-72的算术平方根;()(2)-25的平方根是±5;() (3)36等于±6;()(4)16的平方根是±2;()(5)6是()-62的平方根;()(6)10是10的一个平方根;()(7)正数的平方比它的算术平方根大。
二次方根知识点总结

实数知识点总结平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
练习⑴ 一个数的平方等于它的本身的数是 ;⑵ 平方根等于它的本身的数是⑶ 算术平方根等于它的本身的数是 ;⑷ 立方根等于它的本身的数是⑸ 大于0且小于π的整数是 ;⑹ 满足21-<x <15-的整数x 是6.到原点的距离为34的点表示的数是 ;7.若32-=x ,则x = ,8. 实数与数轴上的点9.写出之间的所有的整数为____. 10.比较大小:____三、解答题11.1.3-,0,0.3,227,1.732-π2-,3+,0.1010010001整数{} ;分数{} ;正数{} ;负数{} ;有理数{} ;无理数{}四.计算(1) (221;(3)π2练习一 平方根1.如果2a = 3,那么a = ,如果3=a ,那么=a2.若一个正方形的面积为13,则正方形的边长为3.0.04的平方是 ,0.04的算术平方根是 ,平方根是4.若12是a 的一个平方根,则a 的另一个平方根是5.若414.12=,则=200 ,02.0=6.用“>”“<”填空:⑴ ⑵ 160 13 ⑶;9.若==x x 则,4942 ,若==-x x ,则025812 ;10.⑴ =25 , ⑵ ()=-22 ,⑶ =2a ;11.下列说法中不正确的是 ( )A 、2-是2的平方根B 、2是2的平方根C 、2的平方根是2D 、2的算术平方根是2 12.41的平方根是 ( ) A 、161 B 、81 C 、21 D 、21± 13. 下列各式中无意义的是 ( ) A 、7- B 、7 C 、7- D 、()27-- 14.下列各式中,正确的个数是( )① 3.09.0= ② 34971±= ③23-的平方根是-3 ④()25-的算术平方根是-5 ⑤67±是36131 的平方根A 、1个B 、2个C 、3个D 、4个 15.“254的平方根是52±”,由数学式子可以表示为( ) A 、52254±= B 、52254±=± C 、52254= D 、52254-=-16.下列判断正确的是 ( ) A 、一个数的倒数等于它本身,这个数是1 B 、一个数的绝对值等于它本身,这个数是正数 C 、一个数的相反数等于它本身,这个数是0 D 、一个数的平方根等于它本身,这个数是1 17.若a 是()24-的平方根,b 的一个平方根是2,则代数式a +b 的值为 ( ) A 、8 B 、0 C 、8或0 D 、4或-4 18.求下列各数的平方根与算术平方根 ⑴ 169 ⑵ 0.0256 ⑶ 25242 ⑷ ()22-19.16的算术平方根是 ,()22-的平方根是 ; 20.若m 、n 满足()0312=++-n m ,则=+n m ;23. 有一个正数的两个平方根分别是32-a 与a -5,你知道a 是多少?这个正数又是多少?24. 若a 的两个平方根是方程223=+y x 的一组解,⑴ 求a 的值 ⑵ 求2a 的算术平方根。
第二章平方根、算术平方根和立方根

第二章平方根、算术平方根和立方根知识点汇总1. 平方根、算术平方根和立方根三者的区别与联系( 理清概念方能百战不殆)指数 2 在根号的里面。
2 ( a) 2与a2的关系( 难点)(1) 区别:①意义不同:( a) 2表示非负数 a 的算术平方根的平方;a2表示实数a的平方的算术平方根。
②取值范围不同:( a)2中的a为非负数,即a≥0;a2中的 a 为任意数。
③运算顺序不同:( a)2是先求 a 的算术平方根,再求它的算术平方根的平方;a2是先求 a 的平方,再求平方后的算术平方根。
④写法不同。
在( a) 2中,指数 2 在根号的外面;而在a2中,⑤运算结果不同:(a)2=a(a≥0) ; a =| a|=a,a≥0,-a,a<0.(2) 联系:①在运算时,都有平方和开平方的运算。
②两式运算的结果都是非负数,即 ≥0. ③仅当 a ≥0时,有 ( a )2= a 2 。
3. 立方根的化简公式: 3 a 3 =a ;(3 a )3=a ; 3 a =- 3 a( a ) 2≥ 0, a 21..选择2014·南京) 8 的平方根是( A . 4B .±42. (2014 。
东营 ) 的平方根是( A .±3 B .3 3. 2014?连云港) 计算 A . ﹣3 B . 4.(2014。
厦门) 4 的算术平方根是( A . 16 B .5.下列计算中,正确的是( 典型题精选)C .的结果是(±9 C . C . D .D .9﹣9 D . ﹣2 D . ±2 3 2 6 A.a · a =a B. ( π -3.14 )o =1 C. (13)1) 2C .( ab ) 3 D. 93 6.(2014 年湖北荆门 )下列运算正确的是 A .3﹣1=﹣3 B . =±3 7. 下列说法错误的是( ) A .5是 25 的算术平方根 C .(-4)2 的平方根是- 4 8.如果 x 是 0.01的算术平方根,则 A . 0.000 1 C .0.1 9.下 列说法中,正确的是( ) A. 一个有理数的平 方根有两个,B. 一个有理数的 立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 10. 下列各式中,无意义的是( ) x =( B . D . 36 =a b D .a 6 2 ÷a =a A. 32 B .1 是 1 的一个平方根D .0 的平方根与算术平方根都是 )±0.000 1±0.1 它们互为相反数 1, 0,1 B. 3 ( 3)3 C. ( 3)2 D. 10 3 绝对值与算术平方根的非负性)11. 若 a,b 为实数,且满足 |a -2|+ b 2 =0,则 b -a 的值为( )A .2B .0C .- 2D .以上都不对平方与算术平方根的非负性)12.(2014·福州) 若(m-1)2+ n 2 =0,则 m + n 的值是( A .- 1 B . 0 C .1 13. 有一个数值转换器,原理如图所示:当输入的D .2x 错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根与立方根知识点小结
平方根与立方根是数学中常见的运算概念,它们有着广泛的应用。
本
文将对平方根与立方根的基本概念、性质、应用以及计算方法进行详细的
介绍和总结。
一、平方根的概念与性质
1.平方根是指对一个数进行运算,使得该数的平方等于给定的数。
例如,对于数a,满足b²=a的数b就是a的平方根。
2.平方根的记号为√a,其中a为被开方数,b为平方根。
√a=b。
3.平方根有两个解,一个为正数,一个为负数。
正数的平方根称为主值,负数的平方根则称为虚数。
4.平方根的性质包括:非负数的平方根仍为非负数;0的平方根为0;负数没有实数平方根,而有无数个复数平方根。
5.平方根有以下常见运算性质:
(1)√(a*b)=√a*√b,即两个数的乘积的平方根等于这两个数的平方
根的乘积。
(2)√(a/b)=√a/√b,即两个数的比值的平方根等于这两个数的平方
根的比值。
(3)√(a^2)=,a,即一个数的平方的平方根等于这个数的绝对值。
6.平方根的计算方法包括:试算法、牛顿迭代法、二分法等。
二、立方根的概念与性质
1.立方根是指对一个数进行运算,使得该数的立方等于给定的数。
例如,对于数a,满足b³=a的数b就是a的立方根。
2.立方根的记号为³√a,其中a为被开方数,b为立方根。
³√a=b。
3.立方根也有两个解,一个为正数,一个为负数。
正数的立方根称为主值,负数的立方根则称为虚数。
4.立方根的性质包括:任何数的立方根都是唯一的;非负数的立方根仍为非负数;0的立方根为0。
5.立方根的运算规律与平方根类似:
(1)³√(a*b)=³√a*³√b,即两个数的乘积的立方根等于这两个数的立方根的乘积。
(2)³√(a/b)=³√a/³√b,即两个数的比值的立方根等于这两个数的立方根的比值。
(3)³√(a^3)=a,即一个数的立方的立方根等于这个数本身。
6.立方根的计算方法与平方根类似,包括试算法、牛顿迭代法、二分法等。
三、平方根与立方根的应用
1.平方根与立方根在几何学中有广泛的应用,如计算三角形的边长、面积等。
2.平方根与立方根在物理学中有重要的应用,如求解速度、加速度、能量等的大小。
3.平方根与立方根在金融学中有广泛的应用,如计算利息、股票的回报率等。
4.平方根与立方根在计算机科学中有重要的应用,如用于算法设计、数据压缩等。
5.平方根与立方根在统计学中常用于计算方差、标准差等。
四、计算平方根与立方根的方法
1.试算法:通过逐步尝试给定数的平方或立方与被开方数进行比较,直到找到满足条件的解。
2.牛顿迭代法:通过不断迭代逼近的方法,找到开方数的近似解。
3.二分法:通过不断将给定范围分成两部分进行判断,从而逼近开方数的解。
需要注意的是,对于较大的数,计算平方根与立方根可能需要使用计算器或计算机来进行精确计算。
综上所述,平方根与立方根是数学中常见的运算概念,具有广泛的应用。
掌握它们的基本定义、性质、应用和计算方法对于数学的学习和应用具有重要的作用。