初中数学公式全部

合集下载

初中数学计算公式大全

初中数学计算公式大全

初中数学计算公式大全1.四则运算公式:-加法公式:a+b=b+a-减法公式:a-b≠b-a-乘法公式:a×b=b×a-除法公式:a÷b≠b÷a2.约数公式:-a是b的约数表达式:b÷a=n(n为整数)-b是a的倍数表达式:b=a×n(n为整数)3.最大公约数(GCD)与最小公倍数(LCM)公式:-GCD(a,b)表示a和b的最大公约数-LCM(a,b)表示a和b的最小公倍数4.百分比公式:-a%表示a的百分之几,即a×0.01-a的百分之b,表示a的b%,即a×b×0.015.平均数和中位数公式:- 平均数:a1, a2, ..., an 的平均数为(a1 + a2 + ... + an) ÷ n-中位数:将一组数据按照大小排列,若数据个数n为奇数,则中位数为第(n+1)÷2个数;若n为偶数,则中位数为第n÷2个数与第(n÷2+1)个数的平均数。

6.平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²-(a+b)(a-b)=a²-b²7.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2ab·cosC- 正切定理:tanA = a/b,tanB = b/a8.勾股定理:-直角三角形中,c²=a²+b²,其中c为斜边,a、b为两个边的长度。

9.平行线关系公式:-对顶角相等:a,b,两直线被一条直线截断,其对应的内角互为对顶角,对顶角相等。

-同位角相等:a,b,一条直线与两平行线相交,所形成的内角和两平行线间的对应内角互为同位角。

初中数学公式大全完整版可打印

初中数学公式大全完整版可打印

初中数学公式大全完整版可打印一、有理数。

1. 有理数加法法则。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5=8,( - 3)+(-5)= - 8。

- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:3+( - 5)= - 2,5+( - 3)=2。

- 一个数同0相加,仍得这个数。

例如:0 + 3=3。

2. 有理数减法法则。

- 减去一个数,等于加上这个数的相反数。

即a - b=a+( - b)。

例如:5 - 3 =5+( - 3)=2。

3. 有理数乘法法则。

- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)= - 15。

- 任何数同0相乘,都得0。

4. 有理数除法法则。

- 除以一个不等于0的数,等于乘这个数的倒数。

即a÷ b=a×(1)/(b)(b≠0)。

- 两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

5. 乘方的定义。

- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a^n中,a 叫做底数,n叫做指数。

例如:2^3=2×2×2 = 8。

二、整式的加减。

1. 单项式。

- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

例如:3x,-5,a都是单项式。

- 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如:在单项式3x^2中,系数是3,次数是2。

2. 多项式。

- 几个单项式的和叫做多项式。

其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

例如:2x^2+3x - 1,2x^2、3x、-1都是它的项,-1是常数项。

- 多项式里次数最高项的次数,叫做这个多项式的次数。

初中必背88个数学公式打印

初中必背88个数学公式打印

初中必背88个数学公式打印1、过两点有且只有一条直线。

2、两点之间线段最短。

3、同角或等角的补角相等。

4、同角或等角的余角相等。

5、过一点有且只有一条直线和已知直线垂直。

6、直线外一点与直线上各点连接的所有线段中,垂线段最短。

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行。

8、如果两条直线都和第三条直线平行,这两条直线也互相平行。

9、同位角相等,两直线平行。

10、内错角相等,两直线平行。

11、同旁内角互补,两直线平行。

12、两直线平行,同位角相等。

13、两直线平行,内错角相等。

14、两直线平行,同旁内角互补。

15、定理:三角形两边的和大于第三边。

16、推论:三角形两边的差小于第三边。

17、三角形内角和定理:三角形三个内角的和等于180°。

18、推论1:直角三角形的两个锐角互余。

19、推论2:三角形的一个外角等于和它不相邻的两个内角的和。

20、推论3:三角形的一个外角大于任何一个和它不相邻的内角。

21、全等三角形的对应边、对应角相等。

22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。

23、角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等。

24、有两角和其中一角的对边对应相等的两个三角形全等。

25、边边边公理(SSS):有三边对应相等的两个三角形全等。

26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。

27、定理1:在角的平分线上的点到这个角的两边的距离相等。

28、定理2:到一个角的两边的距离相同的点,在这个角的平分线上。

29、角的平分线是到角的两边距离相等的所有点的集合。

30、等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角)。

31、等腰三角形顶角的平分线平分底边并且垂直于底边。

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

33、等边三角形的各角都相等,并且每一个角都等于60°。

初中数学所有公式中考必备

初中数学所有公式中考必备

初中数学所有公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数1、正方形:C周长S面积a边长周长=边长×4,C=4a 面积=边长×边长,S=a×a2、正方体:V:体积a:棱长表面积=棱长×棱长×6 ,S表=a×a×6体积=棱长×棱长×棱长,V=a×a×a3、长方形C周长S面积a边长周长=(长+宽)×2 ,C=2(a+b) 面积=长×宽,S=ab4、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 ,S=2(ab+ah+bh)(2)体积=长×宽×高,V=abh5、三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形:s面积a底h高面积=底×高s=ah7、梯形:s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形:S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径,C=∏d=2∏r(2)面积=半径×半径×∏9、圆柱体:v体积h:高s底面积r底面半径c底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体:v体积h高s底面积r底面半径体积=底面积×高÷3植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1小时=60分1分=60秒1小时=3600秒小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.×a=a25、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 ,S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径=πr2常见的初中数学公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、b、c有a2+b2=c2关系,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 ,S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

初中数学公式大全(绝对经典)

初中数学公式大全(绝对经典)

初中数学公式大全(绝对经典)初中数学公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角即是和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有双方和它们的夹角对应相称的两个三角形全等23角边角公理( ASA)有两角和它们的夹边对应相称的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相称的两个直角三角形全等27定理1在角的中分线上的点到这个角的双方的间隔相称28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性子定理等腰三角形的两个底角相称(即等边对等角)31推论1等腰三角形顶角的中分线中分底边而且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相称,而且每一个角都即是60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直中分线上的点和这条线段两个端点的间隔相称40逆定理和一条线段两个端点间隔相称的点,在这条线段的垂直中分线上41线段的垂直中分线可看做和线段两头点间隔相称的所有点的调集42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性子定理1平行四边形的对角相称53平行四边形性子定理2平行四边形的对边相称54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形断定定理3对角线相互中分的四边形是平行四边形59平行四边形断定定理4一组对边平行相称的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性子定理2矩形的对角线相称62矩形断定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性子定理2菱形的对角线相互垂直,而且每一条对角线中分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形断定定理1四边都相称的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性子定理1正方形的四个角都是直角,四条边都相称70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中央对称的两个图形,对称点连线都经过对称中央,而且被对称中央中分73逆定理假如两个图形的对应点连线都经过某一点,而且被这一点中分,那么这两个图形关于这一点对称74等腰梯形性子定理等腰梯形在统一底上的两个角相称75等腰梯形的两条对角线相等76等腰梯形断定定理在统一底上的两个角相称的梯形是等腰梯形77对角线相称的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必中分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,而且即是两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc假如ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性子假如a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,而且和其他双方订交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他双方(或双方的延长线)订交,所组成的三角形与原三角形类似91类似三角形断定定理1两角对应相称,两三角形类似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93断定定理2双方对应成比例且夹角相称,两三角形类似(SAS)94断定定理3三边对应成比例,两三角形类似(SSS)95定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性子定理1类似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性子定理2类似三角形周长的比即是类似比98性质定理3相似三角形面积的比等于相似比的平方99随便锐角的正弦值即是它的余角的余弦值,随便锐角的余弦值等于它的余角的正弦值100随便锐角的正切值即是它的余角的余切值,随便锐角的余切值等于它的余角的正切值101圆是定点的间隔即是定长的点的调集102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相称105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到角的双方间隔相称的点的轨迹,是这个角的中分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相称的一条直线109定理不在同一直线上的三点确定一个圆。

初中数学必背100公式,初中一到六年级数学公式大全总结

初中数学必背100公式,初中一到六年级数学公式大全总结

初中数学必背100公式,初中一到六年级数学公式大全总结公式一:点、角、线。

公式二:平行。

公式三:三角形基本性质。

公式四:三角形全等。

公式五:等腰三角形。

公式六:等边三角形。

公式七:比例。

公式八:相似三角形。

公式九:圆初中生学习数学要掌握和熟悉基本公式。

以下是初中数学公式汇总,希望对考生学习数学有所帮助。

初中数学全部公式总结1一元二次方程解答公式二次函数表达式ax²+bx+c=0;(a≠0),一元二次方程可以参考二次函数进行变形。

解答一元二次方程,我们可以先做出抛物线,然后看与x轴交点。

△=b²-4ac;解答公式:x=(-b±V△)/2a;2因式分解经常会用到公式1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

3三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg认为有用点个赞吧初中生学习数学要掌握和熟悉基本公式。

初中数学的全部公式

初中数学的全部公式

初中数学的全部公式
初中数学的全部公式包括:
1. 二次根式:$ \sqrt{a} $
2. 四则运算(加、减、乘、除):$ +,-,\times,\div $
3. 指数运算:$ a^{n} $
4. 对数运算:$ \log_{a}b $
5. 三角函数:正弦、余弦、正切、余切、正割、余割:
$ \sin,\cos,\tan,\cot,\sec,\csc $
6.平方差公式:$a^{2}-b^{2}=(a+b)(a-b)$
7.因式分解公式:$ax^{2}+bx+c=a(x-x_{1})(x-x_{2})$
8.勾股定理:$a^2+b^2=c^2$
9.解一元一次方程:$ax+b=c$
10.解一元二次方程:$ax^{2}+bx+c=0$
11.平移、旋转、镜像的变换公式
12.算术平均数的计算公式:$\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$
13.几何平均数的计算公式:$(a_{1}\times
a_{2}\times\cdots\times a_{n})^{\frac{1}{n}}$
14.三角形面积公式:$S=\frac{1}{2}bh$
15.矩形面积公式:$S=ab$
16.圆面积公式:$S=\pi r^2$
17.圆的周长公式:$C=2\pi r$
18.正方形周长公式:$C=4a$
19.正方体的表面积计算公式:$S=6a^2$
20.直角三角形斜边长计算公式:$c=\sqrt{a^2+b^2}$
以上是初中数学的一些基础公式,还有许多定理和公式需要根据不同的知识点和题目进行学习和应用。

(完整版)初中数学公式大全(绝对经典)

(完整版)初中数学公式大全(绝对经典)

初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学公式全部
初中数学中常用的公式包含了代数、几何、三角函数、概率与统计等多个方面。

以下是一些常见的初中数学公式:
一、代数公式
1.求和公式:
-等差数列前n项和 Sn = (a1 + an) 某 n / 2
-等差数列前n项和Sn=(2a1+d(n-1))某n/2
-等比数列前n项和Sn=a1某(1-q^n)/(1-q)
2.因式分解公式:
- 二次差公式 (a + b)^2 = a^2 + 2ab + b^2
- 平方差公式 (a - b)^2 = a^2 - 2ab + b^2
- 平方和公式 a^2 + b^2 = (a + b)^2 - 2ab
-平方差公式a^2-b^2=(a+b)(a-b)
3.二次方程的根公式:
- 一元二次方程 a某^2 + b某 + c = 0 的根公式某 = (-b ±
√(b^2 - 4ac)) / 2a
二、几何公式
1.直角三角形的勾股定理:
-c^2=a^2+b^2
2.三角形面积公式:
-面积S=1/2某底某高(对于任意三角形)
- 面积S = 1/2 某边某边某 sin(夹角)(对于任意三角形)
- 面积S = a 某 b 某 sin(夹角) / 2(对于已知两边和夹角的三角形)
3.多边形面积公式:
- 正多边形面积S = 1/2 某边长某边长某 n 某 sin(360度 / n)
三、三角函数公式
1.周期性公式:
- sin(θ + 2π) = sin(θ)
- cos(θ + 2π) = cos(θ)
- tan(θ + π) = -tan(θ)
2.三角函数的和差化积公式:
- sin(α ± β) = sinαcosβ ± cosαsinβ
- cos(α ± β) = cosαcosβ ∓ sinαsinβ
- tan(α± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)
四、概率与统计公式
1.事件的概率:
-P(A)=n(A)/n(S),表示事件A发生的概率
2.期望:
-对于离散型随机变量,期望E(X)=Σ(某某P(X=某))
-对于连续型随机变量,期望E(X)=∫(某某f(某))d某
这些仅是初中数学中的一部分公式,希望能对你学习初中数学有所帮助!。

相关文档
最新文档