高考物理(江苏专用)大一轮复习讲义(文档)选修3-5_第十三章_动量守恒定律_波粒二象性_原子结构与原子核

合集下载

高考物理一轮总复习达标训练课件:第十三章 动量 近代物理初步(选修3-5) 第39讲

高考物理一轮总复习达标训练课件:第十三章 动量 近代物理初步(选修3-5) 第39讲

图象名称 频率相同、光强 不同时,光电流 与电压的关系 频率不同、光强 相同时,光电流 与电压的关系
图线形状
由图线直接(间接)得到的物理量 ①遏止电压:Uc ②饱和光电流:Im(电流的最大值) ③最大初动能:Ekm=eUc ①遏止电压:Uc1、Uc2 ②饱和光电流:电流最大值 ③最大初动能:Ek1=eUc1,Ek2=eUc2
• 解析:产生光电效应的条件是入射光的频率 大于极限频率vC,故A项正确,C项错误;在 能发生光电效应的前提条件下,只增加a光的 强度可使阴极k单位时间发射出更多光电子, B项正确;光电管中的光电子(带负电荷)从k 到A,故G中电流从c到d,D项错误;当用a光 照射时,若已达饱和电流,即使再增大光电 管两端电压,G中电流也不变,E项正确.
• 1.光子与光电子 • 光子是指光在空间传播时的每一份能量,光 子不带电;光电子是指金属表面受到光照射 时发射出来的电子,光子是光电效应的因, 光电子是果.
•一 光电效应的实验规律
• 2.光电子的最大初动能与光电子的动能 • 当光照射金属时,光子的能量全部被电子吸 收,电子吸收光子的能量后可能向各个方向 运动.有的向金属内部运动,有的向金属表 面运动,但因途径不同,运动途中消耗的能 量也不同.唯独在金属表面的电子,只要克 服金属原子核的引力做功,就能从金属中逸 出而具有最大初动能.根据爱因斯坦光电效 应方程可以算出光电子的最大初动能为Ek= hν-W0 (W0为金属的逸出功).而其他经过不 同的路径射出的光电子,其动能一定小于最
• (3)光电效应规律 大于 • ①每种金属都有一个极限频率,入射光的频 率必须______这个极限频率才能产生光电效 强度 应. 增大 • ②光电子的最大初动能与入射光的______无 关,只随入射光频率的增大而______. • ③光电效应的发生几乎是瞬时的,一般不超 正比 过10-9 s. • ④当入射光的频率大于极限频率时,饱和光 电流的大小与入射光的强度成______.

(新课标)高考物理大一轮复习第13章动量守恒定律波粒二象性原子结构与原子核第2节光电效应波粒二象性课时

(新课标)高考物理大一轮复习第13章动量守恒定律波粒二象性原子结构与原子核第2节光电效应波粒二象性课时

光电效应 波粒二象性1.关于光的本性,下列说法正确的是( )A .光既具有波动性,又具有粒子性,这是互相矛盾和对立的B .光的波动性类似于机械波,光的粒子性类似于质点C .大量光子才具有波动性,个别光子只具有粒子性D .由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的—切行为,只能认为光具有波粒二象性解析:选 D.光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子,波动性和粒子性是光在不同的情况下的不同表现,是同一客体的两个不同的侧面、不同属性,只能认为光具有波粒二象性,A 、B 、C 错误,D 正确.2.(2014·高考上海卷)在光电效应的实验结果中,与光的波动理论不矛盾的是( ) A .光电效应是瞬时发生的 B .所有金属都存在极限频率 C .光电流随着入射光增强而变大D .入射光频率越大,光电子最大初动能越大解析:选 C.光具有波粒二象性,即光既具有波动性又具有粒子性.光电效应证实了光的粒子性.因为光子的能量是一份一份的,不能积累,所以光电效应具有瞬时性,这与光的波动性矛盾,A 项错误;同理,因为光子的能量不能积累,所以只有当光子的频率大于金属的极限频率时,才会发生光电效应,B 项错误;光强增大时,光子数量和能量都增大,所以光电流会增大,这与波动性无关,C 项正确;一个光电子只能吸收一个光子,所以入射光的频率增大,光电子吸收的能量变大,所以最大初动能变大,D 项错误.3.如果一个电子的德布罗意波长和一个中子的相等,则它们的________也相等. A .速度 B .动能 C .动量D .总能量解析:选C.由德布罗意波长λ=hp 知二者的动量应相同,故C 正确,由p =mv 可知二者速度不同,E k =12mv 2=p22m,二者动能不同,由E =mc 2可知总能量也不同,A 、B 、D 均错.4.(多选)分别用波长为λ和2λ的光照射同一种金属,产生的速度最快的光电子速度之比为2∶1,普朗克常量和真空中光速分别用h 和c 表示,那么下列说法正确的有( )A .该种金属的逸出功为hc3λB .该种金属的逸出功为hcλC .波长超过2λ的光都不能使该金属发生光电效应D .波长超过4λ的光都不能使该金属发生光电效应解析:选AD.由hν=W 0+E k 知h c λ=W 0+12mv 21,h c 2λ=W 0+12mv 2,又v 1=2v 2,得W 0=hc3λ,A 正确、B 错误.光的波长小于或等于3λ时都能发生光电效应,C 错误、D 正确. 5.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子的最大初动能E k 随入射光频率ν变化的E k -ν图象,已知钨的逸出功是3.28 eV ,锌的逸出功是3.34 eV ,若将二者的图线画在同一个E k -ν坐标系中,下图中用实线表示钨,虚线表示锌,则正确反映这一过程的是( )解析:选 A.依据光电效应方程E k =hν-W 0可知,E k -ν图线的斜率代表普朗克常量h ,因此钨和锌的E k -ν图线应该平行.图线的横截距代表极限频率νc ,而νc =W0h,因此钨的νc 小些,A 正确.6.(2016·常州模拟)1927年戴维孙和汤姆孙分别完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如下图所示的是该实验装置的简化图,下列说法不正确的是( )A .亮条纹是电子到达概率大的地方B .该实验说明物质波理论是正确的C .该实验再次说明光子具有波动性D .该实验说明实物粒子具有波动性解析:选 C.亮条纹是电子到达概率大的地方,该实验说明物质波理论是正确的,说明实物粒子具有波动性,但该实验不能说明光子具有波动性,C 错误,A 、B 、D 正确.7.(多选)图为一真空光电管的应用电路,其阴极金属材料的极限频率为 4.5×1014Hz ,则以下判断中正确的是( )A.发生光电效应时,电路中光电流的饱和值取决于入射光的频率B.发生光电效应时,电路中光电流的饱和值取决于入射光的强度C.用λ=0.5 μm的光照射光电管时,电路中有光电流产生D.光照射时间越长,电路中的电流越大解析:选BC.在光电管中若发生了光电效应,单位时间内发射光电子的数目只与入射光的强度有关,光电流的饱和值只与单位时间内发射光电子的数目有关.据此可判断A、D错误.波长λ=0.5 μm的光子的频率ν=cλ=3×1080.5×10-6Hz=6×1014Hz>4.5×1014Hz,可发生光电效应,所以B、C正确.8.(多选)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标为4.27,与纵轴交点坐标为0.5).由图可知( )A.该金属的截止频率为4.27×1014 HzB.该金属的截止频率为5.5×1014 HzC.该图线的斜率表示普朗克常量D.该金属的逸出功为0.5 eV解析:选AC.图线在横轴上的截距为截止频率,A正确,B错误;由光电效应方程E k=hν-W0可知图线的斜率为普朗克常量,C正确;金属的逸出功为W0=hν0=6.63×10-34×4.27×10141.6×10-19eV=1.77 eV,D错误.9.以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意图如图.用频率为ν的普通光源照射阴极K,没有发生光电效应.换同样频率为ν的强激光照射阴极K,则发生了光电效应;此时,若加上反向电压U,即将阴极K接电源正极,阳极A接电源负极,在K、A之间就形成了使光电子减速的电场.逐渐增大U,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U可能是下列的(其中W为逸出功,h为普朗克常量,e为电子电荷量)( )A .U =hνe -W eB .U =2hνe -W eC .U =2hν-WD .U =5hν2e -We解析:选B.由光电效应方程可知:nhν=W +12mv 2m (n =2,3,4…)①在减速电场中由动能定理得 -eU =0-12mv 2m ②联立①②得:U =nhνe -We(n =2,3,4,…),选项B 正确.10.(多选)某半导体激光器发射波长为 1.5×10-6m ,功率为 5.0×10-3W 的连续激光.已知可见光波长的数量级为10-7m ,普朗克常量h =6.63×10-34J·s,该激光器发出的( )A .是紫外线B .是红外线C .光子能量约为1.3×10-18JD .光子数约为每秒3.8×1016个解析:选BD.由于该激光器发出的光波波长比可见光长,所以发出的是红外线,A 错误,B 正确.光子能量E =hν=h c λ≈1.3×10-19J ,C 错误.每秒发射的光子数n =P×1E ≈3.8×1016个,D 正确.11.图示是研究光电管产生的电流的电路图,A 、K 是光电管的两个电极,已知该光电管阴极的极限频率为ν0.现将频率为ν(大于ν0)的光照射在阴极上,则:(1)________是阴极,阴极材料的逸出功等于________.(2)加在A 、K 间的正向电压为U 时,到达阳极的光电子的最大动能为__________________,将A 、K 间的正向电压从零开始逐渐增加,电流表的示数的变化情况是________________.(3)为了阻止光电子到达阳极,在A 、K 间应加上U 反=________的反向电压. (4)下列方法一定能够增加饱和光电流的是( ) A .照射光频率不变,增加光强 B .照射光强度不变,增加光的频率 C .增加A 、K 电极间的电压 D .减小A 、K 电极间的电压解析:(1)被光照射的金属将有光电子逸出,故K 是阴极,逸出功与极限频率的关系为W 0=hν0.(2)根据光电效应方程可知,逸出的光电子的最大初动能为hν-hν0,经过电场加速获得的能量为eU ,所以到达阳极的光电子的最大动能为hν-hν0+eU ,随着电压增加,单位时间内到达阳极的光电子数量将逐渐增多,但当从阴极逸出的所有光电子都到达阳极时,再增大电压,也不可能使单位时间内到达阳极的光电子数量增多.所以,电流表的示数先是逐渐增大,直至保持不变.(3)从阴极逸出的光电子在到达阳极的过程中将被减速,被电场消耗的动能为eU c ,如果hν-hν0=eU c ,就将没有光电子能够到达阳极,所以U c =hν-hν0e.(4)要增加单位时间内从阴极逸出的光电子的数量,就需要增加照射光单位时间内入射光子的个数,所以只有A 正确.答案:(1)K hν0 (2)hν-hν0+eU 逐渐增大,直至保持不变 (3)hν-hν0e(4)A12.如图甲所示是研究光电效应规律的光电管.用波长λ=0.50 μm 的绿光照射阴极K ,实验测得流过○G 表的电流I 与AK 之间的电势差U AK 满足如图乙所示规律,取h =6.63×10-34J·s.结合图象,求:(结果保留两位有效数字)(1)每秒钟阴极发射的光电子数和光电子飞出阴极K 时的最大动能; (2)该阴极材料的极限波长.解析:(1)光电流达到饱和时,阴极发射的光电子全部到达阳极A ,阴极每秒钟发射的光电子的个数n =Im e =0.64×10-61.6×10-19(个)=4.0×1012(个)光电子的最大初动能为:E km =eU 0=1.6×10-19C×0.6 V=9.6×10-20 J(2)设阴极材料的极限波长为λ0,根据爱因斯坦光电效应方程:E km =h c λ-h cλ0,代入数据得λ0=0.66 μm.答案:(1)4.0×1012个 9.6×10-20J(2)0.66 μm。

高考物理一轮复习选修3动量守恒定律波粒二象性原子结构和原子核第3讲原子结构和原子核课件

高考物理一轮复习选修3动量守恒定律波粒二象性原子结构和原子核第3讲原子结构和原子核课件

等.
③防护:防止放射性对人体组织示踪的原伤子害.
高考物理一轮复习选修3动量守恒定律波粒二象性原子结构 和原子核第3讲原子结构和原子核
3.原子核的衰变 (1)衰变:原子核放出 α 粒子或 β 粒子,变成另一种_原__子__核__ 的变化称为 原子核 的衰变.
(2)分类 α 衰变:AZX→AZ--24Y+_42H__e_ β 衰变:AZX→Z+A1Y+_-_01e__ (3)半衰期:放射性元素的原子核有 半数 发生衰变所需的时 间.半衰期由原子核内部的因素决定,跟原子所处的 物理 、 __化__学__状__态___无关.
第3讲 原子结构 原子核
原子结构 原子核
氢原子光谱 氢原子的能级结构、 能级公式
Ⅰ Ⅰ
原子核的组成、放射 性、原子核衰变、半

衰放核结裂期射力合变性、能反同 核 、 应位 反 质和素 应 量聚方 亏变程 损反应、Ⅰ Ⅰ Ⅰ Ⅰ
裂变反应堆 射线的危害和防护

高考物理一轮复习选修3动量守恒定律波粒二象性原子结构 和原子核第3讲原子结构和原子核
高考物理一轮复习选修3动量守恒定律波粒二象性原子结构 和原子核第3讲原子结构和原子核
3.玻尔理论
(1)定态:原子只能处于一系不列连续 的能量状态 中 绕, 核在运这动些,能但量并状不态向中外稳原辐定子 射是 能量. 的,电子虽然
(2)跃迁:原子从一种定态跃迁到另一种定态时,
它辐射或吸收一定频率的光子,光子的能量由这
1.原子核的组成:原子核是质由子 原子核的电荷数等于质核子内数的
2.天然放射现象
和中子组成的, .
(1)天然放射现象
元 现素 .天自然发放地射放现出象射的线发的现现,象说,明首先由贝可具勒有尔复发

2019年高考物理大一轮复习江苏专版课件:第十三章 动量 波粒二象性 原子结构与原子核 章末自测卷第

2019年高考物理大一轮复习江苏专版课件:第十三章 动量 波粒二象性 原子结构与原子核 章末自测卷第
太大的伤害
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
答案
4.(多选)(2017·苏北四市模拟)下列说法中正确的有
A.结合能越大的原子核越稳定
√B.光电效应揭示了光具有粒子性 √C.动量相同的质子和电子,它们的德布罗意波的波长相等
D.黑体辐射电磁波的强度按波长的分布规律与黑体的温度无关
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
解析 答案
(2)求此过程中释放的核能.
答案 (m1+m2-m0-m3)c2 解析 整个过程质量亏损Δm=m1+m2-m0-m3 由爱因斯坦质能方程ΔE=Δmc2 得ΔE=(m1+m2-m0-m3)c2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
章末自测卷(第十三章)
一、选择题
1.(多选)(2017·淮阴中学4月模拟)下列说法中正确的是
A.某光电管发生光电效应时,如果仅增大入射光的强度,则光电子的
最大初动能将增加
√B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的 √C.经典物理学不能解释原子的稳定性和原子光谱的分立特征
D.按照玻尔理论,氢原子辐射出一个光子后,氢原子能量增大
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
解析 答案
三、计算题
12.(2018·泰州中学模拟)氢原子的能级如图2所示.原子从能级n=3向n=1
跃迁所放出的光子,正好使某种金属材料产生光电效应,
有一群处于n=4能级的氢原子向较低能级跃迁时所发出
的光照射该金属,求该金属的截止频率和产生光电子最

高考物理大一轮复习 第13章 动量守恒定律 波粒二象性

高考物理大一轮复习 第13章 动量守恒定律 波粒二象性

第13章动量守恒定律波粒二象性原子结构与原子核考纲展示要求复习定位1.动量、动量定理、动量守恒定律及其应用Ⅱ1.本章在高考命题中有选择也有计算形式,选择题以波粒二象性及原子结构和原子核为主,而计算题的考查重点仍以典型的碰撞、相互作用模型或生活实例为背景,考查动量守恒定律的应用.动量定理作为新增Ⅱ级考点应引起重视.2.本章的复习应注意以下几方面(1)动量及动量变化量的理解,动量守恒定律的应用(2)动量守恒定律结合动量定理及能量守恒来解决碰撞、打击、反冲等问题(3)光电效应现象、实验规律和光电效应方程,光的波粒二象性及德布罗意波.(4)核式结构、玻尔理论、能级公式、原子跃迁条件,半衰期、质能方程的应用、计算和核反应方程的书写等.2.弹性碰撞和非弹性碰撞Ⅰ实验:验证动量守恒定律3.光电效应Ⅰ4.爱因斯坦光电效应方程Ⅰ5.氢原子光谱Ⅰ6.氢原子的能级结构、能级公式Ⅰ7.原子核的组成、放射性、原子核的衰变、半衰期Ⅰ8.放射性同位素Ⅰ9.核力、核反应方程Ⅰ10.结合能、质量亏损Ⅰ11.裂变反应和聚变反应、裂变反应堆Ⅰ12.射线的危害和防护Ⅰ第1节动量守恒定律及其应用一、冲量、动量和动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)表达式:p=mv.(3)单位:千克·米/秒.符号:kg·m/s.(4)特征:动量是状态量,是矢量,其方向和速度方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的变化量.(2)表达式:F合·t=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统不受外力作用,或者所受的合外力为零,这个系统的总动量保持不变.3.定律的表达式m1v1+m2v2=m1v1′+m2v2′,两个物体组成的系统初动量等于末动量.可写为:p=p′、Δp=0和Δp1=-Δp24.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.三、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.四、实验:验证动量守恒定律1.方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.2.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验 (1)测质量:用天平测出两小球的质量m 1、m 2. (2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.3.方案三:在光滑桌面上两车碰撞完成一维碰撞实验 (1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v =ΔxΔt 算出速度.(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.4.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球. (2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O .(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P 就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M 和被碰小球落点的平均位置N .如图所示.(6)连接ON ,测量线段OP 、OM 、ON 的长度.将测量数据填入表中.最后代入m 1OP =m 1OM +m 2ON ,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒. [易错警示·微点拨]1.物体动量的变化等于物体所受合外力的冲量,而不是某个力的. 2.动量守恒中的速度应是相对于同一参考系中的速度.3.动量是矢量,系统总动量不变,是指系统总动量的大小方向都不变. 4.相互作用的物体动量守恒但机械能不一定守恒.考点一 动量定理的理解及应用1.动量定理的理解要点(1)动量定理的表达式应是一个矢量式,式中3个矢量都要选同一个方向为正方向. (2)动量定理公式中的F 是研究对象所受的合外力,它可以是恒力,也可以是变力,当F 为变力时,F 应是合外力对作用时间的平均值.(3)公式Ft =p ′-p 除表明等号两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.(4)动量定理说明的是合外力的冲量与动量变化的关系,与物体的初末动量无必然联系. (5)由Ft =p ′-p ,得F =p ′-p t =Δpt,即物体所受的合外力等于物体的动量对时间的变化率.2.用动量定理解释现象用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.分析问题时,要把哪个量一定,哪个量变化搞清楚.1.(2015·高考重庆卷)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m 2ght +mg B .m 2ght -mg C.m ght+mg D .m ght-mg 解析:选A.由动量定理得(mg -F )t =0-mv ,得F =m 2ght+mg .选项A 正确. 2.(2016·山东烟台高三质检)皮球从某高度落到水平地板上,每弹跳一次上升的高度总等于前一次的0.64倍,且每次球与地板接触的时间相等.若空气阻力不计,与地板碰撞时,皮球重力可忽略.(1)求相邻两次球与地板碰撞的平均冲力大小之比是多少?(2)若用手拍这个球,使其保持在0.8 m 的高度上下跳动,则每次应给球施加的冲量为多少?(已知球的质量m =0.5 kg ,g 取10 m/s 2)解析:(1)由题意可知,碰撞后的速度是碰撞前的0.8倍.设皮球所处的初始高度为H ,与地板第一次碰撞前瞬时速度大小为v 0=2gH ,第一次碰撞后瞬时速度大小(亦为第二次碰撞前瞬时速度大小)v 1和第二次碰撞后瞬时速度大小v 2满足v 2=0.8v 1=0.82v 0.设两次碰撞中地板对球的平均冲力分别为F 1、F 2,选竖直向上为正方向,根据动量定理,有F 1t =mv 1-(-mv 0)=1.8mv 0F 2t =mv 2-(-mv 1)=1.8mv 1=1.44mv 0则F 1∶F 2=5∶4(2)欲使球跳起0.8 m ,应使球由静止下落的高度为h =0.80.64 m =1.25 m ,球由1.25 m落到0.8 m 处的速度为v =3 m/s ,则应在0.8 m 处给球的冲量为I =mv =1.5 N·s,方向竖直向下.答案:(1)5∶4 (2)1.5 N·s 方向竖直向下动量定理的应用技巧(1)应用I =Δp 求变力的冲量如果物体受到大小或方向改变的力的作用,则不能直接用I =Ft 求变力的冲量,可以求出该力作用下物体动量的变化Δp ,等效代换变力的冲量I .(2)应用Δp =F Δt 求动量的变化例如,在曲线运动中,速度方向时刻在变化,求动量变化(Δp =p 2-p 1)需要应用矢量运算方法,计算比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化.考点二动量守恒定律的理解及应用1.动量守恒的“四性”(1)矢量性:表达式中初、末动量都是矢量,需要首先选取正方向,分清各物体初末动量的正、负.(2)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等.(3)同一性:速度的大小跟参考系的选取有关,应用动量守恒定律,各物体的速度必须是相对同一参考系的速度.一般选地面为参考系.(4)普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.2.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp=0,系统总动量的增量为零.1.如图所示,进行太空行走的宇航员A和B的质量分别为80 kg和100 kg,他们携手远离空间站,相对空间站的速度为0.1 m/s.A将B向空间站方向轻推后,A的速度变为0.2 m/s,求此时B的速度大小和方向.解析:相对空间站而言,宇航员A和B构成的系统满足动量守恒的条件.以初速度v0=0.1 m/s的方向为正方向,A将B向空间站方向轻推后,A的速度一定沿正方向,即v A=0.2 m/s.由动量守恒定律得(m A+m B)v0=m A v A+m B v B将v0、v A代入数据解得v B=0.02 m/s因为v B>0,所以B的方向仍为离开空间站方向.答案:0.02 m/s 离开空间站方向2.(2015·济南高三质检)如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端.三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg,开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C相碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.解析:因碰撞时间极短,A与C碰撞过程动量守恒,设碰撞后瞬间A的速度大小为v A,C的速度大小为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C,A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB,A、B达到共同速度后恰好不再与C碰撞,应满足v AB=v C,联立解得v A=2 m/s.答案:2 m/s应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三动量和能量观点的综合应用(高频考点)1.动量的观点和能量的观点动量的观点:动量守恒定律能量的观点:动能定理和能量守恒定律这两个观点研究的是物体或系统运动变化所经历的过程中状态的改变,不对过程变化的细节作深入的研究,而关心运动状态变化的结果及引起变化的原因.简单地说,只要求知道过程的初、末状态动量式、动能式和力在过程中所做的功,即可对问题进行求解.2.利用动量的观点和能量的观点解题应注意下列问题(1)动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,绝无分量表达式.(2)中学阶段凡可用力和运动的观点解决的问题.若用动量的观点或能量的观点求解,一般都要比用力和运动的观点要简便,而中学阶段涉及的曲线运动(a不恒定)、竖直面内的圆周运动、碰撞等,就中学知识而言,不可能单纯考虑用力和运动的观点求解.题组一高考题组1.(2014·高考新课标全国卷Ⅰ)如图所示,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8 m,A球在B球的正上方.先将B球释放,经过一段时间后再将A 球释放.当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰.碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到达地面时的速度; (2)P 点距离地面的高度.解析:(1)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ① 将h =0.8 m 代入上式,得v B =4 m/s ②(2)设两球相碰前后,A 球的速度大小分别为v 1和v 1′(v 1′=0),B 球的速度分别为v 2和v 2′,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变.规定向下的方向为正,有m A v 1+m B v 2=m B v 2′④12m A v 21+12m B v 22=12m B v 2′2⑤ 设B 球与地面相碰后的速度大小为v B ′,由运动学及碰撞的规律可得v B ′=v B ⑥ 设P 点距地面的高度为h ′,由运动学规律可得h ′=v B ′2-v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m ⑧ 答案:(1)4 m/s (2)0.75 m2.(2015·高考全国卷Ⅱ)两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:(1)滑块a 、b 的质量之比;(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比. 解析:(1)设a 、b 的质量分别为m 1、m 2,a 、b 碰撞前的速度为v 1、v 2.由题给图象得v 1=-2 m/s ① v 2=1 m/s ②a 、b 发生完全非弹性碰撞,碰撞后两滑块的共同速度为v 0.由题给图象得v =23 m/s ③由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v ④联立①②③④式得m 1∶m 2=1∶8⑤(2)由能量守恒得,两滑块因碰撞而损失的机械能为 ΔE =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2⑥由图象可知,两滑块最后停止运动.由动能定理得,两滑块克服摩擦力所做的功为W =12(m 1+m 2)v 2⑦联立⑥⑦式,并代入题给数据得W ∶ΔE =1∶2⑧答案:(1)1∶8 (2)1∶2 题组二 模拟题组3.(2016·银川一中测试)如图所示,两块长度均为d =0.2 m 的木块A 、B ,紧靠着放在光滑水平面上,其质量均为M =0.9 kg.一颗质量为m =0.02 kg 的子弹(可视为质点且不计重力)以速度v 0=500 m/s 水平向右射入木块A ,当子弹恰水平穿出A 时,测得木块的速度为v =2 m/s ,子弹最终停留在木块B 中.求:(1)子弹离开木块A 时的速度大小及子弹在木块A 中所受的阻力大小; (2)子弹穿出A 后进入B 的过程中,子弹与B 组成的系统损失的机械能. 解析:(1)设子弹离开A 时速度为v 1,对子弹和A 、B 整体, 有mv 0=mv 1+2MvFd =12mv 20-12mv 21-12×2Mv 2联立解得v 1=320 m/s ,F =7 362 N(2)子弹在B 中运动过程中,最后二者共速,速度设为v 2,对子弹和B 整体,有mv 1+Mv =(m +M )v 2解得v 2=20523m/sΔE =12mv 21+12Mv 2-12(m +M )v 22=989 J.答案:(1)320 m/s 7 362 N (2)989 J4.(2016·河北邯郸摸底)如图所示,木块A 、B 的质量均为m ,放在一段粗糙程度相同的水平地面上,木块A 、B 间夹有一小块炸药(炸药的质量可以忽略不计).让A 、B 以初速度v 0一起从O 点滑出,滑行一段距离后到达P 点,速度变为v 02,此时炸药爆炸使木块A 、B 脱离,发现木块B 立即停在原位置,木块A 继续沿水平方向前进.已知O 、P 两点间的距离为s ,设炸药爆炸时释放的化学能全部转化为木块的动能,爆炸时间很短可以忽略不计,求:(1)木块与水平地面的动摩擦因数μ; (2)炸药爆炸时释放的化学能.解析:(1)设木块与地面间的动摩擦因数为μ,炸药爆炸释放的化学能为E 0. 从O 滑到P ,对A 、B 由动能定理得 -μ·2mgs =12·2m (v 02)2-12·2mv 20①解得μ=3v 28gs②(2)在P 点爆炸时,A 、B 动量守恒,有 2m ·v 02=mv ③根据能量守恒定律,有 E 0+12·2m ·(v 02)2=12mv 2④联立③④式解得E 0=14mv 20.答案:(1)3v 208gs (2)14mv 2应用动量、能量观点解决问题的两点技巧(1)灵活选取系统的构成,根据题目的特点可选取其中动量守恒或能量守恒的几个物体为研究对象,不一定选所有的物体为研究对象.(2)灵活选取物理过程.在综合题目中,物体运动常有几个不同过程,根据题目的已知、未知灵活地选取物理过程来研究.列方程前要注意鉴别、判断所选过程动量、机械能的守恒情况.考点四实验十六:验证动量守恒定律1.实验时应注意的几个问题(1)前提条件:碰撞的两物体应保证“水平”和“正碰”.(2)方案提醒:①若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确保导轨水平.②若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直平面内.③若利用长木板进行实验,可在长木板下垫一小木片用以平衡摩擦力.④若利用斜槽进行实验,入射球质量要大于被碰球质量,即:m1>m2,防止碰后m1被反弹.(3)探究结论:寻找的不变量必须在各种碰撞情况下都不改变.2.对实验误差的分析(1)系统误差:主要来源于装置本身是否符合要求,即:①碰撞是否为一维碰撞.②实验是否满足动量守恒的条件:如气垫导轨是否水平,两球是否等大,长木板实验是否平衡掉摩擦力等.(2)偶然误差:主要来源于质量m和速度v的测量.(3)减小误差的措施:①设计方案时应保证碰撞为一维碰撞,且尽量满足动量守恒的条件.②采取多次测量求平均值的方法减小偶然误差.1.甲同学用如图甲所示装置,通过半径相同的A、B两球的碰撞来验证动量守恒定律.(1)(多选)实验中必须满足的条件是________.A.斜槽轨道尽量光滑以减小误差B.斜槽轨道末端的切线必须水平C.入射球A每次必须从轨道的同一位置由静止滚下D .两球的质量必须相等(2)测量入射球A 的质量为m A ,被碰撞小球B 的质量为m B ,图中O 点是小球抛出点在水平地面上的投影.实验时,先让入射球A 从斜轨上的起始位置由静止释放,找到其平均落点的位置P ,测得平抛射程为OP ;再将入射球A 从斜轨上起始位置由静止释放,与小球B 相撞,分别找到球A 和球B 相撞后的平均落点M 、N ,测得平抛射程分别为OM 和ON .当所测物理量满足表达式________时,即说明两球碰撞中动量守恒;如果满足表达式________时,则说明两球的碰撞为弹性碰撞.(3)乙同学也用上述两球进行实验,但将实验装置进行了改装:如图乙所示,将白纸、复写纸固定在竖直放置的木条上,用来记录实验中球A 、球B 与木条的撞击点.实验时,首先将木条竖直立在轨道末端右侧并与轨道接触,让入射球A 从斜轨上起始位置由静止释放,撞击点为B ′;然后将木条平移到图中所示位置,入射球A 从斜轨上起始位置由静止释放,确定其撞击点P ′;再将入射球A 从斜轨上起始位置由静止释放,与球B 相撞,确定球A 和球B 相撞后的撞击点分别为M ′和N ′.测得B ′与N ′、P ′、M ′各点的高度差分别为h 1、h 2、h 3.若所测物理量满足表达式________,则说明球A 和球B 碰撞中动量守恒.解析:(1)只有斜槽轨道末端的切线水平,小球每次从末端飞出后才做平抛运动,时间才相等,故选项B 对;入射球A 每次必须从轨道上的同一位置由静止滚下,每次从末端飞出时的初速度才相等,故选项C 对.(2)由动量守恒定律得m A ·v A =m A ·v A ′+m B ·v B ′,v =x /t ,故得出m A ·OP =m A ·OM +m B ·ON ;若是弹性碰撞,则动能守恒,有12m A v 2A =12m A v A ′2+12m B v B ′2,联立解得m A ·OP 2=m A ·OM 2+m B ·ON 2,或OP +OM =ON .(3)由h =12gt 2,v =x t ,得出v 与1h 成正比,再结合动量守恒定律m A ·v A =m A ·v A ′+m B ·v B ′,故得出m A h 2=m A h 3+m B h 1. 答案:(1)BC(2)m A ·OP =m A ·OM +m B ·ONm A ·OP 2=m A ·OM 2+m B ·ON 2(或OP +OM =ON )(3)m A h 2=m A h 3+m B h 12.(2014·高考新课标全国卷Ⅱ)现利用图甲所示的装置验证动量守恒定律.在图甲中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A 的质量m 1=0.310 kg ,滑块B 的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B =3.500 ms ,碰撞前后打出的纸带如图乙所示.若实验允许的相对误差绝对值⎝ ⎛ ⎪⎪⎪⎪⎪⎪碰撞前后总动量之差碰前总动量×100% ⎭⎪⎫最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.解析:按定义,物块运动的瞬时速度大小v =Δs Δt① 式中Δs 为物块在很短时间Δt 内走过的路程设纸带上打出相邻两点的时间间隔为Δt A ,则Δt A =1f=0.02 s ② Δt A 可视为很短.设A 在碰撞前、后瞬时速度大小分别为v 0、v 1,将②式和图给实验数据代入①式得 v 0=2.00 m/s ③v 1=0.970 m/s ④设B 在碰撞后的速度大小为v 2,由①式有v 2=dΔt B⑤ 代入题给实验数据得v 2=2.86 m/s ⑥设两滑块在碰撞前、后的总动量分别为p 和p ′,则 p =m 1v 0⑦p ′=m 1v 1+m 2v 2⑧两滑块在碰撞前后总动量相对误差的绝对值为δp =⎪⎪⎪⎪⎪⎪p -p ′p ×100%⑨ 联立③④⑥⑦⑧⑨式并代入有关数据,得δp =1.7%<5%⑩因此,本实验在误差允许的范围内验证了动量守恒定律.答案:本实验在误差允许的范围内验证了动量守恒定律;运算过程见解析课堂小结——名师微点拨本节课重在理解动量守恒的条件及守恒的描述,对“系统总动量保持不变”注意以下三点:(1)系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、未两个状态的总动量相等.(2)系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化.(3)系统的总动量指系统内各物体动量的矢量和,总动量不变指的是系统的总动量的大小和方向都不变.课时规范训练(单独成册)1.(2016·广州调研)(多选)两个质量不同的物体,如果它们的( )A .动能相等,则质量大的动量大B .动能相等,则动量大小也相等C .动量大小相等,则质量大的动能小D .动量大小相等,则动能也相等解析:选AC.根据动能E k =12mv 2可知,动量p =2mE k ,两个质量不同的物体,当动能相等时,质量大的动量大,A 正确、B 错误;若动量大小相等,则质量大的动能小,C 正确、D 错误.2.质量为1 kg 的物体做直线运动,其速度图象如右图所示,则物体在前10 s 内和后10 s 内所受外力的冲量分别是( )A .10 N·s,10 N·sB.10 N·s,-10 N·sC.0.10 N·sD.0,-10 N·s解析:选D.由题图可知,在前10 s内初、末状态的动量相等,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内p3=-5 kg·m/s,I2=p3-p2=-10 N·s,故选D.3.甲、乙两物体在光滑水平面上沿同一直线相向运动,甲、乙物体的速度大小分别为3 m/s和1 m/s;碰撞后甲、乙两物体都反向运动,速度大小均为2 m/s.甲、乙两物体质量之比为( )A.2∶3 B.2∶5C.3∶5 D.5∶3解析:选C.选取碰撞前甲物体的速度方向为正方向,根据动量守恒定律有m甲v1-m乙v2=-m甲v1′+m乙v2′,代入数据,可得m甲∶m乙=3∶5,C正确.4.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.mMv0B.Mmv0C.MM-mv0D.mM-mv0解析:选D.火箭模型在极短时间点火,设火箭模型获得的速度为v,据动量守恒定律有0=(M-m)v-mv0,得v=mM-mv0,D正确.5.(2016·淮安模拟)(多选)如右图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上,槽的左侧有一竖直墙壁.现让一小球(可视为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是( )A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量不守恒。

江苏专三维高考物理总复习课件 选修3 动量 近代物理初步 第节 波粒二象性

江苏专三维高考物理总复习课件 选修3 动量 近代物理初步 第节  波粒二象性
3.用光电管研究光电效应 (1)电路如图2-1所示。
第2节 波粒二象性 结束
图2-1
物理
质量铸就品牌 品质赢得未来
第2节 波粒二象性 结束
(2)光电流与饱和光电流: ①入射光强度:指单位时间内入射到金属表面单位面积上的 能量。可以理解为频率一定时,光强越大,光子数_越__多__。 ②光电流:指光电子在电路中形成的电流。光电流有最大值, 未达到最大值以前,其大小和光强、_电__压__都有关,达到最大值以 后,光电流和光强成_正__比__。 ③饱和光电流:指在一定频率与强度的光照射下的最大光电 流,饱和光电流_不__随__电路中电压的增大而增大。
物理
质量铸就品牌 品质赢得未来
第2节 波粒二象性 结束
[针对训练]
1.(2014·广东高考)在光电效应实验中,用频率为ν的光照射光电管阴
极,发生了光电效应。下列说法正确的是
()
A.增大入射光的强度,光电流增大
B.减小入射光的强度,光电效应现象消失
C.改用频率小于ν的光照射,一定不发生光电效应
D.改用频率大于ν的光照射,光电子的最大初动能变大
物理
质量铸就品牌 品质赢得未来
第2节 波粒二象性 结束
(1)个别光子的作用效果往往表现为粒子性;大量光子的作用 效果往往表现为波动性。
(2)频率越低波动性越显著,越容易看到光的干涉和衍射现象; 频率越高粒子性越显著,越不容易看到光的干涉和衍射现象,贯穿 本领越强。
(3)光在传播过程中往往表现出波动性;在与物质发生作用时 往往表现为粒子性。
物理
质量铸就品牌 品质赢得未来
第2节 波粒二象性 结束
光电效应方程的应用
1.Ek -ν曲线
[必备知识]

【新步步高】2016年高考物理大一轮总复习课件(江苏专版)第13章 动量守恒定律 波粒二象性 原

考纲解读
考点一
考点二
考点三
高考模拟
练出高分
1.理解动量、动量的变化量的概念. 2.知道动量守恒的条件. 3.会利用动量守恒定律分析碰撞、反冲等相互作用问题.
1.内容 如果一个系统不受外力或者 所受外力之和为零 ,这个系统的总动量
保持不变,这就是动量守恒定律. 2.适用条件 (1)系统不受外力或所受外力的合力为零,不是系统内每个物体所受 的合外力都为零,更不能认为系统处于 平衡 状态. (2)近似适用条件:系统内各物体间相互作用的内力 远大于 它所受 到的外力. (3)如果系统在某一方向上所受外力的合力为零,则系统 在该方向上 动量守恒.
[例1]一颗子弹水平射入置于光滑水平面 上的木块A并留在其中,A、B用一根弹 性良好的轻质弹簧连在一起,如图所 示.则在子弹打击木块A及弹簧被压缩的 过程中,对子弹、两木块和弹簧组成的 系统( C ) 系统是否受外力 A.动量守恒,机械能守恒 B.动量不守恒,机械能守恒 C.动量守恒,机械能不守恒 D.无法判定动量、机械能是否守恒
[解析]A:先向左减速至零,再向右加速至共同速度 B:一直向右减速至共同速度
Ff
[变式题组]
A、B动量守恒 3.如图所示,一质量为M=3.0kg的长方形木板B放在光滑水平地面 上,在其右端放一质量为m=1.0kg的小物块A.现以地面为参考系, 给A和B一大小均为4.0m/s、方向相反的初速度,使A开始向左运动, B开始向右运动,但最后A并没有滑离B板,站在地面上的观察者看 到在一段时间内物块A做加速运动.则在这段时间内的某时刻,木 板B相对地面的速度大小可能是( C ) 相对静止 Ff A.3.0 m/s B.2.8 m/s C.2.4 m/s D.1.8 m/s
[解析]人和车组成的系统,在水平方向上动量守 恒.设车的速度v1的方向为正方向;

(新课标)高考物理大一轮复习第13章动量守恒定律波粒二象性原子结构与原子核教师用书

第13章 动量守恒定律 波粒二象性 原子结构与原子核考纲展示要求 复习定位1.动量、动量定理、动量守恒定律及其应用Ⅱ 1.本章在高考命题中有选择也有计算形式,选择题以波粒二象性及原子结构和原子核为主,而计算题的考查重点仍以典型的碰撞、相互作用模型或生活实例为背景,考查动量守恒定律的应用.动量定理作为新增Ⅱ级考点应引起重视.2.本章的复习应注意以下几方面(1)动量及动量变化量的理解,动量守恒定律的应用(2)动量守恒定律结合动量定理及能量守恒来解决碰撞、打击、反冲等问题(3)光电效应现象、实验规律和光电效应方程,光的波粒二象性及德布罗意波.(4)核式结构、玻尔理论、能级公式、原子跃迁条件,半衰期、质能方程的应用、计算和核反应方程的书写等.2.弹性碰撞和非弹性碰撞 Ⅰ 实验:验证动量守恒定律3.光电效应Ⅰ 4.爱因斯坦光电效应方程 Ⅰ 5.氢原子光谱Ⅰ 6.氢原子的能级结构、能级公式 Ⅰ 7.原子核的组成、放射性、原子核的衰变、半衰期 Ⅰ 8.放射性同位素 Ⅰ 9.核力、核反应方程 Ⅰ 10.结合能、质量亏损Ⅰ 11.裂变反应和聚变反应、裂变反应堆Ⅰ12.射线的危害和防护 Ⅰ第1节 动量守恒定律及其应用一、冲量、动量和动量定理 1.冲量(1)定义:力和力的作用时间的乘积. (2)公式:I =Ft ,适用于求恒力的冲量. (3)方向:与力的方向相同. 2.动量(1)定义:物体的质量与速度的乘积. (2)表达式:p =mv .(3)单位:千克·米/秒.符号:kg·m/s.(4)特征:动量是状态量,是矢量,其方向和速度方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的变化量.(2)表达式:F合·t=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统不受外力作用,或者所受的合外力为零,这个系统的总动量保持不变.3.定律的表达式m1v1+m2v2=m1v1′+m2v2′,两个物体组成的系统初动量等于末动量.可写为:p=p′、Δp=0和Δp1=-Δp24.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.三、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.四、实验:验证动量守恒定律1.方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.2.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m 1、m 2. (2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.3.方案三:在光滑桌面上两车碰撞完成一维碰撞实验 (1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v =ΔxΔt 算出速度.(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.4.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球. (2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O .(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P 就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M 和被碰小球落点的平均位置N .如图所示.(6)连接ON ,测量线段OP 、OM 、ON 的长度.将测量数据填入表中.最后代入m 1OP =m 1OM +m 2ON ,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒. [易错警示·微点拨]1.物体动量的变化等于物体所受合外力的冲量,而不是某个力的. 2.动量守恒中的速度应是相对于同一参考系中的速度.3.动量是矢量,系统总动量不变,是指系统总动量的大小方向都不变. 4.相互作用的物体动量守恒但机械能不一定守恒.考点一 动量定理的理解及应用1.动量定理的理解要点(1)动量定理的表达式应是一个矢量式,式中3个矢量都要选同一个方向为正方向. (2)动量定理公式中的F 是研究对象所受的合外力,它可以是恒力,也可以是变力,当F 为变力时,F 应是合外力对作用时间的平均值.(3)公式Ft =p ′-p 除表明等号两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.(4)动量定理说明的是合外力的冲量与动量变化的关系,与物体的初末动量无必然联系. (5)由Ft =p ′-p ,得F =p ′-p t =Δpt,即物体所受的合外力等于物体的动量对时间的变化率. 2.用动量定理解释现象用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.分析问题时,要把哪个量一定,哪个量变化搞清楚.1.(2015·高考重庆卷)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m 2ght +mg B .m 2ght -mg C.m ght+mg D .m ght-mg 解析:选A.由动量定理得(mg -F )t =0-mv ,得F =m 2ght+mg .选项A 正确.2.(2016·山东烟台高三质检)皮球从某高度落到水平地板上,每弹跳一次上升的高度总等于前一次的0.64倍,且每次球与地板接触的时间相等.若空气阻力不计,与地板碰撞时,皮球重力可忽略.(1)求相邻两次球与地板碰撞的平均冲力大小之比是多少?(2)若用手拍这个球,使其保持在0.8 m的高度上下跳动,则每次应给球施加的冲量为多少?(已知球的质量m=0.5 kg,g取10 m/s2)解析:(1)由题意可知,碰撞后的速度是碰撞前的0.8倍.设皮球所处的初始高度为H,与地板第一次碰撞前瞬时速度大小为v0=2gH,第一次碰撞后瞬时速度大小(亦为第二次碰撞前瞬时速度大小)v1和第二次碰撞后瞬时速度大小v2满足v2=0.8v1=0.82v0.设两次碰撞中地板对球的平均冲力分别为F1、F2,选竖直向上为正方向,根据动量定理,有F1t=mv1-(-mv0)=1.8mv0F2t=mv2-(-mv1)=1.8mv1=1.44mv0则F1∶F2=5∶4(2)欲使球跳起0.8 m,应使球由静止下落的高度为h=0.80.64m=1.25 m,球由1.25 m落到0.8 m处的速度为v=3 m/s,则应在0.8 m处给球的冲量为I=mv=1.5 N·s,方向竖直向下.答案:(1)5∶4 (2)1.5 N·s方向竖直向下动量定理的应用技巧(1)应用I=Δp求变力的冲量如果物体受到大小或方向改变的力的作用,则不能直接用I=Ft求变力的冲量,可以求出该力作用下物体动量的变化Δp,等效代换变力的冲量I.(2)应用Δp=FΔt求动量的变化例如,在曲线运动中,速度方向时刻在变化,求动量变化(Δp=p2-p1)需要应用矢量运算方法,计算比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化.考点二动量守恒定律的理解及应用1.动量守恒的“四性”(1)矢量性:表达式中初、末动量都是矢量,需要首先选取正方向,分清各物体初末动量的正、负.(2)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等.(3)同一性:速度的大小跟参考系的选取有关,应用动量守恒定律,各物体的速度必须是相对同一参考系的速度.一般选地面为参考系.(4)普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.2.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp=0,系统总动量的增量为零.1.如图所示,进行太空行走的宇航员A和B的质量分别为80 kg和100 kg,他们携手远离空间站,相对空间站的速度为0.1 m/s.A将B向空间站方向轻推后,A的速度变为0.2 m/s,求此时B的速度大小和方向.解析:相对空间站而言,宇航员A和B构成的系统满足动量守恒的条件.以初速度v0=0.1 m/s 的方向为正方向,A将B向空间站方向轻推后,A的速度一定沿正方向,即v A=0.2 m/s.由动量守恒定律得(m A+m B)v0=m A v A+m B v B将v0、v A代入数据解得v B=0.02 m/s因为v B>0,所以B的方向仍为离开空间站方向.答案:0.02 m/s 离开空间站方向2.(2015·济南高三质检)如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端.三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg,开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C相碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.解析:因碰撞时间极短,A与C碰撞过程动量守恒,设碰撞后瞬间A的速度大小为v A,C的速度大小为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C,A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB,A、B达到共同速度后恰好不再与C碰撞,应满足v AB=v C,联立解得v A=2 m/s.答案:2 m/s应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三动量和能量观点的综合应用(高频考点)1.动量的观点和能量的观点动量的观点:动量守恒定律能量的观点:动能定理和能量守恒定律这两个观点研究的是物体或系统运动变化所经历的过程中状态的改变,不对过程变化的细节作深入的研究,而关心运动状态变化的结果及引起变化的原因.简单地说,只要求知道过程的初、末状态动量式、动能式和力在过程中所做的功,即可对问题进行求解.2.利用动量的观点和能量的观点解题应注意下列问题(1)动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,绝无分量表达式.(2)中学阶段凡可用力和运动的观点解决的问题.若用动量的观点或能量的观点求解,一般都要比用力和运动的观点要简便,而中学阶段涉及的曲线运动(a不恒定)、竖直面内的圆周运动、碰撞等,就中学知识而言,不可能单纯考虑用力和运动的观点求解.题组一高考题组1.(2014·高考新课标全国卷Ⅰ)如图所示,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8 m,A球在B球的正上方.先将B球释放,经过一段时间后再将A球释放.当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰.碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小g=10 m/s2,忽略空气阻力及碰撞中的动能损失.求:(1)B球第一次到达地面时的速度;(2)P点距离地面的高度.解析:(1)设B球第一次到达地面时的速度大小为v B,由运动学公式有v B=2gh①将h=0.8 m代入上式,得v B=4 m/s②(2)设两球相碰前后,A球的速度大小分别为v1和v1′(v1′=0),B球的速度分别为v2和v2′,由运动学规律可得v1=gt③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变.规定向下的方向为正,有m A v 1+m B v 2=m B v 2′④12m A v 21+12m B v 22=12m B v 2′2⑤ 设B 球与地面相碰后的速度大小为v B ′,由运动学及碰撞的规律可得v B ′=v B ⑥ 设P 点距地面的高度为h ′,由运动学规律可得h ′=v B ′2-v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m ⑧ 答案:(1)4 m/s (2)0.75 m2.(2015·高考全国卷Ⅱ)两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:(1)滑块a 、b 的质量之比;(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比. 解析:(1)设a 、b 的质量分别为m 1、m 2,a 、b 碰撞前的速度为v 1、v 2.由题给图象得v 1=-2 m/s ① v 2=1 m/s ②a 、b 发生完全非弹性碰撞,碰撞后两滑块的共同速度为v 0.由题给图象得v =23 m/s ③由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v ④联立①②③④式得m 1∶m 2=1∶8⑤(2)由能量守恒得,两滑块因碰撞而损失的机械能为 ΔE =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2⑥由图象可知,两滑块最后停止运动.由动能定理得,两滑块克服摩擦力所做的功为W =12(m 1+m 2)v 2⑦联立⑥⑦式,并代入题给数据得W ∶ΔE =1∶2⑧答案:(1)1∶8 (2)1∶2题组二 模拟题组3.(2016·银川一中测试)如图所示,两块长度均为d =0.2 m 的木块A 、B ,紧靠着放在光滑水平面上,其质量均为M =0.9 kg.一颗质量为m =0.02 kg 的子弹(可视为质点且不计重力)以速度v 0=500 m/s 水平向右射入木块A ,当子弹恰水平穿出A 时,测得木块的速度为v =2 m/s ,子弹最终停留在木块B 中.求:(1)子弹离开木块A 时的速度大小及子弹在木块A 中所受的阻力大小; (2)子弹穿出A 后进入B 的过程中,子弹与B 组成的系统损失的机械能. 解析:(1)设子弹离开A 时速度为v 1,对子弹和A 、B 整体, 有mv 0=mv 1+2MvFd =12mv 20-12mv 21-12×2Mv 2联立解得v 1=320 m/s ,F =7 362 N(2)子弹在B 中运动过程中,最后二者共速,速度设为v 2,对子弹和B 整体,有mv 1+Mv =(m +M )v 2解得v 2=20523m/sΔE =12mv 21+12Mv 2-12(m +M )v 22=989 J.答案:(1)320 m/s 7 362 N (2)989 J4.(2016·河北邯郸摸底)如图所示,木块A 、B 的质量均为m ,放在一段粗糙程度相同的水平地面上,木块A 、B 间夹有一小块炸药(炸药的质量可以忽略不计).让A 、B 以初速度v 0一起从O 点滑出,滑行一段距离后到达P 点,速度变为v 02,此时炸药爆炸使木块A 、B 脱离,发现木块B 立即停在原位置,木块A 继续沿水平方向前进.已知O 、P 两点间的距离为s ,设炸药爆炸时释放的化学能全部转化为木块的动能,爆炸时间很短可以忽略不计,求:(1)木块与水平地面的动摩擦因数μ; (2)炸药爆炸时释放的化学能.解析:(1)设木块与地面间的动摩擦因数为μ,炸药爆炸释放的化学能为E 0. 从O 滑到P ,对A 、B 由动能定理得 -μ·2mgs =12·2m (v 02)2-12·2mv 20①解得μ=3v 28gs②(2)在P 点爆炸时,A 、B 动量守恒,有 2m ·v 02=mv ③根据能量守恒定律,有 E 0+12·2m ·(v 02)2=12mv 2④联立③④式解得E 0=14mv 20.答案:(1)3v 208gs (2)14mv 2应用动量、能量观点解决问题的两点技巧(1)灵活选取系统的构成,根据题目的特点可选取其中动量守恒或能量守恒的几个物体为研究对象,不一定选所有的物体为研究对象.(2)灵活选取物理过程.在综合题目中,物体运动常有几个不同过程,根据题目的已知、未知灵活地选取物理过程来研究.列方程前要注意鉴别、判断所选过程动量、机械能的守恒情况.考点四 实验十六:验证动量守恒定律1.实验时应注意的几个问题(1)前提条件:碰撞的两物体应保证“水平”和“正碰”. (2)方案提醒:①若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确保导轨水平.②若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直平面内.③若利用长木板进行实验,可在长木板下垫一小木片用以平衡摩擦力.④若利用斜槽进行实验,入射球质量要大于被碰球质量,即:m 1>m 2,防止碰后m 1被反弹. (3)探究结论:寻找的不变量必须在各种碰撞情况下都不改变. 2.对实验误差的分析(1)系统误差:主要来源于装置本身是否符合要求,即: ①碰撞是否为一维碰撞.②实验是否满足动量守恒的条件:如气垫导轨是否水平,两球是否等大,长木板实验是否平衡掉摩擦力等.(2)偶然误差:主要来源于质量m 和速度v 的测量. (3)减小误差的措施:①设计方案时应保证碰撞为一维碰撞,且尽量满足动量守恒的条件. ②采取多次测量求平均值的方法减小偶然误差.1.甲同学用如图甲所示装置,通过半径相同的A 、B 两球的碰撞来验证动量守恒定律.(1)(多选)实验中必须满足的条件是________. A .斜槽轨道尽量光滑以减小误差 B .斜槽轨道末端的切线必须水平C .入射球A 每次必须从轨道的同一位置由静止滚下D .两球的质量必须相等(2)测量入射球A 的质量为m A ,被碰撞小球B 的质量为m B ,图中O 点是小球抛出点在水平地面上的投影.实验时,先让入射球A 从斜轨上的起始位置由静止释放,找到其平均落点的位置P ,测得平抛射程为OP ;再将入射球A 从斜轨上起始位置由静止释放,与小球B 相撞,分别找到球A 和球B 相撞后的平均落点M 、N ,测得平抛射程分别为OM 和ON .当所测物理量满足表达式________时,即说明两球碰撞中动量守恒;如果满足表达式________时,则说明两球的碰撞为弹性碰撞.(3)乙同学也用上述两球进行实验,但将实验装置进行了改装:如图乙所示,将白纸、复写纸固定在竖直放置的木条上,用来记录实验中球A 、球B 与木条的撞击点.实验时,首先将木条竖直立在轨道末端右侧并与轨道接触,让入射球A 从斜轨上起始位置由静止释放,撞击点为B ′;然后将木条平移到图中所示位置,入射球A 从斜轨上起始位置由静止释放,确定其撞击点P ′;再将入射球A 从斜轨上起始位置由静止释放,与球B 相撞,确定球A 和球B 相撞后的撞击点分别为M ′和N ′.测得B ′与N ′、P ′、M ′各点的高度差分别为h 1、h 2、h 3.若所测物理量满足表达式________,则说明球A 和球B 碰撞中动量守恒.解析:(1)只有斜槽轨道末端的切线水平,小球每次从末端飞出后才做平抛运动,时间才相等,故选项B 对;入射球A 每次必须从轨道上的同一位置由静止滚下,每次从末端飞出时的初速度才相等,故选项C 对.(2)由动量守恒定律得m A ·v A =m A ·v A ′+m B ·v B ′,v =x /t ,故得出m A ·OP =m A ·OM +m B ·ON ;若是弹性碰撞,则动能守恒,有12m A v 2A =12m A v A ′2+12m B v B ′2,联立解得m A ·OP 2=m A ·OM 2+m B ·ON 2,或OP +OM =ON .(3)由h =12gt 2,v =x t ,得出v 与1h 成正比,再结合动量守恒定律m A ·v A =m A ·v A ′+m B ·v B ′,故得出m A h 2=m A h 3+m Bh 1. 答案:(1)BC(2)m A ·OP =m A ·OM +m B ·ONm A ·OP 2=m A ·OM 2+m B ·ON 2(或OP +OM =ON )(3)m A h 2=m A h 3+m Bh 12.(2014·高考新课标全国卷Ⅱ)现利用图甲所示的装置验证动量守恒定律.在图甲中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A 的质量m 1=0.310 kg ,滑块B 的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B =3.500 ms ,碰撞前后打出的纸带如图乙所示.若实验允许的相对误差绝对值⎝ ⎛⎪⎪⎪⎪⎪⎪碰撞前后总动量之差碰前总动量×100%⎭⎪⎫最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.解析:按定义,物块运动的瞬时速度大小v =ΔsΔt ①式中Δs 为物块在很短时间Δt 内走过的路程 设纸带上打出相邻两点的时间间隔为Δt A ,则 Δt A =1f=0.02 s ②Δt A 可视为很短.设A 在碰撞前、后瞬时速度大小分别为v 0、v 1,将②式和图给实验数据代入①式得v 0=2.00 m/s ③ v 1=0.970 m/s ④设B 在碰撞后的速度大小为v 2,由①式有v 2=dΔt B ⑤代入题给实验数据得v 2=2.86 m/s ⑥设两滑块在碰撞前、后的总动量分别为p 和p ′,则p =m 1v 0⑦ p ′=m 1v 1+m 2v 2⑧两滑块在碰撞前后总动量相对误差的绝对值为 δp =⎪⎪⎪⎪⎪⎪p -p ′p ×100%⑨联立③④⑥⑦⑧⑨式并代入有关数据,得 δp =1.7%<5%⑩因此,本实验在误差允许的范围内验证了动量守恒定律.答案:本实验在误差允许的范围内验证了动量守恒定律;运算过程见解析课堂小结——名师微点拨本节课重在理解动量守恒的条件及守恒的描述,对“系统总动量保持不变”注意以下三点:(1)系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、未两个状态的总动量相等. (2)系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化.(3)系统的总动量指系统内各物体动量的矢量和,总动量不变指的是系统的总动量的大小和方向都不变.课时规范训练(单独成册)1.(2016·广州调研)(多选)两个质量不同的物体,如果它们的( ) A .动能相等,则质量大的动量大 B .动能相等,则动量大小也相等 C .动量大小相等,则质量大的动能小 D .动量大小相等,则动能也相等解析:选AC.根据动能E k =12mv 2可知,动量p =2mE k ,两个质量不同的物体,当动能相等时,质量大的动量大,A 正确、B 错误;若动量大小相等,则质量大的动能小,C 正确、D 错误.2.质量为1 kg 的物体做直线运动,其速度图象如右图所示,则物体在前10 s 内和后10 s 内所受外力的冲量分别是( )A .10 N·s,10 N·sB .10 N·s,-10 N·sC .0.10 N·sD .0,-10 N·s解析:选D.由题图可知,在前10 s 内初、末状态的动量相等,p 1=p 2=5 kg·m/s,由动量定理知I 1=0;在后10 s 内p 3=-5 kg·m/s,I 2=p 3-p 2=-10 N·s,故选D.3.甲、乙两物体在光滑水平面上沿同一直线相向运动,甲、乙物体的速度大小分别为 3 m/s 和1 m/s ;碰撞后甲、乙两物体都反向运动,速度大小均为2 m/s.甲、乙两物体质量之比为( )A .2∶3B .2∶5C .3∶5D .5∶3解析:选C.选取碰撞前甲物体的速度方向为正方向,根据动量守恒定律有m 甲v 1-m 乙v 2=-m甲v 1′+m 乙v 2′,代入数据,可得m 甲∶m 乙=3∶5,C 正确.4.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.mMv 0 B .M mv 0 C.MM -mv 0 D .mM -mv 0 解析:选D.火箭模型在极短时间点火,设火箭模型获得的速度为v ,据动量守恒定律有0=(M -m )v -mv 0,得v =mM -mv 0,D 正确. 5.(2016·淮安模拟)(多选)如右图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上,槽的左侧有一竖直墙壁.现让一小球(可视为质点)自左端槽口A 点的正上方从静止开始下落,与半圆槽相切并从A 点进入槽内,则下列说法正确的是( )。

高三物理一轮总复习 第13章 选修3-5 第1节 动量守恒定律


间内,铁锤所受到的平均冲力大小为( )
A.mg mv
C.Δt
B.mΔvt+mg D.mΔvt-mg
【解析】对铁锤应用动量定理,以向上为正方向,
有(F-mg)Δt=0-(-mv),得 F=mΔvt+mg.选项 B 正 确.
【答案】B
考点二 动量守恒的应用 例 2 如图所示,一质量 M =2 kg 的带有弧形轨道的平 台置于足够长的水平轨道 上,弧形轨道与水平轨道平滑连接,水平轨道上静置 一小球 B.从弧形轨道上距离水平轨道高 h=0.3 m 处 由静止释放一质量 mA=1 kg 的小球 A,小球 A 沿轨
3.反冲运动 (1)反冲运动是相互作用的物体之间的作用力与 反作用力产生的效果.
(2)反冲运动的过程中,如果合外力为零或外力的
作用远小于物体间的相互作用力,可利用动量守恒定
律来处理. (3)研究反冲运动的目的是找出反冲速度的规律.
求反冲速度的关键是确定相互作用的物体系统和其中 各物体对地的运动状态.
2.爆炸现象 (1)动量守恒:由于爆炸是在极短的时间内完成 的,爆炸物体间的相互作用力远远大于受到的外力,
所以在爆炸过程中,系统的总动量守恒.
(2)动能增加:在爆炸过程中,由于有其他形式的
能量(如化学能)转化为动能,所以爆炸后系统的总动 能增加.
(3)位置不变:爆炸的时间极短,因而作用过程中,
物体产生的位移很小,一般可忽略不计,可以认为爆 炸后仍然从爆炸前的位置以新的动量开始运动.
在非弹性碰撞后以同一速度运动,系统机械能损失最 大.
知识点六 碰撞、爆炸、反冲的特点分析 1.碰撞现象 (1)动量守恒 (2)机械能不增加 (3)速度要合理 ①若碰前两物体同向运动,则应有物体速度一定增大,若碰后两物体同向运

江苏省高三物理一轮复习课件:选修3-5第一轮复习建议(共52张PPT)


1.动量 动量守恒定律 (3)验证动量守恒定律(实验、探究)
实验目的: 实验原理: 实验器材: 实验步骤: 实验结论:
2.原子结构和原子核
2.原子结构和原子核
(1)氢原子光谱 原子的能级 ①能级间的跃迁——满足能级差.
例5:用光子能量为E的单色光照射容器中处于基态的氢 原子。停止照射后,发现该容器内的氢能够释放出三种不 同频率的光子,它们的频率由低到高依次为ν1、ν2、ν3, 由此可知,开始用来照射容器的单色光的光子能量可以表 示为:①hν1;② hν3;③h (ν1+ν2);④h (ν1+ν2+ν3) 以上表示式中( ) 3 A.只有①③正确 B.只有②正确 ν1 2 C.只有②③正确 D.只有④正确
中,核反应吸收的能
2 量 Q 。在该核反应方程中, m m m m c H X N O
X表示什么粒子?X粒子以动能Ek 轰击静止的
14 7
N 核,
若 Ek Q ,则该核反应能否发生?请简要说明理由。
1.动量 动量守恒定律
(2)动量的改变量
例3:(2016年江苏)已知光速为c,普朗克常数为 h,则频率为μ的光子的动量为 .用该频率的 光垂直照射平面镜,光被镜面全部垂直反射回去, 则光子在反射前后动量改变量的大小为 .
三、复习建议
三、复习建议
1.动量 动量守恒定律
2.原子结构与原子核 3.光电效应 波粒二象性
三、复习建议
1.动量 动量守恒定律
1.动量 动量守恒定律
(1)动量守恒与核反应相结合
例1:(2009江苏)核反应产生的正电子与水中的电子相遇, 与电子形成几乎静止的整体后,可以转变为两个光子( ), 即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 原子结构 原子核 1.一个氢原子从n=3能级跃迁到n=2能级,该氢原子 ( ). A.放出光子,能量增加 B.放出光子,能量减少 C.吸收光子,能量增加 D.吸收光子,能量减少 解析 氢原子从高能级向低能级跃迁时,放出光子,能量减少,故选项B正确,选项A、C、D错误. 答案 B 2.在轧制钢板时需要动态地监测钢板厚度,其检测装置由放射源、探测器等构成,如图1所示.该装置中探测器接收到的是( ).

图1 A.X射线 B.α射线 C.β射线 D.γ射线 解析 放射源发出的只有α、β、γ三种射线,故选项A错误.在α、β、γ三种射线中,只有γ射线能穿透钢板,故选项B、C错误,D正确. 答案 D 3.居室装修中经常用到的花岗岩都不同程度地含有放射性元素(含铀、钍等),会释放出α、β、γ射线,这些射线会导致细胞发生癌变及呼吸道疾病.根据有关放射性知识判断下列说法中正确的是( ). A.α射线是发生α衰变时产生的,生成核与原来的原子核相比,中子数减少了4个 B.β射线是发生β衰变时产生的,生成核与原来的原子核相比,质量数减少了1个 C.γ射线是发生γ衰变时产生的,生成核与原来的原子核相比,中子数减少了1个 D.在α、β、γ三种射线中,γ射线的穿透能力最强、电离能力最弱 解析 α射线是发生α衰变时产生的,生成核与原来的原子核相比,中子数减少了2个,A错;β射线是发生β衰变时产生的,生成核与原来的原子核相比,质量数不变,中子数减少了1个,B错;γ射线是伴随着α、β衰变产生的,穿透能力最强,电离能力最弱,C错,D正确. 答案 D 4.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是( ) A.氢原子的能量增加 B.氢原子的能量减少 C.氢原子要吸收一定频率的光子 D.氢原子要放出一定频率的光子 解析 氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B、D正确. 答案 BD 5.氘核、氚核、中子、氦核的质量分别是m1、m2、m3和m4,如果氘核和氚核结合生成氦核,则下列说法中正确的是( ). A.核反应方程式为21H+31H→42He+10n B.这是一个裂变反应 C.核反应过程中的质量亏损Δm=m1+m2-m3 D.核反应过程中释放的核能ΔE=(m1+m2-m3-m4)c2 解析 由氘核和氚核的结合以及电荷数、质量数守恒可知选项A正确;该核反应为聚变反应,选项B错误;核反应过程中的质量亏损为Δm=m1+m2-m3-m4,选项C错误;由爱因斯坦质能方程可知核反应过程中释放的核能ΔE=Δmc2,可知选项D正确. 答案 AD 6.在花岗岩、大理石等装饰材料中,都不同程度地含有放射性元素,下列有关放射性元素的说法中正确的是( ). A.β射线与γ射线一样都是电磁波,但穿透本领远比γ射线弱 B.氡的半衰期为3.8天,4个氡原子核经过7.6天后就一定只剩下1个氡原子核 C.238 92U衰变成206 82Pb要经过6次β衰变和8次α衰变 D.放射性元素发生β衰变时所释放的电子是原子核内的中子转化为质子时产生的 解析 β射线是电子流,γ射线才是电磁波,选项A错;半衰期的意义只有对大量原子核

才成立,选项B错;238 92U衰变成206 82Pb,质量数减少了32,因此发生了324=8次α衰变,α衰变8次则核电荷数要减少16,实际核电荷数减少10,因此发生了16-10=6次β衰变,C正确;β 衰变时所释放的电子是原子核内的中子转化为质子时产生的,D正确. 答案 CD 7.氦3与氘的核聚变发电不产生温室气体,不产生放射性物质,是一种十分清洁、安全和环保的能源,开发月壤中蕴藏丰富的氦3资源,对人类社会今后的可持续发展具有深远意义.该核反应可表示为32He+21H→43Li+X(X表示某种粒子),若32He、21H和43Li的质量分别为m1、m2、m3,则下列选项正确的是 ( ). A.X为中子 B.这种核反应在月球上可自发进行 C.高速的X粒子可以用来工业探伤 D.该反应释放的核能ΔE<(m1+m2-m3)c2 解析 由电荷数守恒和质量数守恒可得X为10n,A正确;轻核聚变又称热核反应,必须在高温下进行,不能在月球上自发进行,B错误;能够用来工业探伤的是γ射线,并非高速中子流,C错误;由质能方程可知,该反应释放的核能ΔE=(m1+m2-m3-mn)c2<(m1+m2

-m3)c2,D正确.

答案 AD 8.如图2所示,在氢原子能级图中,氢原子从各个较高能级跃迁至同一较低能级时,会发出一系列光谱线,形成谱线系,分别称为赖曼线系,巴耳末线系,帕邢线系等.在同一谱线系中,下列说法正确的是( ).

图2 A.每一跃迁都会释放出一个电子,使原子变为粒子 B.各种跃迁都会释放出不同能量的光子 C.各条谱线具有相同的频率 D.跃迁后原子的能级是相同的 解析 由hν=Em-En可得,各种不同能级的氢原子从高能级跃迁至低能级,会释放不同能量(不同频率)的光子,A、C错误,B正确;跃迁后原子的能级相同,D正确. 答案 BD 9.以下是有关近代物理内容的若干叙述,其中正确的是( ). A.原子核发生一次β衰变,该原子外层就失去一个电子 B.一束光照射到某种金属上不能发生光电效应,可能是因为这束光的光强太小 C.按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减少,原子的能量也减少 D.天然放射现象中发出的三种射线是从原子核内放出的看不见的射线 解析 原子核发生一次β衰变,该原子核内质子数增加1,原子外层电子数不变,选项A错误;一束光照射到某种金属上不能发生光电效应,是因为这束光的频率太低,选项B错误;按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道,电子的动能减少,但原子的能量增加,选项C错误;天然放射现象中发出的三种射线是从原子核内放出的看不见的射线,选项D正确. 答案 D 9.如图3为氢原子能级的示意图,现有大量的氢原子处于n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光,下列说法正确的是( )

图3 A.最容易表现出衍射现象的光是由n=4能级跃迁到n=1能级产生的 B.频率最小的光是由n=2能级跃迁到n=1能级产生的 C.这些氢原子总共可辐射出3种不同频率的光 D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的金属铂能发生光电效应

解析 最容易发生衍射的应是波长最长而频率最小、能量最低的光波,hν=hcλ=En-Em,对应跃迁中能级差最小的应为n=4能级到n=3能级,故A、B错误.由C2n可知n=4能级上的氢原子共可辐射出C24=6种不同频率的光,故C错误.根据hν=E2-E1及发生光电效应的条件hν≥W0可知D正确. 答案 D 11.(1)下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是( ). (2)按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h). (3)有些核反应过程是吸收能量的.例如,在X+14 7N―→17 8 O+11H中,核反应吸收的能量Q=[(mO+mH)-(mx+mN)]c2.在该核反应方程中,X表示什么粒子?X粒子以动能Ek轰击静止的14 7N核,若Ek=Q,则该核反应能否发生?请简要说明理由. 解析 (1)根据黑体辐射的实验规律:随着温度的升高,各波长的辐射强度都增加,辐射强度的极大值向波长较短的方向移动,可知正确答案为A.

(2)根据玻尔理论可知,氢原子中的电子离核越远,氢原子的能量越大,由12mv2=hν+E1可

得v= 2hν+E1m. (3)根据核反应中的质量数守恒及电荷数守恒可知X粒子为42He(α粒子).不能发生,因为不能同时满足能量守恒和动量守恒的要求.

答案 (1)A (2)越大 2hν+E1m (3)42He 不能发生 因为不能同时满足能量守恒和动量守恒的要求. 12.(1)产生光电效应时,关于逸出光电子的最大初动能Ek,下列说法正确的是________. A.对于同种金属,Ek与照射光的强度无关 B.对于同种金属,Ek与照射光的波长成反比 C.对于同种金属,Ek与光照射的时间成正比 D.对于同种金属,Ek与照射光的频率成线性关系 E.对于不同种金属,若照射光频率不变,Ek与金属的逸出功成线性关系 (2)一静止的238 92U核经α衰变成为234 90Th核,释放出的总动能为4.27 MeV.问此衰变后234 90Th核的动能为多少MeV(保留一位有效数字)? 解析 (1)由Ek=hν-W0知Ek与照射光的强度及照射时间无关,与ν成线性关系,故选项

A、D正确,C错误.由Ek=hcλ-W0可知Ek与λ不成反比,故选项B错误.在hν不变的情况下,Ek与W0成线性关系,故选项E正确. (2)据题意知:此α衰变的衰变方程为: 238 92U→234 90Th+42He,

根据动量守恒定律得: mαvα=mThvTh, ① 式中,mα和mTh分别为α粒子和Th核的质量,vα和vTh分别为α粒子和Th核的速度的大小,由题设条件知: 12mαv2α+12mThv2Th=Ek, ②

mαmTh=4234, ③

式中Ek=4.27 MeV是α粒子与Th核的总动能. 由①②③式得: 12mThv2Th=mα

mα+mTh

Ek, ④

代入数据得,衰变后234 90Th核的动能: 12mThv2Th=0.07 MeV.⑤

答案 (1)ADE (2)0.07 MeV

相关文档
最新文档