2013年秋八年级上第七章平行线的证明检测题含答案解析

合集下载

(好题)初中数学八年级数学上册第七单元《平行线的证明》测试题(含答案解析)(2)

(好题)初中数学八年级数学上册第七单元《平行线的证明》测试题(含答案解析)(2)

一、选择题1.下列命题中,为真命题的是( )A .13是13的算术平方根B .三角形的一个外角大于任何一个内角C .13是最简二次根式 D .两条直线被第三条直线所截,内错角相等 2.甲、乙、丙、丁四个同学在玩推理游戏,要找出谁在数学测评中获奖.甲说:“是乙获奖.”乙说:“是丙获奖.”丙说:“乙说的不是实话.”丁说:“反正我没有获奖.”如果这四个同学中只有一个人说了实话,请问是谁获奖( )A .甲B .乙C .丙D .丁3.下列说法正确的是( )A .一组数据6,5,8,8,9的众数是8B .甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙.则甲组学生的身高较整齐C .命题“若||1a =,则1a =”是真命题D .三角形的外角大于任何一个内角4.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”;小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”.则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误 5.下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个 6.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A.40°B.45°C.50°D.60°7.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行>-,则a一定小于0D.若数a使得a a8.下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个9.如图,能判定AD∥BC的条件是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠410.已知下列命题(1)等边三角形的三个内角都相等;(2)平行四边形相邻的两个角都相等;(3)线段垂直平分线上的点到这条线段两个端点距离相等;(4)底角相等的两个等腰三角形全等.其中原命题和逆命题均为真命题的有()A.1个B.2个C.3个D.4个11.如图,已知点E,D分别在△ABC边BA和CA的延长线上,CF和EF分别平分∠ACB和∠AED.如果∠B=70°,∠D=50°,则∠F的度数是()A .50°B .55°C .60°D .65°12.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有②C .①②都正确D .①②都不正确二、填空题13.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.14.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 15.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____.16.如图,AB CD ,一副三角尺按如图所示放置,∠AEG =20度,则 HFD ∠为 ______________度.17.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.18.在△ABC 中,∠A=60°,∠B=∠C ,则∠B=______.19.如图,下列能判定//AB CD 的条件有_______个.①180B BAD ∠+∠=°;②12∠=∠;③34∠=∠;④5BAD ∠=∠.20.三角形中,如果有一个内角是另外一个内角的3倍,我们把这个三角形叫做“三倍角三角形”.在一个“三倍角三角形”中有一个内角为60°,则另外两个角分别为_____.三、解答题21.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,点A 、B 、P 均在格点上.(请利用网格作图,画出的线用铅笔描粗描黑)(1)过点P 画直线AB 的平行线;(2)连接PA 、PB ,则三角形PAB 的面积= ;(3)若三角形QAB 面积与三角形PAB 的面积相等,且格点Q 与P 不重合,则格点Q 有 个.22.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .23.如图,//AD BC ,∠1=∠C ,∠B =60°,DE 平分∠ADC 交BC 于点E ,试说明//AB DE .请完善解答过程,并在括号内填写相应的理论依据.解:∵//AD BC ,(已知)∴∠1=∠ =60°.( )∵∠1=∠C ,(已知)∴∠C =∠B =60°.(等量代换)∵//AD BC ,(已知)∴∠C +∠ =180°.( )∴∠ =180°-∠C =180°-60°=120°.(等式的性质)∵DE 平分∠ADC ,(已知)∴∠ADE =12∠ADC =12×120°=60°.( ) ∴∠1=∠ADE .(等量代换)∴//AB DE .( )24.如图1,AD //BC ,BAD ∠的平分线交BC 于点G ,90BCD ∠=︒.(1)求证:BAG BGA ∠=∠(2)如图2,若50ABC ∠=︒,BCD ∠的平分线交AD 于点E ,交射线GA 于点F ,AFC ∠的度数.(3)如图3,线段AG 上有一点P ,满足2ABP PBG ∠=∠,过点C 作CH //AG . 若在直线AG 上取一点M ,使PBM DCH ∠=∠,请求:ABM GBM ∠∠的值.25.如图,点B 、E 分别在直线AC 和DF 上,若AGB EHF ∠=∠,C D ∠=∠,可以得到A F ∠=∠.请完成下面说理过程中的各项“填空”理由:∵AGB EHF ∠=∠(已知)AGB ∠= (对顶角相等)∴EHF DGF ∠=∠(理由 )∴ //EC (理由: )∴ DBA =∠(两直线平行,同位角相同)又∵C D ∠=∠,∴DBA ∠= (等量代换)∴//DF (内错角相等,两直线平行)∴A F ∠=∠(理由: )26.数学课上,张老师给出这样一个问题——已知:如图,直线//a b ,//a c ,请说明://b c .请你把小明的说明过程补充完整: 说明:作直线l 分别和a ,b ,c 相交(如图)//a b (已知)1∴∠=______,(______)又//a c (已知)1∴∠=______,(两直线平行,内错角相等)∴______,//b c ∴,(______)由此我们可以得到一个基本事实:平行于同一条直线的两条直线互相______.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据算术平方根、三角形外角定理、最简二次根式定义、平行线性质逐项判断即可求解.【详解】解:1313的算术平方根”,判断正确,符合题意;B. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于和它不相邻的任意一个内角”,判断错误,不合题意;”,不是最简二次根式,判断错误,不合题意;D. “两条直线被第三条直线所截,内错角相等”,两条直线不一定平行,判断错误,不合题意.故选:A【点睛】本题考查了命题、算术平方根、三角形外角定理、最简二次根式定义、平行线性质等知识,熟练掌握相关知识是解题的关键,注意:题设成立,结论一定成立的命题是真命题;题设成立,结论不一定成立的命题是假命题.2.D解析:D【分析】若甲说的是真话,则乙是假话,丙说的是真话,和已知不符合.故甲说的是假话,不是乙获奖;若乙说的是真话,则丁说的也是真话,和已知不符合.故乙说的是假话,不是丙获奖.显然丙说的是真话,丁说的是假话,则是丁获奖.【详解】解:本题可分三种情况:①如果甲是真命题,则乙是假命题,丙是真命题,丁是真命题;显然与已知不符; ②如果甲是假命题,乙是真命题,则丙是假命题,丁是真命题;显然与已知不符; ③如果甲是假命题,乙是假命题,则丙是真命题,丁是假命题;在这种情况下,只有丙说了实话,而其他人都说了假话,因此这种情况符合题意.在③的条件下,丁说了假话,因此丁才是真正获奖的人.故选D .【点睛】此题主要考查命题的真假推理,解题的关键是用假设的方法,进行分析排除. 3.A解析:A【分析】分别根据众数、方差、真命题、三角形外角定理等知识逐项判断即可求解.【详解】解:A.“一组数据6,5,8,8,9的众数是8”,判断正确,符合题意;B. “甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙,则甲组学生的身高较整齐”,因为22S S 甲乙> ,所以乙组学生的身高较整齐,原判断错误,不合题意;C. 命题“若||1a =,则1a =±”,所以原判断错误,不合题意;D.“三角形的外角大于任何一个不相邻的内角”,所以原判断错误,不合题意.故选:A .【点睛】本题考查了众数,方差,真假命题,三角形的外角等知识,熟知相关定理是解题关键.4.A解析:A【分析】由EF⊥AB,CD⊥AB,知CD∥EF,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF⊥AB,CD⊥AB,∴CD∥EF,若∠CDG=∠BFE,∵∠BCD=∠BFE,∴∠BCD=∠CDG,∴DG∥BC,∴∠AGD=∠ACB,故小明说法正确;∵FG∥AB,∴∠B=∠GFC,故得不到∠GFC=∠ADG,故小亮说法错误,故选:A.【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定.5.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.6.D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE , ∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.7.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.C【分析】分别根据有理数、平行线的判定与性质以点到直线的距离分别判断得出即可.【详解】①实数与数轴上的点一一对应,原命题是假命题;②两条平行线线被第三条直线所截,内错角相等,原命题是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,原命题是假命题;④平行于同一条直线的两条直线互相平行,是真命题;⑤垂直于同一平面内的同一条直线的两条直线互相平行,原命题是假命题;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,原命题是假命题;故选:C.【点睛】此题主要考查了命题与定理,熟练掌握相关的定理与性质是解题关键.9.B解析:B【分析】根据平行线的判定方法进行分析即可.【详解】A、∠1=∠2不能判定AD∥BC,故此选项错误;B、∠2=∠3能判定AD∥BC,故此选项正确;C、∠1=∠4可判定AB∥CD,不能判定AD∥BC,故此选项错误;D、∠3=∠4不能判定AD∥BC,故此选项错误;故选:B.【点睛】此题主要考查了平行线的判定,关键是掌握内错角相等,两直线平行.10.B解析:B【分析】根据逆命题的概念分别写出各个命题的逆命题,根据等边三角形的判定和直线定理、平行四边形的判定和性质定理、线段垂直平分线的判定和性质、全等三角形的判定和性质定理判断即可.【详解】解:(1)等边三角形的三个内角都相等,是真命题,逆命题为:三个角相等的三角形是等边三角形,是真命题;(2)平行四边形相邻的两个角互补,但不一定相等,本说法是假命题,逆命题为:相邻的两个角都相等的四边形是平行四边形,是真命题;(3)线段垂直平分线上的点到这条线段两个端点距离相等,是真命题,逆命题为:到线段两个端点距离相等的点在线段垂直平分线上,是真命题;(4)底角相等的两个等腰三角形不一定全等,本说法是假命题,逆命题为:两个全等的等腰三角形的底角相等,是真命题;故选:B.【点睛】本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.C解析:C【分析】由角平分线定义得∠BCF=∠ACF,∠DEF=∠AEF,由三角形内角和定理得∠BCF+∠B=∠AEF+∠F;∠BCF+∠ACF+∠B=∠DEF+∠AEF+∠D,即2∠BCF+∠B=2∠AEF+∠D,则∠BCF+70°=∠AEF+∠F①,2∠BCF+70°=2∠AEF+50°②,进而得出答案.【详解】解:如图,设AB交CF于点G,∵CF、EF分别平分∠ACB和∠AED,∴∠BCF=∠ACF,∠DEF=∠AEF,∵∠BCF+∠B=∠AEF+∠F;∠BCF+∠ACF+∠B=∠DEF+∠AEF+∠D,即2∠BCF+∠B =2∠AEF+∠D,又∵∠B=70°,∠D=50°,∴∠BCF+70°=∠AEF+∠F①,2∠BCF+70°=2∠AEF+50°②,①×2﹣②得,70°=2∠F﹣50°,解得∠F=60°.故选:C.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.同时考查了角平分线的性质.12.A解析:A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得②错误.【详解】解:①若a∥b,b∥c,则a∥c,说法正确;②若a⊥b,b⊥c,则a⊥c,说法错误,应为同一平面内,若a⊥b,b⊥c,则a∥c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.二、填空题13.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 14.假若a >b 则a2>b2【分析】a2大于b2则a 不一定大于b 所以该命题是假命题它的逆命题是若a >b 则a2>b2【详解】①当a =-2b =1时满足a2>b2但不满足a >b 所以是假命题;②命题若a2>b2则解析:假 若a >b 则a 2>b 2【分析】a 2大于b 2则a 不一定大于b ,所以该命题是假命题,它的逆命题是“若a >b 则a 2>b 2”.【详解】①当a =-2,b =1时,满足a 2>b 2,但不满足a >b ,所以是假命题;②命题“若a 2>b 2则a >b ”的逆命题是若“a >b 则a 2>b 2”;故答案为:假;若a >b 则a 2>b 2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.15.32°【分析】根据三角形的内角和等于180°求出∠A=90°从而得到∠B ∠C 互余然后用∠C 表示出∠B 再列方程求解即可【详解】∵∠A=∠B+∠C ∠A+∠B+∠C=180°∴∠A=90°∴∠B+∠C=9解析:32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B 、∠C 互余,然后用∠C 表示出∠B ,再列方程求解即可.【详解】∵∠A=∠B+∠C ,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键.16.35【解析】分析:过点G作AB平行线交EF于P根据平行线的性质求出∠EGP求出∠PGF根据平行线的性质平角的概念计算即可详解:过点G作AB平行线交EF于P由题意易知AB∥GP∥CD∴∠EGP=∠AE解析:35【解析】分析:过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=35°.故答案为35°.点睛:本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.17.500【分析】连接BB由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF是△BDB'的外角,∠CEG是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.18.60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°∠B=∠C进而得到∠B的度数【详解】解:∵∠A∠B∠C是△ABC的三个内角∴∠A+∠B+∠C=180°∵∠A解析:60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.19.1【分析】利用判定平行的条件分别判断各个条件是否满足即可【详解】①仅能判断BC∥AD错误;②仅能判断BC∥AD错误;③可通过内错角相等判断AB∥CD正确;④无法判断平行错误故答案为:1个【点睛】本题解析:1【分析】利用判定平行的条件,分别判断各个条件是否满足即可.【详解】①仅能判断BC∥AD,错误;②仅能判断BC∥AD,错误;③可通过内错角相等,判断AB∥CD,正确;④无法判断平行,错误故答案为:1个.【点睛】本题考查平行的判定,需要注意题干中告知的条件到底能判定哪一组线段平行.20.100°20°或90°30°【分析】分三种情形讨论求解即可解决问题【详解】解:在△ABC中不妨设∠A=60°①若∠A=3∠C则∠C=20°∠B=100°②若∠C=3∠A则∠C=180°(不合题意)③解析:100°,20°或90°,30°【分析】分三种情形讨论求解即可解决问题.【详解】解:在△ABC中,不妨设∠A=60°.①若∠A=3∠C,则∠C=20°,∠B=100°.②若∠C=3∠A,则∠C=180°(不合题意).③若∠B=3∠C,则∠B=90°,∠C=30°,综上所述,另外两个角的度数为100°,20°或90°,30°.故答案为:100°,20°或90°,30°.【点睛】本题考查了三角形的内角和定理的运用,解题的关键是学会用分类讨论的思想思考问题.三、解答题21.(1)见解析;(2)6.5;(3)3【分析】(1)连结AP,过点P作∠APQ=∠PAB,利用内错角相等,两直线平行可得PQ∥AB即可;(2)连PB,割补法利用网格正方形面积减去三个三角形面积即可;(3)由三角形QAB面积与三角形PAB的面积相等,在AB的平行线PQ上,截取PQ=AB 或PQ1=AB,连结AQ,延长QA,在QA的延长线上截取AQ2=AQ即可.【详解】(1)连结AP,过点P作∠APQ=∠PAB,∴PQ∥AB,则PQ为所求;(2)连PB,S△PAB=4×4-12×4×3-12×1×3-12×4×1=16-6-1.5-2=6.5,故答案为:6.5;(3)三角形QAB面积与三角形PAB的面积相等,在AB的平行线PQ上,截取PQ=AB或PQ1=AB,连结AQ,延长QA,在QA的延长线上截取AQ2=AQ,则Q、Q1、Q2三点为所求,则格点Q有3个,故答案为:3.【点睛】本题考查平行线的作法,网格三角形面积,面积相等的三角形格点问题,掌握平行线的作法,网格三角形面积求法,面积相等的三角形格点确定方法是解题关键.22.见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.23.B ;两直线平行,同位角相等;ADC ;两直线平行,同旁内角互补;ADC ;角平分线性质;内错角相等,两直线平行.【分析】利用平行线的性质和判定,角平分线的性质去进行填空.【详解】解∵//AD BC ,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C ,(已知)∴∠C =∠B =60°.(等量代换)∵//AD BC ,(已知)∴∠C +∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°-∠C =180°-60°=120°.(等式的性质)∵DE 平分∠ADC ,(已知)∴∠ADE =12∠ADC =12×120°=60°.(角平分线性质) ∴∠1=∠ADE .(等量代换)∴//AB DE .(内错角相等,两直线平行)【点睛】本题考查平行线的性质和判定,解题的关键是掌握平行线的性质和判定定理.24.(1)见解析;(2)20︒;(3)1:5或7:5.【分析】(1)由两直线平行,内错角相等证得DAG AGB ∠=∠,再由角平分线的性质得到12BAG DAG BAD ∠=∠=∠,据此解题; (2)由等腰三角形的性质结合三角形内角和解得65BGA ∠=︒,再由补角的定义解得115AGC ∠=︒,接着由角平分线的性质解得ECB ∠的度数,最后根据三角形内角和180°解题;(3)设,1802AGB BAG ABG αα∠=∠=∠=︒-,根据题意,解得ABP PBG ∠∠、的度数,再根据两直线平行,同位角相等解得HCB AGB α∠=∠=,继而解得DCH PBM ∠∠、的度数,接着分两种情况讨论:当M 在BP 上方时,或当M 在BP 下方时,分别解得ABM GBM ∠∠、的度数,即可解题.【详解】解:(1)//AD BCDAG AGB ∴∠=∠ AC 平分BAD ∠12BAG DAG BAD ∴∠=∠=∠∴∠=∠BAG BGA ;(2)50ABC ∠=︒ 1(180)652BGA ABG ∴∠=︒-∠=︒ 180115AGC AGB ∴∠=︒-∠=︒CE 平分DCB ∠1452ECB DCB ∴∠=∠=︒ 18020AFC AGC ECB ∴∠=︒-∠-∠=︒;(3)设,1802AGB BAG ABG αα∠=∠=∠=︒-2ABP PBG ∠=∠2412033ABP ABG α∴∠=∠=︒- 126033PBG ABG α∠=∠=︒- //CH AGHCB AGB α∴∠=∠=90DCH α∴∠=︒-PBM DCH ∴∠=∠90PBM α∴∠=︒-90α<︒160902αα∴︒-<︒- 4120903αα∴︒->︒- PBG PBM ABP ∴∠<∠<∠当M 在BP 上方时,1303ABM ABP PBM α∠=∠-∠=︒- 51503GBM PBG PBM α∠=∠+∠=︒-:1:5ABM GBM ∠∠=当M 在BP 下方时,72103ABM ABP PBM α∠=∠+∠=︒- 51503GBM PBG PBM α∠=∠+∠=︒- 7:5ABM GBM ∠∠=:综上所述,:1:5ABM GBM ∠∠=或7:5ABM GBM ∠∠=:.【点睛】本题考查平行线的性质、角平分线的定义、三角形内角和180°等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.∠DGF ;等量代换;BD ;同位角相等,两直线平行;∠D ;AC ;两直线平行,内错角相等.【分析】先根据已知条件结合对顶角相等得出∠EHF=∠DGF ,由平行线判定知BD ∥EC ,由判定得∠D=∠DBA ,再由等量代换知∠DBA=∠C ,根据平行线判定知DF ∥AC ,利用平行线的性质即可得证.【详解】∵∠AGB=∠EHF (已知)∠AGB=∠DGF (对顶角相等)∴∠EHF=∠DGF (理由:等量代换)∴BD ∥EC (理由:同位角相等,两直线平行)∴∠C=∠DBA (两直线平行,同位角相等)又∵∠C=∠D ,∴∠DBA=∠D (等量代换)∴DF ∥AC (内错角相等,两直线平行)∴∠A=∠F (理由:两直线平行,内错角相等),故答案为:∠DGF ;等量代换;BD ;同位角相等,两直线平行;∠D ;AC ;两直线平行,内错角相等.【点睛】本题主要考查了平行线的性质与判定的综合应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.26.∠2;两直线平行,同位角相等;∠3;∠2=∠3;内错角相等,两直线平行;平行【分析】根据平行线的判定和性质解答即可.【详解】解:∵a∥b(已知)∴∠1=∠2,(两直线平行,同位角相等)又∵a∥c(已知)∴∠1=∠3,(两直线平行,内错角相等)∴∠2=∠3,∴b∥c,(内错角相等,两直线平行);得出:平行于同一条直线的两条直线互相平行;故答案为:∠2,两直线平行,同位角相等,∠3,∠2=∠3,内错角相等,两直线平行,平行.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。

(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)(2)

(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)(2)

一、选择题1.如图,已知//AB CD ,120AFC ∠=︒,13EAF EAB ∠=∠,1 3ECF ECD ∠=∠,则 AEC ∠=( )A .60°B .80°C .90°D .100°2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =3.如图,将直尺与30角的三角尺叠放在一起,若270,则1∠的大小是( )A .45︒B .50︒C .55︒D .40︒4.如图,BE ,CF 都是△ABC 的角平分线,且∠BDC =110°,则∠A 的度数为( )A .40°B .50°C .60°D .70°5.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有( )①OE 平分AOD ∠;②AOC BOD ∠=∠;③15AOC CEA ∠-∠=︒;④180COB AOD ∠+∠=︒A .0B .1C .2D .3 6.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒7.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .58.下列命题是假命题的是( )A .三角形的内角和是180°B .两直线平行,内错角相等C .三角形的外角大于任何一个内角D .同旁内角互补,两直线平行 9.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 10.若AD ∥BE ,且∠ACB=90°,∠CBE=30°,则∠CAD 的度数为( )A .30°B .40°C .50°D .60°11.已知下列命题 (1)等边三角形的三个内角都相等;(2)平行四边形相邻的两个角都相等;(3)线段垂直平分线上的点到这条线段两个端点距离相等;(4)底角相等的两个等腰三角形全等.其中原命题和逆命题均为真命题的有( )A .1个B .2个C .3个D .4个 12.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .68二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.15.如图,AB ∥CD ,EF 交AB 、CD 于点G 、H ,GM 、HM 分别平分∠BGH 、∠GHD ,GM 、HM 交于点M ,则∠GMH =_________.16.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.17.命题“面积相等的三角形全等”的逆命题是__________.18.如图,已知//DE FG ,则12A ∠+∠-∠=________________19.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.20.如图, AM 、CM 分别平分∠BAD 和∠BCD ,且∠B=31°,∠D=39°,则∠M=______.三、解答题21.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.22.如图,12∠=∠,34∠=∠,56∠=∠,求证://CE BF .23.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.24.如图所示,已知,A F ∠=∠,C D ∠=∠.(1)求证: //BD CE ;(2)已知:2:3ABD DEC ∠∠=,求DEC ∠的度数.25.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:∵12∠=∠(已知),且14∠=∠(__________),∴24∠∠=(__________).∴//BF _____(__________). ∴∠____3=∠(__________).又∵B C ∠=∠(已知),∴_____________(等量代换).∴//AB CD (__________).26.已知:如图,//AB CD ,BD 平分ABC ∠,CE 平分DCF ∠,90ACE ︒∠=.(1)请问BD 和CE 是否平行?请你说明理由;(2)AC 和BD 的位置关系怎样?请说明判断的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C连接AC ,设∠EAF=x ,∠ECF=y ,得到∠FAB=4x ,∠FCD=4x ,根据平行线性质得出∠CAB+∠ACD=180°,从而得到x+y=30°,再根据∠AEC=180°-(∠EAF+∠ECF+∠FCA+∠FAC )得到结果.【详解】解:连接AC ,设∠EAF=x ,∠ECF=y ,∴∠EAB=3x ,∠ECD=3x ,∴∠FAB=4x ,∠FCD=4x ,∵AB ∥CD ,∴∠CAB+∠ACD=180°,∵∠AFC=120°,∴∠FAC+∠FCA=180°-120°=60°,∴∠FAC+∠FCA+∠FAB+∠FCD=180°,即60+4x+4y=180°,解得:x+y=30°,∴∠AEC=180°-(∠EAC+∠ECA )=180°-(∠EAF+∠ECF+∠FCA+∠FAC )=180°-(x+y+60°)=90°故选C .【点睛】本题考查了平行线性质和三角形内角和定理的应用,解题的关键是注意整体思想的运用. 2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.B解析:B【分析】根据平角的定义和平行线的性质即可得到结论.【详解】解:如图:由题意得:∠4=180°−90°−30°=60°,∵AB∥CD,∴∠3=∠2=70°,∴∠1=180°−∠3-∠4=180°−70°−60°=50°.故选:B.【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.4.A解析:A【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°-(∠ABC+∠ACB),=180°-2(∠DBC+∠BCD)∵∠BDC=180°-(∠DBC+∠BCD),∴∠A=180°-2(180°-∠BDC)∴∠BDC=90°+1∠A,2∴∠A=2(110°-90°)=40°.故答案为:A.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.5.D解析:D【分析】根据同角的余角相等可得∠AOC=∠BOD ;根据角的和差关系可得∠COB+∠AOD=180;根据三角形的内角和即可得出∠AOC-∠CEA=15°.【详解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB ,即∠AOC=∠BOD ,故②正确;∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确;如图,AB 与OC 交于点P ,∵∠CPE=∠APO ,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°, ∴∠AOC-∠CEA=15°.故③正确;没有条件能证明OE 平分∠AOD ,故①错误.综上,②③④正确,共3个,故选:D .【点睛】本题考查了余角与补角以及三角形内角和定理,熟知余角与补角的性质以及三角形内角和是180°是解答此题的关键.6.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键. 7.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.8.C解析:C【分析】根据三角形内角和定理、外角性质、平行线的性质与判定进行判断即可.【详解】解:A 选项,三角形的内角和是180°,是真命题,不符合题意;B 选项,两直线平行,内错角相等,是真命题,不符合题意;C 选项,三角形的外角大于任何一个内角,是假命题,符合题意;D 选项,同旁内角互补,两直线平行,是真命题,不符合题意;故选:C .【点睛】本题考查了三角形内角和定理和外角的性质,平行的性质与判定,解题关键是熟练准确掌握基础知识.9.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.10.D解析:D【解析】延长AC 交BE 于F.90,306060ACB CBE AFB AD BECAD AFB ∠=︒∠=︒∴∠=︒∴∠=∠=︒故选D.11.B解析:B【分析】根据逆命题的概念分别写出各个命题的逆命题,根据等边三角形的判定和直线定理、平行四边形的判定和性质定理、线段垂直平分线的判定和性质、全等三角形的判定和性质定理判断即可.【详解】解:(1)等边三角形的三个内角都相等,是真命题,逆命题为:三个角相等的三角形是等边三角形,是真命题;(2)平行四边形相邻的两个角互补,但不一定相等,本说法是假命题,逆命题为:相邻的两个角都相等的四边形是平行四边形,是真命题;(3)线段垂直平分线上的点到这条线段两个端点距离相等,是真命题,逆命题为:到线段两个端点距离相等的点在线段垂直平分线上,是真命题;(4)底角相等的两个等腰三角形不一定全等,本说法是假命题,逆命题为:两个全等的等腰三角形的底角相等,是真命题;故选:B .【点睛】本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.二、填空题13.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.14.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.15.90°【分析】由平行线性质可得到再由角平分线定义可得到【详解】解:∵AB ∥CD ∴∠BGH+∠GHD=180(两直线平行同旁内角互补)又GMHM 分别平分∠BGH ∠GHD ∴∠MGH+∠GHM=90(角平解析:90°【分析】由平行线性质可得到180BGH GHD ∠+∠=︒,再由角平分线定义可得到90GMH ∠=︒.【详解】解:∵AB ∥CD∴∠BGH+∠GHD=180︒(两直线平行,同旁内角互补)又GM 、HM 分别平分∠BGH 、∠GHD ,∴∠MGH+∠GHM=90︒(角平分线的定义)∴ ∠GMH=180︒-(∠MGH+∠GHM )=180︒-90︒=90︒(三角形内角和定理). 故答案为 90°.【点睛】本题考查三角形内角和、角平分线及平行线的综合应用,熟练掌握有关性质、定义和定理是解题关键.16.500【分析】连接BB 由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG 中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF 是△BDB'的外角,∠CEG 是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG 中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.17.全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题【详解】解:∵原命题的条件是:三角形的面积相等结论是:该三角形是全等三角形∴其逆命题是:全等三角形的面积相等故答案为:全等三角形的 解析:全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:三角形的面积相等,结论是:该三角形是全等三角形. ∴其逆命题是:全等三角形的面积相等.故答案为:全等三角形的面积相等.【点睛】本题考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题. 18.180【分析】根据平行线的性质得到根据平角的性质得到然后根据三角形内角和定理即可求解【详解】∵∴∵又∵∴∴故答案为180【点睛】本题考查了平行线的性质—两直线平行同位角相等三角形的内角和解题过程中注 解析:180【分析】根据平行线的性质,得到2AHF ∠=∠,根据平角的性质得到180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒,然后根据三角形内角和定理即可求解.【详解】∵//DE FG∴2AHF ∠=∠∵180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒又∵180AHC ACH A ∠+∠+∠=︒∴180********A ︒-∠+︒-∠+∠=︒∴12180A ∠+∠-∠=︒故答案为180.【点睛】本题考查了平行线的性质—两直线平行同位角相等,三角形的内角和,解题过程中注意等量代换是本题的关键.19.5【分析】设∠BCE=4x ∠CBF=5x 设∠ADE=∠EDC=y 构建方程组求出xy 证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x 则∠CBF=5x解析:5【分析】设∠BCE=4x ,∠CBF=5x ,设∠ADE=∠EDC=y ,构建方程组求出x ,y ,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠, ∴可以假设∠BCE=4x ,则∠CBF=5x ,∵DE 平分∠ADC ,CE 平分∠DCB ,∴∠ADE=∠EDC ,∠ECD=∠ECB=4x ,设∠ADE=∠EDC=y ,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去),∴CE=2m=5,故答案为5.【点睛】本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.20.35°【分析】根据三角形内角和定理用∠B∠M表示出∠BAM-∠BCM再用∠B∠M表示出∠MAD-∠MCD再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD然后求出∠M与∠B∠D关系代入数解析:35°【分析】根据三角形内角和定理用∠B、∠M表示出∠BAM-∠BCM,再用∠B、∠M表示出∠MAD-∠MCD,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD,然后求出∠M与∠B、∠D关系,代入数据进行计算即可得解;【详解】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,∴∠BAM-∠BCM=∠M-∠B,同理,∠MAD-∠MCD=∠D-∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M-∠B=∠D-∠M,∴∠M=12(∠B+∠D)=12(31°+39°)=35°;故答案为:35°【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.三、解答题21.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB得到FG∥AC,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG∥AC得到∠BFG=∠A=58°,结合CF⊥AB得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB.【详解】解:(1)∵∠1和∠3分别在CF,GF的同侧,并且在第三条直线BC的同旁,∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF,DE两条直线之间,并且在第三条直线AC的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF ,CB 两条直线之间,并且在第三条直线FG 的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF ∥DE ,∵∠3=∠ACB ,∴FG ∥AC ,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF ∥DE ;(3)由(2)知:FG ∥AC ,∴∠BFG=∠A=58°,∵CF ⊥AB ,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF 是∠ACB 的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.22.见解析【分析】根据平行线的判定得出//BC DF ,再根据平行线的性质定理即可得到结论.【详解】证明:∵34∠=∠,∴//BC DF ,∴236180∠+∠+∠=︒,∵56∠=∠,12∠=∠,∴135180∠+∠+∠=︒,∴//CE BF .【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键. 23.(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P ∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++,∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.24.(1)见解析;(2)∠D EC =108°【分析】(1)由AC //DE 可得∠D=∠ABD ,根据等量代换得到∠C=∠ABD ,从而可证BD//C E ; (2)设∠ABD=2x , ∠D EC=3x ,根据两直线平行,同旁内角互补求解即可.【详解】(1)证明∵∠A=∠F ,∴AC //DE ,∴∠D=∠ABD ,∵∠D=∠C ,∴∠C=∠ABD ,∴BD//C E ;(2)∵BD//C E ,DF//BC ,∴∠ABD =∠C ,∠D EC +∠C=180°,∵∠ABD :∠DEC=2:3,∴设∠ABD=2x ,∠D EC=3x ,则2x+3x=180°,∴x=36°,∴∠D EC =3x=108°.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.见解析【分析】根据平行线的判定和性质解答.【详解】解:证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴BF ∥EC (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等).又∵∠B=∠C (已知),∴∠3=∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 26.(1)平行,理由见解析;(2)垂直,理由见解析【分析】(1)根据平行线性质得出ABC DCF ∠=∠,根据角平分线定义求出24∠∠=,根据平行线的判定推出即可;(2)根据平行线性质得出180DGC ACE ∠+∠=︒,根据90ACE ∠=︒,求出90DGC ∠=︒,根据垂直定义推出即可.【详解】解:(1)//BD CE .理由://AB CD ,ABC DCF ∴∠=∠,BD ∴平分ABC ∠,CE 平分DCF ∠,122ABC ∴∠=∠,142DCF ∠=∠, 24∴∠=∠,//BD CE ∴(同位角相等,两直线平行);(2)AC BD ⊥,理由://BD CE ,180DGC ACE ∴∠+∠=︒,90ACE ∠=︒,1809090DGC ∴∠=︒-︒=︒,即AC BD ⊥.【点睛】本题考查了角平分线定义,平行线的性质和判定,垂直定义等知识点,注意:①同位角相等,两直线平行,②两直线平行,同旁内角互补.。

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(含答案解析)

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(含答案解析)

一、选择题1.下列命题,正确的是( )A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等 2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =3.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 4.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b == B .1,2a b ==- C .2,1a b =-= D .2,1a b ==- 5.下列语句正确的有( )个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒.⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是9cm 或12cm . A .4 B .3 C .2 D .16.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°7.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 8.下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个9.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 10.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35° 11.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠D .12180B ∠+∠+∠=︒ 12.下列说法正确的是( ) A .同位角相等 B .相等的角是对顶角C .内错角相等,两直线平行D .互补的两个角一定有一个锐角 二、填空题13.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).16.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.17.如图,在△ABC 中,AD 是高,AE 是角平分线,若∠B =72°,∠DAE =16°,则∠C =_____度.18.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是_____(填序号)19.下列命题是假命题的是有____________①内错角相等 ②同位角相等,两直线平行 ③一个角的余角不等于它本身 ④相等的角是对顶角.20.如图,将ABC 纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分ACB ∠,若1268∠+∠=︒,则'BA C ∠的度数是______________.三、解答题21.如图,178∠=︒,2102∠=︒,C D ∠=∠.求证://AC DF .22.如图,已知ABC 与ADG 均为等边三角形,点E 在GD 的延长线上,且GE AC =,连接AE 、BD .(1)求证:AGE DAB ≌△△;(2)F 是BC 上的一点,连接AF 、EF ,AF 与GE 相交于M ,若AEF 是等边三角形,求证://BD EF .23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=.其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.25.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠;(2)90BCD ADG ∠+∠=︒.26.如图,已知直线//AB CD ,100A C ∠=∠=︒,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)直线AD 与BC 有何位置关系?请说明理由.(2)求DBE ∠的度数.(3)若平行移动AD ,在平行移动AD 的过程中,存在使BEC ADB ∠=∠的情况,求ADB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论.【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C 、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D 、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意. 故选:D .【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.4.B解析:B【分析】需要证明一个结论不成立,可以举反例证明;【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题;故答案选B .【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.5.D解析:D【分析】先写出逆命题,进而即可判断;根据补角的性质,即可判断②;根据立方根的性质,即可判断③;根据反证法的定义,即可判断④根据等腰三角形的定义和三角形三边长关系,即可判断⑤.【详解】①“对顶角相等”的逆命题是“相等的角是对顶角”,是假命题,故该小题错误;②“同角(或等角)的补角相等”是真命题,故该小题错误;③立方根等于它本身的数是0,±1,故该小题错误;④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒,故该小题正确;⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是12cm ,故该小题错误. 故选D .【点睛】本题主要考查补角的性质,真假命题,反证法以及等腰三角形的定义,掌握反证法的定义,等腰三角形的定义是解题的关键.6.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠DAC=1∠BAC=31°,2∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.7.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.8.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE平分∠BOD,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.11.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.12.C解析:C【分析】直接利用平行线的性质、判定以及对顶角的定义、补角的特征分别判断得出答案.【详解】A 、两直线平行,同位才能角相等,此项错误;B 、相等的角不一定是对顶角,此项错误;C 、内错角相等,两直线平行,此项正确;D 、互补的两个角不一定有一个锐角,有可能是两个直角,此项错误;故选:C .【点睛】本题考查了平行线的性质、判定以及对顶角的定义等,掌握平行线与相交线的相关知识是解题关键.二、填空题13.130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ∠FAC =∠CAD 再求出∠BAC 的度数即可求解【详解】连接AD ∵D 点分别以ABAC 为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.14.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.15.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒,∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.16.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 17.40【分析】根据三角形的内角和得出再利用角平分线得出利用三角形内角和解答即可【详解】是高是角平分线故答案为40【点睛】本题考查了三角形的内角和定理熟悉直角三角形两锐角互余和三角形的内角和等于是解题的 解析:40【分析】根据三角形的内角和得出18BAD ∠=,再利用角平分线得出68BAC ∠=,利用三角形内角和解答即可. 【详解】AD 是高,72B ∠=,18BAD ∴∠=,181634BAE ∴∠=+=,AE 是角平分线,68BAC ∴∠=,180726840C ∴∠=--=.故答案为40.【点睛】本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于180是解题的关键.18.①③【解析】分析:分别根据平行线的性质对顶角及邻补角的定义平行公理及推论对各小题进行逐一分析即可详解:①符合对顶角的性质故①正确;②两直线平行内错角相等故②错误;③符合平行线的判定定理故③正确;④如解析:①③【解析】分析:分别根据平行线的性质、对顶角及邻补角的定义、平行公理及推论对各小题进行逐一分析即可.详解:①符合对顶角的性质,故①正确;②两直线平行,内错角相等,故②错误;③符合平行线的判定定理,故③正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故④错误.故答案为①③.点睛:本题考查的是平行线的性质、对顶角及邻补角的定义、平行公理及推论,熟知以上各知识点是解答此题的关键.19.①③④【分析】根据平行线的判定与性质判断①②利用反证法证明③④即可【详解】①应该是两直线平行内错角相等故①是假命题;②同位角相等两直线平行正确故②是真命题;③直角的余角等于它本身故③是假命题;④相等解析:①③④【分析】根据平行线的判定与性质判断①②,利用反证法证明③④即可.【详解】①应该是两直线平行,内错角相等,故①是假命题;②同位角相等,两直线平行,正确,故②是真命题;③直角的余角等于它本身,故③是假命题;④相等的角不一定是对顶角,故④是假命题.故答案为:①③④.【点睛】本题主要考查判断命题的真假,解此题的关键在于熟练掌握各个基本知识点.20.107°【详解】【考点】几何图形翻折变换(折叠问题)四边形内角和定理平角的定义三角形的两条内角平分线所夹的角与顶角的关系【分析】将纸片沿折叠使点落在点处可知根据四边形内角和等于可得而所以所以根据可求 解析:107°【详解】【考点】几何图形翻折变换(折叠问题)、四边形内角和定理、平角的定义、三角形的两条内角平分线所夹的角与顶角的关系.【分析】将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,可知A DA E ∠=∠' .根据四边形内角和等于360︒,可得360A DA E ADA AEA ︒''∠+∠+∠+∠=' .而1180ADA ︒'∠+∠=,2180AEA ︒'∠+∠=,所以12360ADA AEA ︒∠+∠+∠+='∠',所以12A ∠+∠=∠+2DA E A '+∠=∠ .根据1268︒∠+∠=,可求出68234A ︒︒∠=÷= .根据'A B 平分ABC ∠,'A C 平分ACB ∠ 可知,'BA C ∠是两条内角平分线所夹的角,根据公式有'BA C ∠190902A ︒︒=+∠= 1341072︒︒+⨯= . 【解答】解:根据折叠可得A DA E ∠=∠',根据四边形内角和等于360︒,可得360A DA E ADA AEA ︒''∠+∠+∠+∠=' . 根据平角的定义有1180ADA ︒'∠+∠=,2180AEA ︒'∠+∠=12360ADA AEA ︒''∴∠+∠+∠+∠=122A DA E A ∴∠+∠=∠+='∠∠'A B 平分ABC ∠,'A C 平分ACB ∠∴'BA C ∠1190903410722A ︒︒︒︒=+∠=+⨯= 故答案为:107︒ .三、解答题21.证明见解析【分析】先根据已给的角度判断BD//CE ,从而可得∠ABD=∠C ,再根据等量代换可得∠ABD=∠D ,从而可证//AC DF .【详解】证明:∵178∠=︒,2102∠=︒,∴∠1+∠2=78°+102°=180°,∴BD//CE ,∴∠ABD=∠C ,∵C D ∠=∠,∴∠ABD=∠D ,∴//AC DF .【点睛】本题考查平行线的性质和判定.熟练掌握平行线的性质和判定定理,并能正确识别同位角、同旁内角是解题关键.22.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质,解得60BAC DAG ∠=∠=︒,,AB BC AC AD DG AG ====,结合GE AC =,可证明ABD ≅()GEA SAS ; (2)由等边三角形的性质,解得60ABC AGD ∠=∠=︒,60ABC AEF ∠=∠=︒继而根据同位角相等,两直线平行判定//GE BC ,由两直线平行,内错角相等解得EFC GEF ∠=∠,接着由全等三角形的对应角相等得到ABD GEA ∠=∠,最后由角的和差解得DBF GEF ∠=∠整理得DBF EFC ∠=∠据此解题即可.【详解】解:(1)ABC 与ADG 均为等边三角形,60BAC DAG ∴∠=∠=︒,,AB BC AC AD DG AG ==== GE AC =∴GE AB =在DAB 与AGE 中,AD AG BAD EGA AB GE =⎧⎪∠=∠⎨⎪=⎩ABD ∴≅()GEA SAS ;(2)ABC 与ADG 均为等边三角形,60ABC AGD ∴∠=∠=︒//GE BC ∴EFC GEF ∴∠=∠ABD ≅()GEA SASABD GEA ∴∠=∠若AEF 是等边三角形,60ABC AEF ∴∠=∠=︒ABC ABD AEF GEA ∴∠-∠=∠-∠即DBF GEF ∠=∠DBF EFC ∴∠=∠//BD EF ∴.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、平行线的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A , 则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.解:(1)①②④⑤;(2)18DAE ∠=︒【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线, ∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24° ∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.25.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键. 26.(1)直线AD 与BC 互相平行,理由见解析;(2)40DBE ∴∠=︒(3)存在,60BEC ADB ∠=∠=︒.【分析】(1)根据平行线的性质,以及等量代换证明180ADC C ∠+∠=︒,即可证得//AD BC ; (2)由直线//AB CD ,根据两直线平行,同旁内角互补,即可求得ABC ∠的度数,又由12DBE ABC ∠=∠,即可求得DBE ∠的度数. (3)首先设ABD DBF BDC x ∠=∠=∠=︒,由直线//AB CD ,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得BEC ∠与ADB ∠的度数,又由BEC ADB ∠=∠,即可得方程:4080x x ︒+︒=︒-︒,解此方程即可求得答案.【详解】解:(1)直线AD 与BC 互相平行,理由://AB CD ,180A ADC ∴∠+∠=︒,又A C ∠=∠180ADC C ∴∠+∠=︒,//AD BC ∴;(2)//AB CD ,18080ABC C ∴∠=︒-∠=︒,DBF ABD ∠=∠,BE 平分CBF ∠,11140222DBE ABF CBF ABC ∴∠=∠+∠=∠=︒; (3)存在.设ABD DBF BDC x ∠=∠=∠=︒.//AB CD ,40BEC ABE x ∴∠=∠=︒+︒;//AB CD ,18080ADC A ∴∠=︒-∠=︒,80ADB x ∴∠=︒-︒.若BEC ADB ∠=∠,则4080x x ︒+︒=︒-︒,得20x ︒=︒.∴存在60BEC ADB ∠=∠=︒.【点睛】此题主要考查了平行线的性质与判定.解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.。

八年级上册第七章 平行线的证明单元测试(解析版)

八年级上册第七章 平行线的证明单元测试(解析版)

第七章平行线的证明单元测试一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为()A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗2.下列命题中真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角3.“两条直线相交,有且只有一个交点”的题设是()A.两条直线B.交点C.两条直线相交D.只有一个交点4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补5.三角形的一个外角等于与它不相邻的内角的4倍,等于与它相邻的一个内角的2倍,则三角形各角的度数为()A.45°,45°,90°;B.30°,60°,90°; C.25°,25°,130°;D.36°,72°,72°6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,那么与∠FCD相等的角有()A.1个B.2个C.3个D.4个7.下列四个命题中,真命题有()(1)两条直线被第三条直线所截,内错角相等;(2)如果∠1和∠2是对顶角,那么∠1=∠2;(3)一个角的余角一定小于这个角的补角;(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个8.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定(第8题) (第9题) (第10题)9.如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A.50°B.65°C.80°D.95°10.如图AB∥CD,AD、BC交于点O,∠A=42°,∠C=58°,则∠AOB=()A.42°B.58°C.80°D.100°二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=.(第11题) (第12题) (第13题)12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于F,则∠D=.13.如图所示,AB∥CD,∠1=115°,∠3=140°,∠2=°.14.如果一个三角形三个内角的比是1:2:3,那么这个三角形是三角形.15.一个三角形的三个外角的度数比为2:3:4,则与此对应的三个内角的比为.16.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC=度.(第16题) (第18题)17.命题:“同角的余角相等”的题设是,结论是.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为°.19.如果等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于度.20.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是.三、解答题(本大题共5小题,共30分)21.如图所示,∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.22.如图所示,BF∥DE,∠1=∠2,求证:GF∥B C.23.如图所示,已知AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.24.已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.25.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为()A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗【考点】命题与定理.【分析】根据命题的定义对各个选项进行分析从而得到答案.【解答】解:A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点评】此题主要考查学生对命题与定理的理解及掌握情况.2.下列命题中真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角 D.锐角小于它的余角【考点】命题与定理.【分析】根据补角、余角的定义结合反例即可作出判断.【解答】解:A、两个30°角的和是60°,是锐角,不正确;B、两个80°的角之和是160°,是钝角,不正确;C、钝角大于90°,它的补角小于90°,正确;D、80°锐角的余角是10°,不正确.故选C.【点评】可以举具体角的度数来证明.3.“两条直线相交,有且只有一个交点”的题设是()A.两条直线 B.交点 C.两条直线相交 D.只有一个交点【考点】直线、射线、线段.【分析】本题考查两直线相交,有且只有一个交点的命题,题设和结论要搞清楚.【解答】解:两条直线相交,有且只有一个交点这一命题题设是两条直线相交,结论是有且只有一个交点,故选C.【点评】本题主要考查直线、线段、射线的知识点,不是很难,不过做题要仔细.4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等 B.互余或互补C.互补 D.相等或互补【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等以及同旁内角互补作答.【解答】解:如图知∠A和∠B的关系是相等或互补.故选D.【点评】如果两个的两条边分别平行,那么这两个角的关系是相等或互补.5.三角形的一个外角等于与它不相邻的内角的4倍,等于与它相邻的一个内角的2倍,则三角形各角的度数为()A.45°,45°,90°B.30°,60°,90° C.25°,25°,130°D.36°,72°,72°【考点】三角形的外角性质.【专题】探究型.【分析】设这个外角为4x,则与它不相邻的内角的度数为x,则与它相邻的一个内角为2x,再由2x+4x=180°即可求出x的值,故可得出各内角的度数.【解答】解:设这个外角为4x,则与它不相邻的内角的度数为x,则与它相邻的一个内角为2x,另一个内角为4x﹣x=3x,∵2x+4x=180°,∴x=30°,∴2x=60°,4×30°﹣30°=90°,∴三角形各角的度数为30°,60°,90°.故选B.【点评】本题主要考查了三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和,难度适中.6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,那么与∠FCD相等的角有()A.1个B.2个C.3个D.4个【考点】平行线的判定与性质.【分析】利用平行线的性质进行求解.【解答】解:∵AB⊥EF,CD⊥EF,∴AB∥CD,∴∠FCD=∠A,∵∠1=∠F=30°,∴BG∥AF,∴∠A=∠ABG;故选B.【点评】考查了平行线的判定以及平行线的性质,需要熟练掌握.7.下列四个命题中,真命题有()(1)两条直线被第三条直线所截,内错角相等(2)如果∠1和∠2是对顶角,那么∠1=∠2(3)一个角的余角一定小于这个角的补角(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个【考点】命题与定理;余角和补角;对顶角、邻补角;同位角、内错角、同旁内角.【分析】根据常用知识点对各个选项进行分析,从而判定真命题的个数.【解答】解:(1)不正确,应该是两条平行线被第三条直线所截,内错角相等;(2)正确,因为对顶角相等;(3)正确,因为一个角的补角比它的余角大90°;(4)正确,因为∠3的余角即∠1,则∠1与∠2互补.所以正确有的三个,故选:C.【点评】此题主要考查学生对命题与定理的理解及对常用知识点的综合运用能力.8.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定【考点】三角形的外角性质.【分析】利用三角形的内角和为180度计算.【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴等量代换后有∠ADC=∠AE B.故选B.【点评】本题利用了三角形内角和为180度.9.如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A.50°B.65°C.80°D.95°【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】利用平分线的性质,三角形的内角和定理以及外角的性质计算.【解答】解:由题意可得,∠CAE=130°,∴∠BAC=50°,∴∠ACD=∠B+∠BAC=30°+50°=80°.故选C.【点评】此题主要考查角平分线的性质,三角形的内角和定理以及外角的性质.10.如图AB∥CD,AD、BC交于点O,∠A=42°,∠C=58°,则∠AOB=()A.42°B.58°C.80°D.100°【考点】平行线的性质;三角形内角和定理.【专题】计算题.【分析】由AB∥CD,可得∠B=∠C=58°,根据三角形的内角和为180°即可求得∠AOB的值.【解答】解:∵AB∥CD,∴∠B=∠C=58°;∵∠A+∠B+∠AOB=180°,∠A=42°,∴∠AOB=80°.故选C.【点评】此题考查了平行线的性质:两直线平行,内错角相等.还考查了三角形的内角和为180°.二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=80°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠2,根据同位角相等,两直线平行得到a∥b,然后根据平行线的性质得∠4=∠3=80°.【解答】解:∵∠1=∠2,∴a∥b,∴∠4=∠3=80°.故答案为80°.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于F,则∠D=53°20′.【考点】平行线的性质;垂线.【专题】计算题.【分析】由平行线的性质可得出∠ABC=∠DAF=36°40′,再由DF⊥AB于F,可得出∠D的值.【解答】解:∵DE∥BC,∴∠ABC=∠DAF=36°40′,又∵DF⊥AB,∴∠D=90°﹣∠DAF=53°20′.【点评】本题考查平行线的性质,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补.13.如图所示,AB∥CD,∠1=115°,∠3=140°,∠2=75°.【考点】平行线的性质.【专题】计算题.【分析】根据两直线平行,同旁内角互补求出∠4的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠2的度数.【解答】解:如图,∵AB∥CD,∠3=140°,∴∠4=180°﹣140°=40°,∵∠1=115°,∴∠2=∠1﹣∠4=115°﹣40°=75°.【点评】本题主要利用两直线平行,同旁内角互补的性质和三角形的一个外角等于和它不相邻的两个内角的和求解.14.如果一个三角形三个内角的比是1:2:3,那么这个三角形是直角三角形.【考点】三角形内角和定理.【分析】根据三角形的内角和等于180°和已知求出三角形的最大角的度数,即可得出答案.【解答】解:∵一个三角形三个内角的比是1:2:3,∴这个三角形的最大内角的度数是:180°×=90°,∴这个三角形是直角三角形,故答案为:直角.【点评】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角是解此题的关键,注意:三角形的内角和等于180°.15.一个三角形的三个外角的度数比为2:3:4,则与此对应的三个内角的比为5:3:1.【考点】三角形的外角性质.【分析】设设三个外角的度数分别为2x、3x、4x,根据三角形的外角和等于360°列出方程,解方程即可求出三个外角的度数,得到与此对应的三个内角的度数,计算即可.【解答】解:设三个外角的度数分别为2x、3x、4x,由题意得,2x+3x+4x=360°,解得,x=40°,则三个外角分别为80°、120°、160°则对应的三个内角分别为:100°、60°、20°,∴与此对应的三个内角的比为5:3:1.故答案为:5:3:1.【点评】本题考查的是三角形的外角的性质,掌握三角形的外角和等于360°是解题的关键.16.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC=122.5度.【考点】三角形内角和定理;角平分线的定义.【分析】根据三角形的内角和定理和角平分线的定义求得.【解答】解:∵在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°.∴∠EBC+∠ECB==57.5°,∴∠BEC=180°﹣57.5°=122.5°.【点评】此题考查了三角形内角和定理,属简单题目.17.命题:“同角的余角相等”的题设是如果是同角的余角,结论是那么这两个角相等..【考点】命题与定理.【专题】计算题.【分析】命题一般都能够写成“如果…,那么…”的形式,“如果”后面就是题设,“那么”后面就是结论,因此可正确找出题设和结论.【解答】解:“同角的余角相等”可写成是“如果是同角的余角,那么这两个角相等”.故答案为:如果是同角的余角;那么这两个角相等.【点评】本题考查命题的题设和结论,命题一般都能够写成“如果…,那么…”的形式,“如果”后面就是题设,“那么”后面就是结论.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为90°.【考点】平行线的性质.【专题】计算题.【分析】根据两直线平行,内错角相等可得∠B=∠BEF,∠D=∠DEF,又知∠B=∠1,∠D=∠2,可得出∠1+∠2=∠DEF+∠DEF,由平角的定义,求出∠BED的值即可.【解答】解:∵AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,又∵∠B=∠1,∠D=∠2,∴∠1=∠BEF,∠2=∠DEF,又∵∠1+∠BEF+∠2+∠DEF=180°,∴∠BED=×180°=90°.【点评】本题主要考查运用平行线的性质的能力,主要考查平行线的性质(两直线平行,内错角相等)以及等量代换等知识点.19.如果等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于90度.【考点】等腰直角三角形.【分析】根据等腰直角三角形底边上的“三线合一”的性质,判定等腰直角三角形.【解答】解:根据等腰三角形底边上的高也是底边上的中线和顶角的角平分线可知,高把原等腰直角三角形分成两个等腰直角三角形,顶角也就平分成两个45°,故顶角是90°,故填90.【点评】本题充分运用等腰直角三角形底边上的“三线合一”的性质解题.20.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是70°.【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余可以得到,∠A、∠B中有一个是70°,另一个是50°,因而∠A、∠B中较大的角的度数是70°.【解答】解:如图,依题意得∠ACD=40°,∠DCB=20°,而CD⊥AB于D,∴∠A=50°,∠B=70°,因而∠A、∠B中较大的角的度数是70°.故填空答案:70°.【点评】本题主要考查的是直角三角形两锐角互余的性质,比较简单.三、解答题(本大题共5小题,共30分)21.如图所示,∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.【考点】等腰三角形的判定.【专题】证明题.【分析】由平行线的性质可得∠2=∠C,∠1=∠B,已知∠1=∠2,从而推出∠B=∠C,根据等角对等边可得到AB=AC,即△ABC是等腰三角形.【解答】证明:∵AE∥BC(已知),∴∠2=∠C(两直线平行,内错角相等).∠1=∠B(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠B=∠C(等量代换).∴AB=A C.∴△ABC是等腰三角形(等角对等边).【点评】此题主要考查平行线的性质及等腰三角形的判定;进行角的等量代换是正确解答本题的关键.22.如图所示,BF∥DE,∠1=∠2,求证:GF∥B C.【考点】平行线的判定与性质.【专题】证明题.【分析】先根据两直线平行,同位角相等,得∠2=∠FBC,再结合已知条件和等量代换证得内错角∠FBC=∠1,从而得GF∥B C.【解答】解:∵BF∥DE(已知),∴∠2=∠FBC(两直线平行,同位角相等),∵∠2=∠1(已知),∴∠FBC=∠1(等量代换),∴GF∥BC(内错角相等,两直线平行).【点评】本题主要考查平行线的性质及判定,熟练记忆公理和定义是学好数学的关键.23.如图所示,已知AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.【考点】平行线的性质;角平分线的定义;垂线. 【专题】计算题.【分析】根据平行线的性质,结合角平分线的定义和垂线的定义求解. 【解答】解:∵AB ∥CD ,∠AEF =62°,∴∠EFD =∠AEF =62°,∠CFE =180°﹣∠AEF =180°﹣62°=118°; ∵FH 平分∠EFD ,∴∠EFH =∠EFD =×62°=31°; 又∵FG ⊥FH ,∴∠GFE =90°﹣∠EFH =90°﹣31°=59°, ∴∠GFC =∠CFE ﹣∠GFE =118°﹣59°=59°.【点评】此题考查的是平行线的性质,即两直线平行内错角相等,同旁内角互补.24.已知,如图所示,直线AB ∥CD ,∠AEP =∠CFQ .求证:∠EPM =∠FQM .【考点】平行线的判定与性质. 【专题】证明题.【分析】根据题意证得∠AEF =∠CFM ,再由∠AEP =∠CFQ ,可得出∠PEM =∠QFM ,PE ∥QF ,即能得出∠EPM =∠FQM .【解答】证明:∵AB ∥CD (已知),∴∠AEF =∠CFM (两直线平行,同位角相等). 又∵∠PEA =∠QFC (已知),∴∠AEF +∠PEA =∠CFM +∠QFC (等式性质).即∠PEM=∠QFM.∴PE∥QF(同位角相等,两直线平行).∴∠EPM=∠FQM(两直线平行,同位角相等).【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.25.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.【考点】三角形内角和定理;角平分线的定义.【分析】要求∠DAC的度数,只要求出∠C的度数即可.先根据角平分线的定义,可得∠EBC的度数,在△BEC中利用三角形的内角和可得∠C的度数.因AD为BC上的高,所以∠ADC=90°,在△ADC 中,再运用三角形的内角和可求∠DAC的度数.【解答】解:∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣30°﹣75°=75°.又∵∠C+∠DAC=90°,∴∠DAC=90°﹣∠C=90°﹣75°=15°.【点评】灵活运用垂直的定义和角平分线的定义,结合三角形的内角和定理是解决本题的关键.特别注意“三角形的内角和是180°”这一隐含的条件.。

(压轴题)初中数学八年级数学上册第七单元《平行线的证明》测试卷(包含答案解析)(4)

(压轴题)初中数学八年级数学上册第七单元《平行线的证明》测试卷(包含答案解析)(4)

一、选择题1.下列说法正确的是( )A .一组数据6,5,8,8,9的众数是8B .甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙.则甲组学生的身高较整齐C .命题“若||1a =,则1a =”是真命题D .三角形的外角大于任何一个内角2.下列说法正确的有( )①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;④真命题的逆命题是真命题A .1个B .2个C .3个D .4个 3.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒ 4.下列命题中,真命题的是( ) A .同旁内角互补,两直线平行B .相等的角是对顶角C .同位角相等D .直角三角形两个锐角互补5.如图,在ABC 中,100ACB ∠=︒,20A ∠=︒,D 是AB 上一点,将ABC 沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于( )A .25°B .30°C .40°D .55°6.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等7.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线8.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于09.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( ) A .5 B .12 C .14 D .1610.如图,已知四边形ABCD 中,98B ∠=︒,62D ∠=︒,点E 、F 分别在边BC 、CD 上.将CEF △沿EF 翻折得到GEF △,若GE AB ∥,GF AD ∥,则C ∠的度数为( )A .80︒B .90︒C .100︒D .110︒11.下列命题中,是真命题的是( )A .若,αβ∠∠同位角,则αβ∠=∠B .若1290∠+∠=︒,则1,2∠∠互余C .两条边和一个角分别相等的两个三角形全等D .一个事件发生的概率为0,则这个事件是不确定事件12.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短,其中假命题有( )A .1个B .2个C .3个D .4个 二、填空题13.下列命题,①对顶角相等;②两直线平行,同位角相等;③全等三角形的对应角相等.其中逆命题是真命题的命题共有_________个.14.如图,65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC 外,若218∠=︒,则1∠的度数为________________.15.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.16.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.17.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.18.如图,12∠=∠,4120︒∠=,则3∠=____.19.如图,已知△ABC ,∠B 的角平分线与∠C 的外角角平分线交于点 D ,∠B 的外角角平分线与∠C 的外角角平分线交于点 E ,则∠E+∠D=_____.20.如图,在ΔABC 中,E 、F 分别是AB 、AC 上的两点,∠1+∠2=235°,则∠A=____度.三、解答题21.如图,已知点E 在直线DC 上,射线EF 平分AED ∠,过E 点作EB EF ⊥,G 为射线EC 上一点,连接BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,求证://AB EF .22.如图,△ABC 中,∠ABC =∠ACB ,BD 平分∠ABC ,CE 平分∠ACB ,BD ,CE 交于点O ,F ,G 分别是AC ,BC 延长线上一点,且∠EOD +∠OBF =180°,∠DBC =∠G ,指出图中所有平行线,并说明理由.23.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.24.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.25.如图,已知,,,12DG BC AC BC EF AB ⊥⊥⊥∠=∠.试说明//EF CD 的理由,请把空填写完整.解:∵,DG BC AC BC ⊥⊥(已知)∴DGB ∠=∠_____90=︒(垂直的定义)∴//DG _____(同位角相等,两直线平行)∴2DCA ∠=∠( )∵12∠=∠( )∴1∠=∠________( )∴//EF ______( )26.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别根据众数、方差、真命题、三角形外角定理等知识逐项判断即可求解.【详解】解:A.“一组数据6,5,8,8,9的众数是8”,判断正确,符合题意;B. “甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙,则甲组学生的身高较整齐”,因为22S S 甲乙> ,所以乙组学生的身高较整齐,原判断错误,不合题意;C. 命题“若||1a =,则1a =±”,所以原判断错误,不合题意;D.“三角形的外角大于任何一个不相邻的内角”,所以原判断错误,不合题意.故选:A .【点睛】本题考查了众数,方差,真假命题,三角形的外角等知识,熟知相关定理是解题关键. 2.A解析:A【分析】根据逆定理的定义,某一定理的条件和结论互换所得命题是真命题是这个定理的逆定理可以判断①,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,可判断②,利用命题分类分为真命题与假命题都是命题,都有逆命题,可判断③,真命题是正确的命题,真命题的逆命题有真假命题之分,可判断④即可.【详解】解:①每个定理都有逆命题,看根据逆命题的条件能否推出正确的结论,能推出,由逆定理,不能推出,没有逆定理,故①不正确;②每个命题都有逆命题;故②正确;③假命题也是命题,命题都有逆命题,故③不正确;④真命题的逆命题可能是假命题,也可能是真命题,根据条件能否推出正确的结论有关,能推出,由是真命题,不能推出,是假命题,故④不正确.正确的说法只有一个②.故选择:A .【点睛】本题考查命题,真命题,假命题,逆命题,定理,逆定理,掌握命题,真命题,假命题,逆命题,定理,逆定理的定义,以及它们的区别是解题关键.3.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键.4.A解析:A【分析】利用平行线的判定、对顶角的定义及互补的定义分别判断后即可确定正确的选项.【详解】解:A 、同旁内角互补,两直线平行,正确,是真命题;B 、对顶角相等,但相等的角不一定是对顶角,故错误,是假命题;C 、只有当两直线平行时,同位角才会相等;两直线不平行时,同位角不会相等,故错误,是假命题;D 、直角三角形两锐角互余,不会互补,故错误,是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角的定义及互补的定义,难度不大.5.C解析:C【分析】先求出60B ∠=︒,由折叠得60CB D B '∠=∠=︒,得出ADB '∠=40CB D A '∠-∠=︒.【详解】∵100ACB ∠=︒,20A ∠=︒,∴60B ∠=︒,由折叠得60CB D B '∠=∠=︒,∴ADB '∠=40CB D A '∠-∠=︒,故选:C .【点睛】此题考查三角形内角和定理,折叠的性质,三角形的外角性质,熟练掌握折叠的性质是解题的关键.6.D解析:D【分析】根据三角形全等的判定方法对A 、D 进行判断;利用三角形高的位置不同可对B 、C 进行判断.【详解】A 、有两边和它们的夹角对应相等的两个三角形全等,所以A 选项错误;B 、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B 选项错误;C 、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C 选错误;D、有两边和第三边上的中线对应相等的两个三角形全等,所以D选项正确;故选:D.【点睛】本题考査了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.7.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.8.D解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.C解析:C【详解】∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例,故A错误;∵12是偶数,且是4的倍数,∴不能作为假命题的反例,故B错误;∵14是偶数但不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例,故C正确;∵16是偶数,且也是4的倍数,∴不能作为假命题的反例,故D错误.故选C.10.C解析:C【分析】已知GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,根据平行线的性质可得98B GEC ∠=∠=︒,62D GFC ∠=∠=︒;因CEF △沿EF 翻折得到GEF △,由折叠的性质可得1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒;在△EFC 中,由三角形的内角和定理即可求得∠C=00°.【详解】∵GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,∴98B GEC ∠=∠=︒,62D GFC ∠=∠=︒,∵CEF △沿EF 翻折得到GEF △, ∴1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒, 在△EFC 中,由三角形的内角和定理可得,∠C=180°-∠FEC-∠CFE=180°-49°-31°=100°.故选C.【点睛】本题考查了平行线的性质、折叠的性质及三角形的内角和定理,熟练运用相关知识是解决问题的关键.11.B解析:B【分析】根据同位角的定义、角互余的定义、三角形全等的判定定理、事件的确定性逐项判断即可得.【详解】A 、若,αβ∠∠同位角,则α∠与β∠不一定相等,此项是假命题;B 、若1290∠+∠=︒,则1,2∠∠互余,此项是真命题;C 、两条边和它们的夹角分别对应相等的两个三角形全等,此项是假命题;D 、一个事件发生的概率为0,则这个事件是不可能事件,此项是假命题;故选:B .【点睛】本题考查了同位角的定义、角互余的定义、三角形全等的判定定理、事件的可能性等知识点,熟练掌握各定义与判定定理是解题关键.12.B解析:B【分析】根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断.【详解】解:相等的两个角不一定为对顶角,所以①为假命题;若∠1+∠2=180°,则∠1与∠2互为补角,所以②为真命题;两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题.故选:B.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.1【分析】根据逆命题对顶角平行线全等三角形的性质对各个选项逐个分析即可得到答案【详解】对顶角相等的逆命题为:相等的角是对顶角故①错误;两直线平行同位角相等的逆命题为:同位角相等两直线平行故②正确;全解析:1【分析】根据逆命题、对顶角、平行线、全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】对顶角相等的逆命题为:相等的角是对顶角,故①错误;两直线平行,同位角相等的逆命题为:同位角相等,两直线平行,故②正确;全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,故③错误;逆命题是真命题的命题共有:1个故答案为:1.【点睛】本题考查了逆命题、对顶角、平行线、全等三角形的知识;解题的关键是熟练掌握对顶角、平行线、全等三角形的性质,从而完成求解.14.98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5解析:98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=82°,然后利用平角的定义即可求出∠1.【详解】∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C 落在△ABC 外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°-82°=98°.【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,明确各个角之间的等量关系,是解决本题的关键.15.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称, ∴1MBF FBE ∠=∠=∠,∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 16.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE 和BC 被AB 所截∴当时AD ∥BC (内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B ∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE 和BC 被AB 所截,∴当DAB B ∠=∠时,AD ∥BC (内错角相等,两直线平行).故答案为DAB B ∠=∠【点睛】此题考查平行线的性质,难度不大17.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.18.60°【分析】本题首先利用证明直线与平行继而利用对顶角性质以及两直线平行同旁内角互补求解【详解】如下图所示:∵∠1=∠5∠2=∠6又∵∠1=∠2∴∠5=∠6∴∥∵∠4=120°∴∠7=∠4=120°解析:60°【分析】本题首先利用12∠=∠证明直线1l与2l平行,继而利用对顶角性质以及两直线平行,同旁内角互补求解3∠.【详解】如下图所示:∵∠1=∠5,∠2=∠6,又∵∠1=∠2,∴∠5=∠6,∴1l ∥2l .∵∠4=120°,∴∠7=∠4=120°,又∵∠3+∠7=180°,∴∠3=60°.故填:60°.【点睛】本题考查平行线的判定与性质,需要灵活运用两直线平行,内错角、同位角相等、同旁内角互补.19.90°【分析】利用角平分线的性质和三角形的内角和定理解答即可【详解】解:∵BDBE 分别是∠B 的角平分线和外角平分线∴∠DBE=×180°=90°∴∠D+∠E=180°-∠DBE=180°-90°=9解析:90°.【分析】利用角平分线的性质和三角形的内角和定理解答即可.【详解】解:∵BD ,BE 分别是∠B 的角平分线和外角平分线,∴∠DBE=12×180°=90°, ∴∠D+∠E=180°-∠DBE=180°-90°=90°.故答案为:90°.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练掌握定理是解答此题的关键.20.55【分析】根据三角形内角和定理可知要求∠A 只要求出∠AEF +∠AFE 的度数即可【详解】∵∠1+∠AEF =180°∠2+∠AFE =180°∴∠1+∠AEF +∠2+∠AFE =360°∵∠1+∠2=23解析:55【分析】根据三角形内角和定理可知,要求∠A 只要求出∠AEF +∠AFE 的度数即可.【详解】∵∠1+∠AEF =180°,∠2+∠AFE =180°,∴∠1+∠AEF +∠2+∠AFE =360°,∵∠1+∠2=235°,∴∠AEF +∠AFE =360°−235°=125°,∵在△AEF 中:∠A +∠AEF +∠AFE =180°(三角形内角和定理)∴∠A =180°−125°=55°,故答案为:55°【点睛】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A 所在的三角形是关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)根据题意得到90FEB ∠=︒,再根据等量代换的方法求解即可;(2)通过已知条件证明A AEF ∠=∠,即可得到结果;【详解】(1)∵EB EF ⊥,∴90FEB ∠=︒,∴1809090DEF BEG ∠+∠=︒-︒=︒.又∵90EBG BEG ︒∠+∠=,∴DEF EBG ∠=∠.(2)∵EF 平分AED ∠,∴AEF DEF ∠=∠.∵EBG A ∠=∠,DEF EBG ∠=∠,∴A DEF ∠=∠.又∵DEF AEF ∠=∠,∴A AEF ∠=∠,∴//AB EF .【点睛】本题主要考查了平行线的判定,结合角平分线的性质和垂直的性质证明是解题的关键. 22.EC ∥BF ,DG ∥BF ,DG ∥EC ,见解析【分析】根据同角的补角相等,和平行线的判定定理即可作出判断.【详解】解:EC ∥BF ,DG ∥BF ,DG ∥EC .理由:∵∠EOD +∠OBF =180°,又∠EOD +∠BOE =180°,∴∠BOE =∠OBF ,∴EC ∥BF ;∵∠ABC =∠ACB ,BD 平分∠ABC ,CE 平分∠ACB ,∴∠DBC =∠ECB ,又∵EC ∥BF ,∴∠ECB =∠CBF ,∴∠DBC =∠CBF ,又∵∠DBC =∠G ,∴∠CBF =∠G ,∴DG ∥BF ;∵EC ∥BF ,DG ∥BF ,∴DG ∥EC .【点睛】本题考查平行线的判定和性质,熟练掌握平行线的判定方法和性质定理及补角定理是解题关键.23.(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P ∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++, ∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.24.(1)32°;(2)()12P C D ∠=∠+∠. 【分析】 (1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.25.见解析【分析】由垂直定义得∠DGB=∠ACB=90°,由平行线的判定定理得DG ∥AC ,由平行线的性质得∠2=∠ACD ,由等量代换得∠1=∠ACD ,由平行线的判定定理得EF ∥CD .【详解】解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB=∠ACB=90°(垂直的定义).∴DG ∥AC (同位角相等,两直线平行).∴∠2=∠DCA .(两直线平行,内错角相等)∵∠1=∠2(已知),∴∠1=∠ACD (等量代换).∴EF ∥CD (同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质等知识;熟练掌握平行线的判定与性质是解题的关键. 26.(1)∠DAE =10°;(2)∠DAE =12∠C ﹣12∠B ;(3)45°. 【分析】(1)先根据三角形的内角和定理求得80BAC ∠=︒、30CAE ∠=︒,再根据角平分线的定义得到40CAD ∠=︒,最后根据角的和差解答即可;(2)先根据三角形的内角和定理求得180BAC B C ∠=︒-∠-∠、90CAE C ∠=︒-∠,再根据角平分线的定义得到12CAD BAD BAC ∠=∠=∠,然后根据角的和差表示出来即可;(3)先根据角平分线的定义得到2,2CAE CAG FCB FCG ∠=∠∠=∠,再结合三角形外角的性质得到2AEC G ∠=∠,然后根据题意得到90AEC ∠=︒,最后算出∠G 即可.【详解】解:(1)40,60,180B C BAC B C ∠=︒∠=︒∠+∠+∠=︒80BAC ∴∠=︒AE ∵是ABC ∆的高,90,AEC ∴∠=︒60,C ∠=︒906030CAE ∴∠=︒-︒=︒ AD 是BAC ∠的角平分线,1402CAD BAD BAC ∴∠=∠=∠=︒, 10DAE CAD CAE ∴∠=∠-∠=︒.(2)180,BAC B C ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE ∵是ABC ∆的高,90,AEC ∴∠=︒90CAE C ∴∠=︒-∠ AD 是BAC ∠的角平分线,12CAD BAD BAC ∴∠=∠=∠, ()1902DAE CAD CAE BAC C ∴∠=-∠=∠-︒-∠ ()1180902C C =︒-∠B -∠-︒+∠ 1122C B =∠-∠ 即1122DAE C B ∠=∠-∠; (3)CAE ∠和BCF ∠的角平分线交于点G ,2,2CAE CAG FCB FCG ∴∠=∠∠=∠,CAE FCB AEC CAG FCG G ∠=∠-∠∠=∠-∠()2222FCG AEC FCG G FCG G ∴∠-∠=∠-∠=∠-∠,即2AEC G ∠=∠, AE ∵是ABC ∆的高,90AEC ∴∠=︒,45G ∴∠=︒.故答案为:45°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.。

北师大八年级数学上《第七章平行线的证明》综合测评(含答案)

北师大八年级数学上《第七章平行线的证明》综合测评(含答案)

第七章 平行线的证明综合测评时间90分钟 满分120分班级:_________姓名:__________得分:________一、精心选一选(每小题3分,共24分) 1.下列命题是真命题的是( ) A.若a 2=b 2,则a=bB.若∠1+∠2=90º,则∠1与∠2互余C.若∠α与∠β是同位角,则∠α=∠βD.若a ⊥b ,b ⊥c ,则a ⊥c2.下列命题中,是公理的是( )A.等角的补角相等B.内错角相等,两直线平行C.两点之间线段最短D.三角形的内角和等于180º 3.如图1,下列条件能判定AB ∥CD 的是( )A.∠1+∠2=180ºB.∠3=∠2C.∠2=∠1D.∠1+∠3=180º4.如图2,已知AB ∥CD ,能得到∠1=∠2的依据是( )A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行5.已知在△ABC 中,∠A ,∠B 的外角分别是120º,150º,则∠C 等于( ) A.60º B.90º C.120º D.150º6.下列选项中,可以用来证明命题“若a 2>1,则a >1”是假命题的反例是( ) A.a=-3 B.a=-1 C.a=1 D.a=37.如图3,已知∠2是△ABC 的一个外角,那么∠2与∠B+∠1的大小关系是( ) A.∠2>∠B+∠1 B.∠2=∠B+∠1 C.∠2<∠B+∠1 D.无法确定8.现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中.已知:①每所学校至少有他们中的一名学生;②在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;③乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;④丁、戊是同一所学校的三好学生.根据以上叙述可以断定甲所在的学校为( )A.三中B.二中C.一中D.不能确定 二、细心填一填(每小题4分,共32分)9.把命题“直角三角形的两锐角互余”改写成“如果……那么……”的形式是________. 10.如图4所示,添加一个条件______,可使AC ∥DE.图1 3 2DC BA 1 BA1 2 图2 CD E A BCD 21 图311.如图5,已知直线a ∥b ,小杜把直角三角尺的直角顶点放在直线b 上,若∠1=18°,则∠3的度数为____________.12.如图6,点D 为BC 延长线上的一点,∠A=∠ACB ,∠A=2∠B ,则∠ACD 的度数为________.13.下列几个命题:①若两个实数相等,则它们的平方相等;②若三角形的三边长a ,b ,c 满足(a -b)(a+b)+c 2=0;则这个三角形是直角三角形;③有两边和一角分别相等的两个三角形全等.其中是假命题的有_________(填序号). 14.如图7,把一个长方形ABCD 纸片沿EF 折叠后,点D ,C 分别落在D ',C '的位置,若∠AED '=30º, 则∠CFE=_____________°.15. 如图8,把一块含有30°角(∠A=30°)的直角三角尺ABC 的直角顶点放在长方形桌面CDEF (CD ∥EF )的一个顶点C 处,桌面的另一个顶点F 与三角尺斜边相交于点F ,如果∠1=40°,那么∠AFE=________°.16.小明同学连续观察了太原市2014年8月份某几天的天气情况,他的观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数为_________.三、耐心做一做(共64分) 17.(8分)读句画图:如图9,直线CD 与直线AB 相交于点C ,根据下列语句画图:(1)过点P 作PQ ∥CD ,交AB 于点Q ; (2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB =120°,猜想∠PQC 是多少度?并说明理由.18.(10分)如图10,已知点B ,D ,G 在同一条直线上,AB ∥CD ,∠1=∠2,请问BE 与DF 平行吗?为什么?图4 图5图6 图7A B CD E F D 'C '图9 1 2 A BCD E F 图10G19.(10分)已知:如图11,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =120°,求∠DAC 的度数.20.(10分)阅读理解:如果三角形满足一个角α是另一个角β的3倍时,那么我们称这个三角形为“智慧三角形”.其中α称为“智慧角”.解答问题:⑵ 一个角为60º的直角三角形______(填“是”或“不是”)“智慧三角形”,若是,“智慧角”是_____.⑵已知一个“智慧三角形”的“智慧角”为108°,求这个“智慧三角形”各个角的度数.21.(12分) 如图12已知四边形ABCD 中,BC ⊥AB ,CF 平分∠DCB ,∠DCF +∠BAE =90°,试判断AE 与CF 的位置关系,并说明理由.22.(14分)数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图13所示,已知∠DBC 和∠BCE 分别为△ABC 的两个外角,试探究∠A 和∠DBC ,∠BCE 之间的数量关系. 解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD 和∠BCE 的平分线BF 和CF ,交于点F (如图14所示),那么∠A 与∠F 之间有何数量关系?请写出解答过程.AB D EC 图13 A B DEC F图11 图12(拟题张华)第七章平行线的证明综合测评(一)一、1.B 2.C 3.C 4.C 5.B 6.A 7.A 8.A二、9.如果一个三角形是直角三角形,那么这个三角形的两锐角互余10.答案不唯一,如∠A=∠BDE11.72º12.108º13. ③14.105 15.1016.10天提示:由题意知,小明同学每天测两次,共测的次数为7+5+8=20.因此他共测了20÷2=10(天).三、17.解:(1)(2)如图所示.(3)∠PQC=60°.理由:因为PQ∥CD,所以∠DCB+∠PQC=180°.因为∠DCB=120°,所以∠PQC=180°-120°=60°.18.解:BE∥DF.理由:因为AB∥CD,所以∠ABG=∠CDG .因为∠1=∠2,所以∠ABG-∠2=∠CDG-∠1,即∠EBG=∠FDG.所以BE∥DF.19.解:因为∠BAC=120°,所以∠2+∠3=60°.①因为∠1=∠2,所以∠4=∠3=∠1+∠2=2∠2.②把②代入①,得3∠2=60°,所以∠2=20°. 所以∠1=∠2=20°.所以∠DAC=∠BAC-∠1=120°-20°=100°.20.解:⑴是90º⑵因为这个“智慧三角形”的“智慧角”为108°,所以另一个角为108º÷3=36º,第三个内角为180º-108º-36º=36º.即这个“智慧三角形”各个角的度数分别为108°,36°,36°.21.调北八13~14学年第一学期20期3版22题答案.。

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》检测题(有答案解析)(1)

一、选择题1.下列说法正确的有( )①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;④真命题的逆命题是真命题A .1个B .2个C .3个D .4个 2.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒ 3.下列命题中,属于假命题的是( ) A .相等的角是对顶角 B .三角形的内角和等于180°C .两直线平行,同位角相等D .两点之间,线段最短 4.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b == B .1,2a b ==- C .2,1a b =-= D .2,1a b ==- 5.一个三角形的三个内角中( )A .至少有一个等于90°B .至少有一个大于90°C .不可能有两个大于89°D .不可能都小于60°6.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等7.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°8.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .38 9.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数B .m 为整数C .m 为负数或零D .m 为非负数 10.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( ) A .5B .12C .14D .1611.下列六个命题: ①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )A .3个B .4个C .5个D .6个12.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短,其中假命题有( )A .1个B .2个C .3个D .4个二、填空题13.证明“若a b >,则22a b >.”是假命题,可举出反例:_________.14.若ABC DEF △≌△,80A ∠=︒,40B ∠=︒,那么DFE ∠的度数为________.15.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥16.如图,在ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分CAD ∠,交BC 于点E ,过点E 作EF AC ,分别交AB 、AD 于点F 、G .则下列结论:①90BAC ∠=︒;②AEF BEF ∠=∠;③BAE BEA ∠=∠;④2B AEF ∠=∠,其中正确的有_____.17.把“同角的补角相等”改成“如果···那么···”的形式_________________.18.已知直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为___________.19.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.20.如图,∆ABC 中,∠A= 82︒ ,∆ABC 的两条角平分线交于点 P ,∠BPD 的度数是_____;三、解答题21.如图,已知ABC 与ADG 均为等边三角形,点E 在GD 的延长线上,且GE AC =,连接AE 、BD .(1)求证:AGE DAB ≌△△;(2)F 是BC 上的一点,连接AF 、EF ,AF 与GE 相交于M ,若AEF 是等边三角形,求证://BD EF .22.已知,//AB CD ,点P 在AB 、CD 之间,连结AP 、CP .(1)如图1,求A C P ∠+∠+∠的度数(提供两种作辅助线的方法:方法一:过点P 作AB 的平行线;方法二:连结AC );(2)已知100APC ∠=︒,PAB ∠和PCD ∠的角平分线AO 、CO 交于点0,请你画出草图,并直接写出AOC ∠的度数.23.如图,已知AD ⊥BC ,EF ⊥BC ,垂足分别为D 、F ,∠2+∠3=180°.试说明:∠GDC =∠B .下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:∵AD ⊥BC ,EF ⊥BC (已知),∴AD ∥EF (在同一平面内,垂直于同一条直线的两条直线平行),∴∠1+∠2= °(两直线平行,同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠ (同角的补角相等),∴AB ∥DG ( ),∴∠GDC =∠B ( ).24.如图所示,已知,A F ∠=∠,C D ∠=∠.(1)求证: //BD CE ;(2)已知:2:3ABD DEC ∠∠=,求DEC ∠的度数.25.如图,在△ABC 中,A ABC ∠=∠,直线EF 分别交AB 、AC 点D 、E ,CB 的延长线于点F ,过点B 作//BP AC 交EF 于点P ,(1)若70A ∠=︒,25F ∠=︒,求BPD ∠的度数.(2)求证:2F FEC ABP ∠+∠=∠.26.如图,有如下四个论断:①//AC DE ,②//DC EF ,③CD 平分BCA ∠,④EF 平分BED ∠.(1)若选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个数学命题,其中正确的有哪些?不需说明理由.(2)请你在上述正确的数学命题中选择一个进行说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据逆定理的定义,某一定理的条件和结论互换所得命题是真命题是这个定理的逆定理可以判断①,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,可判断②,利用命题分类分为真命题与假命题都是命题,都有逆命题,可判断③,真命题是正确的命题,真命题的逆命题有真假命题之分,可判断④即可.【详解】解:①每个定理都有逆命题,看根据逆命题的条件能否推出正确的结论,能推出,由逆定理,不能推出,没有逆定理,故①不正确;②每个命题都有逆命题;故②正确;③假命题也是命题,命题都有逆命题,故③不正确;④真命题的逆命题可能是假命题,也可能是真命题,根据条件能否推出正确的结论有关,能推出,由是真命题,不能推出,是假命题,故④不正确.正确的说法只有一个②.故选择:A .【点睛】本题考查命题,真命题,假命题,逆命题,定理,逆定理,掌握命题,真命题,假命题,逆命题,定理,逆定理的定义,以及它们的区别是解题关键.2.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键.3.A解析:A【分析】利用对顶角、三角形内角和、平行线的性质等分别判断后即可确定正确的选项.【详解】解:A 、相等的角不一定是对顶角,原命题是假命题;B 、三角形三个内角的和等于180°,是真命题;C 、两直线平行,同位角相等,是真命题;D 、两点之间,线段最短,是真命题;故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角、平行线的性质和三角形内角和,难度不大.4.B解析:B【分析】需要证明一个结论不成立,可以举反例证明;【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题;故答案选B .【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.5.D解析:D【分析】根据三角形的内角性质、三角形的内角和定理逐项判断即可得.【详解】A 、反例:锐角三角形的三个内角均小于90︒,此项错误;B 、反例:锐角三角形的三个内角均小于90︒,此项错误;C 、反例:一个三角形的三个内角分别为89.5,89.5,1︒︒︒,此项错误;D 、因为三角形的内角和等于180︒,所以不可能都小于60︒,此项正确;故选:D .【点睛】本题考查了三角形的内角、三角形的内角和定理,熟练掌握三角形的内角和定理是解题关键.6.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∠BAC=31°,∴∠DAC=12∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.8.B解析:B过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.【详解】解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B.【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.9.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m为正数”时,应先假设m为负数或零故选:C.【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解.10.C解析:C【详解】∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例,故A错误;∵12是偶数,且是4的倍数,∴不能作为假命题的反例,故B错误;∵14是偶数但不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例,故C正确;∵16是偶数,且也是4的倍数,∴不能作为假命题的反例,故D错误.故选C.11.C【分析】分别根据有理数、平行线的判定与性质以点到直线的距离分别判断得出即可.【详解】①实数与数轴上的点一一对应,原命题是假命题;②两条平行线线被第三条直线所截,内错角相等,原命题是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,原命题是假命题; ④平行于同一条直线的两条直线互相平行,是真命题;⑤垂直于同一平面内的同一条直线的两条直线互相平行,原命题是假命题;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,原命题是假命题;故选:C .【点睛】此题主要考查了命题与定理,熟练掌握相关的定理与性质是解题关键.12.B解析:B【分析】根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断.【详解】解:相等的两个角不一定为对顶角,所以①为假命题;若∠1+∠2=180°,则∠1与∠2互为补角,所以②为真命题;两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题.故选:B .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.答案不唯一例如当但【分析】可根据的正负性来考虑即可例如用来进行判断即可【详解】反例:取有但故答案为:但【点睛】本题考查了命题与定理举反例说明说明命题是假命题时在选取反例时要注意遵循这一原则:反例的选 解析:答案不唯一,例如当1,1,a b a b ==->,但22a b <【分析】可根据a 、b 的正负性来考虑即可,例如用1a =、1b =-来进行判断即可.【详解】反例:取1a =,1b =-,有a b >,但22a b =.故答案为:1a =,1b =-,a b >,但22a b =.【点睛】本题考查了命题与定理,举反例说明说明命题是假命题时,在选取反例时要注意遵循这一原则:反例的选取一定要满足所给命题的题设要求,而不能满足命题的结论.14.【分析】根据三角形内角和定理求出∠C 根据全等三角形性质推出∠F =∠C 即可得出答案【详解】解:∵∠A =80°∠B =40°∴∠ACB =180°−∠A−∠B =60°∵△ABC ≌△DEF ∴∠DFE =∠ACB解析:60︒【分析】根据三角形内角和定理求出∠C ,根据全等三角形性质推出∠F =∠C ,即可得出答案.【详解】解:∵∠A =80°,∠B =40°,∴∠ACB =180°−∠A−∠B =60°,∵△ABC ≌△DEF ,∴∠DFE =∠ACB =60°,故答案为:60°.【点睛】本题考查了三角形内角和定理,全等三角形性质的应用,主要考查学生的推理能力,难度不大.15.对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对 解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.16.①③④【分析】利用高线和同角的余角相等三角形内角和定理即可证明①再利用等量代换即可得到③④均是正确的②缺少条件无法证明【详解】由已知可知∠ADC=∠ADB=90°∵∠ACB=∠BAD∴90°-∠AC解析:①③④【分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】由已知可知∠ADC=∠ADB=90°,∵∠ACB=∠BAD∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE平分∠CAD,EF∥AC,∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,∴∠BAE=∠BEA,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,故答案为:①③④.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.17.如果两个角是同一个角的补角那么这两个角相等【分析】把命题的题设写在如果的后面把命题的结论写在那么的后面即可【详解】解:命题同角的补角相等改成如果…那么…的形式为:如果两个角是同一个角的补角那么这两个解析:如果两个角是同一个角的补角,那么这两个角相等【分析】把命题的题设写在如果的后面,把命题的结论写在那么的后面即可.【详解】解:命题“同角的补角相等”改成“如果…,那么…”的形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案为:如果两个角是同一个角的补角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.40°【分析】如图过E作EF∥AB则AB∥EF∥CD根据平行线的性质和三角形的内角和定理即可求得答案【详解】解:如图过E作EF∥AB则AB∥EF∥CD∴∠1=∠3∠2=∠4∵∠3+∠4=180°-9解析:40°【分析】如图,过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=180°-90°-30°=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°.故答案为:40°.【点睛】本题以三角板为载体,主要考查了平行线的性质和三角形的内角和定理,正确添加辅助线、熟练掌握平行线的性质是解题的关键.19.5【分析】设∠BCE=4x∠CBF=5x设∠ADE=∠EDC=y构建方程组求出xy证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x则∠CBF=5x解析:5【分析】设∠BCE=4x,∠CBF=5x,设∠ADE=∠EDC=y,构建方程组求出x,y,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC ,∠ECD=∠ECB=4x ,设∠ADE=∠EDC=y ,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去), ∴CE=2m =5,故答案为5.【点睛】 本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.20.49°【分析】由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=98°由角平分线定义得出∠PBC+∠PCB=(∠ABC+ACB)=49°再由三角形的外角性质即可得出结果【详解】∵△ABC 中∠解析:49°【分析】由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=98°,由角平分线定义得出∠PBC+∠PCB=12(∠ABC+ACB)=49°,再由三角形的外角性质即可得出结果. 【详解】∵△ABC 中,∠A=82°,∴∠ABC+∠ACB=180°-∠A=98°,∵△ABC 的两条角平分线交于点P ,∴∠PBC=12∠ABC ,∠PCB=12∠ACB , ∴∠PBC+∠PCB=12(∠ABC+ACB)=1982⨯︒=49°,∴∠BPD=∠PBC+∠PCB=49°,故答案为:49°.【点睛】本题考查了三角形内角和定理、角平分线定义以及三角形的外角性质;熟练掌握三角形内角和定理是解题的关键.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质,解得60BAC DAG ∠=∠=︒,,AB BC AC AD DG AG ====,结合GE AC =,可证明ABD ≅()GEA SAS ; (2)由等边三角形的性质,解得60ABC AGD ∠=∠=︒,60ABC AEF ∠=∠=︒继而根据同位角相等,两直线平行判定//GE BC ,由两直线平行,内错角相等解得EFC GEF ∠=∠,接着由全等三角形的对应角相等得到ABD GEA ∠=∠,最后由角的和差解得DBF GEF ∠=∠整理得DBF EFC ∠=∠据此解题即可.【详解】解:(1)ABC 与ADG 均为等边三角形,60BAC DAG ∴∠=∠=︒,,AB BC AC AD DG AG ====GE AC =∴GE AB =在DAB 与AGE 中,AD AG BAD EGA AB GE =⎧⎪∠=∠⎨⎪=⎩ABD ∴≅()GEA SAS ;(2)ABC 与ADG 均为等边三角形,60ABC AGD ∴∠=∠=︒//GE BC ∴EFC GEF ∴∠=∠ABD ≅()GEA SASABD GEA ∴∠=∠若AEF 是等边三角形,60ABC AEF ∴∠=∠=︒ABC ABD AEF GEA ∴∠-∠=∠-∠即DBF GEF ∠=∠DBF EFC ∴∠=∠//BD EF ∴.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、平行线的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)360︒;(2)130AOC ∠=︒或50︒【分析】(1)连结AC ,根据三角形的内角和定理可得∠P+∠PAC+∠PCA=180°,再根据AB//CD 得到∠BAC+∠DCA=180°即可求得.(2)分两种情况,点P 在AC 的左侧,点P 在AC 的右侧,由(1)中的得到的结论,∠P+∠PAB+∠PCD=360°,再由平行线的性质和角平分线的定理,可以得到∠AOC 的度数.【详解】(1)连结AC∴180P PAC PCA ∠+∠+∠=︒,∵//AB CD∴180BAC DCA ∠+∠=︒,∴360PAB PCD P ∠+∠+∠=︒,(2)如图a ,点P 在AC 的左侧,130AOC ∠=︒,∵∠P+∠PAB+∠PCD=360° ,又∠APC=100° ,∴∠PAB+∠PAC=260° ,又AO 、CO 是∠PAB 和 ∠PCD 的角平分线,∴∠PAO+∠PCO=12×260° =130° , ∴∠AOC=360° -100° -130° =130° , 如图b ,点P 在AC 的右侧,50AOC ∠=︒,过点P作MN∥AB,∵MN∥AB,CD∥AB,∴MN∥CD,∵MN∥AB,∴∠APM=∠BAP,∵MN∥CD,∴∠CPM=∠PCD,∴∠BAP+∠PCD=∠APM+∠CPM=∠APC=100°,又AO、CO是∠PAB 和∠PCD 的角平分线,∴∠BAO+∠DCO= 1×100° =50°,2∴∠AOC=∠BAO+∠DCO=50°,∴∠AOC=130°或50°.【点睛】此题考查了平行线的性质和判定,以及角平分线定理,三角形的内角和定理,解题的关键是灵活运用平行线的性质和角的平分线的定理求角的度数.23.180;3;内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的性质定理和判定定理即可解答.【详解】解:∵AD⊥BC,EF⊥BC(已知),∴AD∥ EF(在同一平面内,垂直于同一条直线的两条直线平行),∴∠1+∠2=180°两直线平行,同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠ 3(同角的补角相等),∴AB∥DG(内错角相等,两直线平行),∴∠GDC=∠B(两直线平行,同位角相等).故答案为:180;3;内错角相等,两直线平行;两直线平行,同位角相等【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.24.(1)见解析;(2)∠D EC =108°【分析】(1)由AC//DE可得∠D=∠ABD,根据等量代换得到∠C=∠ABD,从而可证BD//C E;(2)设∠ABD=2x , ∠D EC=3x ,根据两直线平行,同旁内角互补求解即可.【详解】(1)证明∵∠A=∠F ,∴AC //DE ,∴∠D=∠ABD ,∵∠D=∠C ,∴∠C=∠ABD ,∴BD//C E ;(2)∵BD//C E ,DF//BC ,∴∠ABD =∠C ,∠D EC +∠C=180°,∵∠ABD :∠DEC=2:3,∴设∠ABD=2x ,∠D EC=3x ,则2x+3x=180°,∴x=36°,∴∠D EC =3x=108°.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.(1)65°;(2)见解析【分析】(1)运用三角形内角和定理先求出∠C 的度数,再应用平行线性质求出∠PBF 的度数,最后应用三角形外角与内角的关系求出∠BPD .(2)先证明∠F+∠FEC=∠PBC ,再证∠PBC=2∠ABP .【详解】解:(1)在ABC ∆中,∵∠A=70°,∠A=∠ABC∴由内角和定理可得40C ∠=又∵//BP AC∴65BPD AEF C F ∠=∠=∠+∠=(2) 在ABC ∆中,∵∠A=∠ABC∴ 由内角和定理可得2180A C ∠+∠=同理, 在CEF ∆中由三角形内角和定理得180F FEC C ∠+∠+∠=∴2F FEC A ∠+∠=∠又∵//BP AC∴ABP A ∠=∠即2F FEC ABP ∠+∠=∠.【点睛】本题考查三角形内角和定理和三角形的外角等于和它不相邻的两个内角之和的综合题.用已知条件结合图形运用相关定理找角的关系是基本技能,是解本题的关键.26.(1)见解析;(2)见解析【分析】(1)选择四个论断中的三个作为条件,余下的一个论断作为结论,即可得到结论;(2)根据平行线的性质和角平分线的定义即可得到结论.【详解】解:(1)如果①②③,那么④,正确;如果①②④,那么③,正确;如果①③④,那么②,正确;如果②③④,那么①,正确;(2)已知:AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED.证明:∵AC∥DE,∴∠BCA=∠BED,即∠1+∠2=∠4+∠5,∵DC∥EF,∴∠2=∠5,∵CD平分∠BCA,∴∠1=∠2,∴∠4=∠5,∴EF平分∠BED.【点睛】本题考查了命题与定理,平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.。

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》检测题(答案解析)

一、选择题1.下列命题中,为真命题的是( )A .13是13的算术平方根B .三角形的一个外角大于任何一个内角C .13是最简二次根式 D .两条直线被第三条直线所截,内错角相等 2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b = 3.下列命题是真命题的是( )A .平行于同一直线的两条直线平行B .两直线平行,同旁内角相等C .同旁内角互补D .同位角相等 4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 5.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 6.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 7.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 8.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 9.如图,直线a ∥b ,点B 在a 上,且AB ⊥BC ,若∠1=35°,那么∠2等于( )A .45°B .50°C .55°D .60° 10.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离11.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒ 12.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短,其中假命题有( )A .1个B .2个C .3个D .4个二、填空题13.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.14.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.15.如图,一个直角三角形纸片ABC ,90BAC ∠=,D 是边BC 上一点,沿线段AD 折叠,使点B 落在点E 处(E B 、在直线AC 的两侧),当50EAC ∠=时,则CAD ∠=__________°.16.某机器零件的横截面如图所示,按要求线段AB 和DC 的延长线相交成直角才算合格.一工人测得23A ∠=︒,31D ∠=︒,143AED ∠=∠︒,请你帮他判断该零件是否合格_______(填“合格”或“不合格”).17.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.18.下列命题中,其逆命题成立的是_____.(填上正确的序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在角的内部,到角的两边距离相等的点在角的平分线上;⑤等边三角形是锐角三角形.19.如图,已知△ABC 的∠ABC 和∠ACB 的平分线BE ,CF 交于点G ,若∠BGC =115°,则∠A =______.20.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;其中结论正确的有______________三、解答题21.推理填空:如图,AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠,可得AD 平分BAC ∠.理由如下:∵AD BC ⊥于D ,EG BC ⊥于G ,(已知)∴90ADC EGC ∠=∠=︒,(____________________)∴//AD EG ,(____________________)∴1∠=__________,(____________________)3E ∠=∠,(____________________)又∵1E ∠=∠,(____________________)∴3∠=___________,(____________________)∴AD 平分BAC ∠.(____________________)22.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.23.定义:一个三位数,如果它的各个数位上的数字互不相等且都不为0,同时满足十位上的数字为百位与个位数字之和,则称这个三位数为“西西数”.A 是一个“西西数”,从A 各数位上的数字中任选两个组成一个两位数,由此我们可以得到6个不同的两位数.我们把这6个数之和与44的商记为()h A ,如:132A =,133112212332(132)344h +++++==. (1)求()187h ,()693h 的值. (2)若A ,B 为两个“西西数”,且()()35h A h B =,求B A 的最大值. 24.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.25.如图,直线AB ∥CD ,EF ⊥CD ,F 为垂足,∠GEF=30°,求∠1的度数.26.已知:如图,180BAE AED ∠+∠=︒,12∠=∠,那么M N ∠=∠.下面是推理过程,请你填空:解:180BAE AED ∠+∠=︒(已知),∴______//______.( )BAE ∴∠=______(两直线平行内错角相等)又12∠=∠(已知)1BAE ∴∠-∠=______2-∠,即MAE ∠=______.∴______//______( ).M N ∴∠=∠( )【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据算术平方根、三角形外角定理、最简二次根式定义、平行线性质逐项判断即可求解.【详解】解:13的算术平方根”,判断正确,符合题意;B. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于和它不相邻的任意一个内角”,判断错误,不合题意;”,不是最简二次根式,判断错误,不合题意;D. “两条直线被第三条直线所截,内错角相等”,两条直线不一定平行,判断错误,不合题意.故选:A【点睛】本题考查了命题、算术平方根、三角形外角定理、最简二次根式定义、平行线性质等知识,熟练掌握相关知识是解题的关键,注意:题设成立,结论一定成立的命题是真命题;题设成立,结论不一定成立的命题是假命题.2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.A解析:A【分析】对照平行线的性质和定理,逐一判断即可.【详解】∵平行于同一直线的两条直线平行,∴选项A正确;∵两直线平行,同旁内角互补,∴选项B错误;∵两直线平行,同旁内角互补,∴选项C错误;∵两直线平行,同位角相等,∴选项D错误;故选A.【点睛】本题考查了平行线的性质和判定,熟记性质和判定的条件和结论是解题的关键.4.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∠,∵BD平分ABC∴∠ABD=∠CBD=1∠ABC=30°,2DE BC,∵//∠=∠CBD=30°,∴BDE故选C.【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.5.B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA=60︒,∠BAE=45︒,∴∠ADE= 180︒−∠CEA−∠BAE=75︒,∴∠BDC=∠ADE=75 ,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.6.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.8.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; ④∵AB ∥CE ,∴∠B+∠BCD =180°,∵∠BCD =∠BAD ,∴∠B+∠BAD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; 故能推出BC ∥AD 的条件为②③④.故选:D .【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.9.C解析:C【分析】先根据直线平行的性质得到∠BAC=∠1=35°,再由三角形内角和定理求出55BCA ∠=︒,再根据对顶角的性质即可得到答案.【详解】解:∵直线a ∥b ,∴∠BAC=∠1=35°(两直线平行,内错角相等),又∵AB ⊥BC ,∴∠ABC=90°,∴180903555BCA ∠=︒-︒-︒=︒ (三角形内角和定理),∴255BCA ∠=∠=︒(对顶角相等),故选:C .【点睛】本题主要考查了直线平行的性质、三角形内角和定理、对顶角的性质,掌握对顶角相等以及两直线平行内错角相等是解题的关键.10.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A . 对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B .两直线平行,内错角相等,该项为假命题;C . 任何非负数的算术平方根是非负数,该项为真命题;D . 直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题; 故选:C .【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.11.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 12.B解析:B【分析】根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断.【详解】解:相等的两个角不一定为对顶角,所以①为假命题;若∠1+∠2=180°,则∠1与∠2互为补角,所以②为真命题;两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题.故选:B .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC 中不妨设∠A=60①若∠A=2∠C 则∠C=30∴∠B=;②若∠C=2∠A 则∠C=1解析:30°,90°或40°,80°【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论.【详解】在△ABC 中,不妨设∠A=60︒,①若∠A=2∠C ,则∠C=30︒,∴∠B=180603090︒-︒-︒=︒;②若∠C=2∠A,则∠C=120︒,︒-︒-︒=︒(不合题意,舍去);∴∠B=180601200=︒-︒=120︒,③若∠B=2∠C,则3∠C18060∴∠C4=0︒,∠B=180604080︒-︒-︒=︒;综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒.【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.14.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P的度数【详解】∵BP是∠ABC的平分线CP是∠ACM的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.15.20【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD再根据∠CAB=90°即可求出答案【详解】解:由翻折可得∠EAD=∠BAD又∠CAB=90°∠EAC=50°∴∠EAC+∠CAD=90°-∠解析:20【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD,再根据∠CAB=90°即可求出答案.【详解】解:由翻折可得,∠EAD=∠BAD,又∠CAB=90°,∠EAC=50°,∴∠EAC+∠CAD=90°-∠CAD,∴50°+∠CAD=90°-∠CAD,∴∠CAD=20°.故答案为:20.【点睛】本题考查的是图形翻折变换的性质及四边形内角和定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.16.不合格【解析】试题分析:延长ABDC相交F连接FE并延长至G根据三角形的外角的性质可得(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠解析:不合格【解析】试题分析:延长AB、DC相交F,连接F、E并延长至G.根据三角形的外角的性质可得(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG,再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D即可作出判断.延长AB、DC相交F,连接F、E并延长至G.则有(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG=∠AED=143°;∵∠A=23°,∠D=31°,∴∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D=143°-23°-31°=89°≠90°.所以零件不合格.考点:三角形的外角的性质点评:解题的关键是熟练掌握三角形的外角的性质:三角形的任何一个外角等于和它不相邻的两个内角的和.17.5【分析】设∠BCE=4x∠CBF=5x设∠ADE=∠EDC=y构建方程组求出xy证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x则∠CBF=5x解析:5【分析】设∠BCE=4x,∠CBF=5x,设∠ADE=∠EDC=y,构建方程组求出x,y,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC,∠ECD=∠ECB=4x,设∠ADE=∠EDC=y,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去), ∴CE=2m =5,故答案为5.【点睛】 本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.18.①④【分析】分别写出原命题的逆命题然后判断正误即可【详解】①同旁内角互补两直线平行的逆命题是两直线平行同旁内角互补成立符合题意;②如果两个角是直角那么它们相等的逆命题为相等的两个角都是直角不成立不符 解析:①④【分析】分别写出原命题的逆命题,然后判断正误即可.【详解】①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立,符合题意; ②如果两个角是直角,那么它们相等的逆命题为相等的两个角都是直角,不成立,不符合题意;③如果两个实数相等,那么它们的平方相等的逆命题为平方相等的两个实数相等,不成立,不符合题意;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题为角平分线上的点到角的两边的距离相等,成立,符合题意;⑤等边三角形是锐角三角形的逆命题为锐角三角形是等边三角形,不成立,不符合题意; 成立的有①④,故答案为:①④.【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.19.50°【分析】根据三角形内角和定理求出∠GBC+∠GCB根据角平分线的定义求出∠ABC+∠ACB根据三角形内角和定理计算即可【详解】解:∵∠BGC=115°∴∠GBC+∠GCB=180°﹣115°=解析:50°【分析】根据三角形内角和定理求出∠GBC+∠GCB,根据角平分线的定义求出∠ABC+∠ACB,根据三角形内角和定理计算即可.【详解】解:∵∠BGC=115°,∴∠GBC+∠GCB=180°﹣115°=65°,∵BE,CF是△ABC的∠ABC和∠ACB的平分线,∴∠GBC=12∠ABC,∠GCB=12∠ACB,∴∠ABC+∠ACB=130°,∴∠A=180°﹣130°=50°,故答案为50°.20.①③【分析】先根据AB⊥BCAE平分∠BAD交BC于点EAE⊥DE∠1+∠2=90°∠EAM和∠EDN的平分线交于点F由三角形内角和定理以及平行线的性质即可得出结论【详解】解:∵AB⊥BCAE⊥DE解析:①③【分析】先根据AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分线交于点F,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正确;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②错误;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正确,故答案为:①③.【点睛】本题考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解题的关键.三、解答题21.垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【分析】根据证明的前后联系填写理由或结论即可.【详解】解:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠1=∠2,(两直线平行,内错角相等)∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠3=∠2(等量代换)∴AD平分∠BAC(角平分线的定义).故答案为:垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角,明确每步说理的原因是正确答题的关键.22.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB得到FG∥AC,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG∥AC得到∠BFG=∠A=58°,结合CF⊥AB得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB.【详解】解:(1)∵∠1和∠3分别在CF ,GF 的同侧,并且在第三条直线BC 的同旁, ∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF ,DE 两条直线之间,并且在第三条直线AC 的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF ,CB 两条直线之间,并且在第三条直线FG 的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF ∥DE ,∵∠3=∠ACB ,∴FG ∥AC ,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF ∥DE ;(3)由(2)知:FG ∥AC ,∴∠BFG=∠A=58°,∵CF ⊥AB ,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF 是∠ACB 的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.23.(1)8,9;(2)671.154B A 【分析】(1)根据新定义的法则进行运算即可得到答案;(2)先由(1)的运算发现并总结规律,可得()h A 的值等于A 的十位数字,再运用规律结合()()35h A h B =进行合理的分类讨论,分4种情况:()()5,7h A h B ==或()()7,5,h A h B == ()()35,1h A h B ==或()()1,35h A h B ==,再根据新定义可得答案.【详解】解:(1)由定义可得:()18+81+17+71+78+87352===84417448h ,()699663369339396=9.4444693h +++++== (2)探究: 133112212332(132)344h +++++==, ()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++==发现并总结规律:()h A 的值等于A 的十位数字,A ,B 为两个“西西数”,且()()35h A h B =, ()()5,7h A h B ∴==或()()7,5,h A h B ==而()()35,1h A h B ==或()()1,35h A h B ==不合题意舍去, BA的值最大,则B 最大,A 最小, ()()5,7,h A h B ∴==当()5h A =时,154A =或451A =或253A =或352A =,当()7h B =时,671B =或176B =或572B =或275B =或374B =或473.B =A ∴最小为154,B 最大为671, 此时B A 的值最大为 671.154B A 【点睛】本题考查的是新定义运算,同时考查了规律探究,弄懂新定义的运算法则,理解并运用规律,掌握合理的分类讨论是解题的关键.24.证明见解析【分析】由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB ∥CD ,∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P ,∴∠PEF=12∠BEF ,∠PFE=12∠DFE , ∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.25.120°【分析】由EF⊥CD,∠GEF=30°,根据直角三角形中两个锐角互余,即可求得∠EGF的度数,根据邻补角的定义得到∠CGE的度数,又由两直线平行,同位角相等,即可求得∠1的度数.【详解】∵EF⊥CD于点F,∴∠EFG=90°,∴∠EGF=90°﹣∠GEF=90°﹣30°=60°,∵∠CGE+∠EGF=180°,∴∠CGE=180°﹣60°=120°,∵AB∥CD,∴∠1=∠CGE=120°(两直线平行,同位角相等).【点睛】此题考查了平行线的性质与直角三角形的性质.此题比较简单,注意掌握两直线平行,同位角相等定理的应用.26.见解析【分析】先根据平行线的判定,得到AB∥CD,再根据平行线的性质,得出∠MAE=∠NEA,进而得出AM∥NE,最后根据平行线的性质即可得到结论.【详解】解:∵∠BAE+∠AED=180°,(已知)∴AB∥CD,(同旁内角互补,两直线平行)∴∠BAE=∠CEA,(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE-∠1=∠AEC-∠2,即∠MAE=∠NEA,∴AM∥NE,(内错角相等,两直线平行)∴∠M=∠N.(两直线平行,内错角相等)【点睛】本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.。

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》检测(答案解析)

一、选择题1.如图,已知//AB CD ,120AFC ∠=︒,13EAF EAB ∠=∠,1 3ECF ECD ∠=∠,则 AEC ∠=( )A .60°B .80°C .90°D .100°2.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有( )①OE 平分AOD ∠;②AOC BOD ∠=∠;③15AOC CEA ∠-∠=︒;④180COB AOD ∠+∠=︒A .0B .1C .2D .3 3.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 4.下列命题中,真命题的是( ) A .同旁内角互补,两直线平行B .相等的角是对顶角C .同位角相等D .直角三角形两个锐角互补5.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等6.如图,已知ACF DBE?△≌△,下列结论:① AC DB =;② AB DC =;③ DCF ABE ∠∠=;④AF//DE ;⑤ACF DBES S =△△;⑥BC AF =;⑦CF //BE .其中正确的有( )A .4?个B .5?个C .6?个D .7个7.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 8.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 9.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 10.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒11.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180°12.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行;A .1个B .2个C .3个D .4个 二、填空题13.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.14.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度.15.如图,点D 是△ABC 的边BC 的延长线上的一点,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推…,已知∠A =α,则∠A 2020的度数为_____.(用含α的代数式表示).16.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.18.用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设___________ 19.如图,AE 平分,BAC BE AE ∠⊥于,//E ED AC ,,BAC a ∠=则BED ∠的度数为________________.(用含α的式子表示)20.如图,∆ABC 中,∠A= 82︒ ,∆ABC 的两条角平分线交于点 P ,∠BPD 的度数是_____;三、解答题21.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.22.如图,已知点E 在直线DC 上,射线EF 平分AED ∠,过E 点作EB EF ⊥,G 为射线EC 上一点,连接BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,求证://AB EF .23.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数24.如图,12∠=∠,34∠=∠,56∠=∠,求证://CE BF .25.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90FGC HEC ︒∴∠=∠=.//FG ∴_______( ).3∴∠=∠_______( ).又12∠=∠,∴______24=∠+∠,即∠_________EFC =∠.//DE BC ∴(___________).26.如图,CD AB ⊥于D ,点F 是BC 上任意一点,FE AB ⊥于E ,且12∠=∠,380∠=︒.(1)证明://BC DG ;(2)若AD AG =,求ABC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AC ,设∠EAF=x ,∠ECF=y ,得到∠FAB=4x ,∠FCD=4x ,根据平行线性质得出∠CAB+∠ACD=180°,从而得到x+y=30°,再根据∠AEC=180°-(∠EAF+∠ECF+∠FCA+∠FAC )得到结果.【详解】解:连接AC,设∠EAF=x,∠ECF=y,∴∠EAB=3x,∠ECD=3x,∴∠FAB=4x,∠FCD=4x,∵AB∥CD,∴∠CAB+∠ACD=180°,∵∠AFC=120°,∴∠FAC+∠FCA=180°-120°=60°,∴∠FAC+∠FCA+∠FAB+∠FCD=180°,即60+4x+4y=180°,解得:x+y=30°,∴∠AEC=180°-(∠EAC+∠ECA)=180°-(∠EAF+∠ECF+∠FCA+∠FAC)=180°-(x+y+60°)=90°故选C.【点睛】本题考查了平行线性质和三角形内角和定理的应用,解题的关键是注意整体思想的运用.2.D解析:D【分析】根据同角的余角相等可得∠AOC=∠BOD;根据角的和差关系可得∠COB+∠AOD=180;根据三角形的内角和即可得出∠AOC-∠CEA=15°.【详解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠AOC=∠BOD,故②正确;∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确;如图,AB与OC交于点P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正确;没有条件能证明OE平分∠AOD,故①错误.综上,②③④正确,共3个,故选:D.【点睛】本题考查了余角与补角以及三角形内角和定理,熟知余角与补角的性质以及三角形内角和是180°是解答此题的关键.3.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∠,∵BD平分ABC∠ABC=30°,∴∠ABD=∠CBD=12DE BC,∵//∠=∠CBD=30°,∴BDE故选C.【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.4.A解析:A【分析】利用平行线的判定、对顶角的定义及互补的定义分别判断后即可确定正确的选项.【详解】解:A、同旁内角互补,两直线平行,正确,是真命题;B、对顶角相等,但相等的角不一定是对顶角,故错误,是假命题;C、只有当两直线平行时,同位角才会相等;两直线不平行时,同位角不会相等,故错误,是假命题;D、直角三角形两锐角互余,不会互补,故错误,是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角的定义及互补的定义,难度不大.5.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A 、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B 、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D 、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.C解析:C【分析】利用ACF DBE △≌△得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵ACF DBE △≌△∴ AC DB =故①正确;②∵ AC DB =∴ AC-BC DB-BC =即: AB DC =,故②正确;③∵ACF DBE △≌△∴ ACF DBE ∠∠=;∴ 180-ACF 180-DBE ︒∠=︒∠即: DCF ABE ∠∠=,故③正确;④∵ACF DBE △≌△∴ A D ∠=∠;∴AF//DE ,故④正确;⑤∵ACF DBE △≌△∴ACF DBES S =△△,故⑤正确; ⑥根据已知条件不能证得BC AF =,故⑥错误;⑦∵ACF DBE △≌△∴ EBD FCA ∠=∠;∴CF //BE ,故⑦正确;故①②③④⑤⑦,正确的6个.故选C .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.7.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.9.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.10.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.11.A解析:A【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【详解】解:A .∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行);B .∵∠B +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行);C .∠2=∠4,∴AB ∥CD (内错角相等,两直线平行);D .∠D +∠BAD =180°,∴AB ∥CD (同旁内角互补,两直线平行).故选A .【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.12.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b >,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题13.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC 中不妨设∠A=60①若∠A=2∠C 则∠C=30∴∠B=;②若∠C=2∠A 则∠C=1解析:30°,90°或40°,80°【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论.【详解】在△ABC 中,不妨设∠A=60︒,①若∠A=2∠C ,则∠C=30︒,∴∠B=180603090︒-︒-︒=︒;②若∠C=2∠A ,则∠C=120︒,∴∠B=180601200︒-︒-︒=︒(不合题意,舍去);③若∠B=2∠C ,则3∠C 18060=︒-︒=120︒,∴∠C 4=0︒,∠B=180604080︒-︒-︒=︒;综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒.【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.14.66【分析】在线段CD 上取点E 使CE=BD 再证明△ADB ≅△AEC 即可求出【详解】在线段DC 取点ECE=BD 连接AE ∵CE=BD ∴BE=CD ∵AB=CD ∴AB=BE ∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD 上取点E 使CE =BD ,再证明△ADB ≅△AEC 即可求出. 【详解】在线段DC 取点E ,CE =BD ,连接AE ,∵CE =BD ,∴BE =CD ,∵AB =CD ,∴AB =BE ,∠BAE =∠BEA =(180°-48°)÷2=66°,∴∠DAE =48° ,∠AED =66°,∴△ADB ≅△AEC ,∴∠BAD =∠CAE =18°,∴∠CAD =∠DAE +∠CAE =66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.15.【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A1=∠A2=∠A3=据此找规律可求解【详解】解:在△ABC 中∠A =∠ACD ﹣∠ABC =α∵∠ABC 的平分线与∠ACD 的平分线交于点A1 解析:202012α【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A 1=12α,∠A 2=212α,∠A 3=312α,据此找规律可求解. 【详解】 解:在△ABC 中,∠A =∠ACD ﹣∠ABC =α,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1=∠A 1CD ﹣∠A 1BC =12(∠ACD ﹣∠ABC )=12∠A =12α, 同理可得∠A 2=12∠A 1=212α, ∠A 3=12∠A 2=312α, …以此类推,∠A 2020=202012α, 故答案为:202012α.【点睛】考查三角形内角和定理以及三角形外角的性质,熟练掌握和运用三角形外角的性质是解题的关键. 16.假若a >b 则a2>b2【分析】a2大于b2则a 不一定大于b 所以该命题是假命题它的逆命题是若a >b 则a2>b2【详解】①当a =-2b =1时满足a2>b2但不满足a >b 所以是假命题;②命题若a2>b2则解析:假 若a >b 则a 2>b 2【分析】a 2大于b 2则a 不一定大于b ,所以该命题是假命题,它的逆命题是“若a >b 则a 2>b 2”.【详解】①当a =-2,b =1时,满足a 2>b 2,但不满足a >b ,所以是假命题;②命题“若a 2>b 2则a >b ”的逆命题是若“a >b 则a 2>b 2”;故答案为:假;若a >b 则a 2>b 2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.17.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.18.一个三角形中有两个角是直角【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可【详解】用反证法证明命题一个三角形中不能有两个角是直角第一步应假设一个三角形中有两个角是直角故答案为一个三角形中 解析:一个三角形中有两个角是直角.【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可.【详解】用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角.故答案为一个三角形中有两个角是直角.【点睛】此题考查反证法,解题关键在于掌握其证明过程.19.【分析】由ED//AC 可以得到所以由三角形内角和定理可以得到的值再次利用三角形内角和定理就可以得到的度数【详解】解:由已知得:又ED//AC ∴∴∴∠BED=故答案为【点睛】本题考查三角形内角和定理和 解析:1902a + 【分析】由ED//AC 可以得到EDB C ∠=∠,所以由三角形内角和定理可以得到EDB EBD ∠+∠的值,再次利用三角形内角和定理就可以得到BED ∠的度数.【详解】 解:由已知得:1909022a ABE BAC ∠=︒-∠=︒-, 又ED//AC ,∴EDB C ∠=∠, ∴180180909022a a EDB EBD BAC ABE a ⎛⎫∠+∠=︒-∠-∠=︒--︒-=︒- ⎪⎝⎭ ∴∠BED=180909022a a ⎛⎫︒-︒-=︒+ ⎪⎝⎭故答案为902a ︒+. 【点睛】 本题考查三角形内角和定理和角平分线的综合应用,灵活运用三角形内角和定理是解题关键.20.49°【分析】由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=98°由角平分线定义得出∠PBC+∠PCB=(∠ABC+ACB)=49°再由三角形的外角性质即可得出结果【详解】∵△ABC 中∠解析:49°【分析】由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=98°,由角平分线定义得出∠PBC+∠PCB=12(∠ABC+ACB)=49°,再由三角形的外角性质即可得出结果. 【详解】∵△ABC 中,∠A=82°,∴∠ABC+∠ACB=180°-∠A=98°,∵△ABC 的两条角平分线交于点P ,∴∠PBC=12∠ABC ,∠PCB=12∠ACB , ∴∠PBC+∠PCB=12(∠ABC+ACB)=1982⨯︒=49°, ∴∠BPD=∠PBC+∠PCB=49°,故答案为:49°.【点睛】 本题考查了三角形内角和定理、角平分线定义以及三角形的外角性质;熟练掌握三角形内角和定理是解题的关键.三、解答题21.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB 得到FG ∥AC ,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG ∥AC 得到∠BFG=∠A=58°,结合CF ⊥AB 得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB .【详解】解:(1)∵∠1和∠3分别在CF ,GF 的同侧,并且在第三条直线BC 的同旁, ∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF ,DE 两条直线之间,并且在第三条直线AC 的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF ,CB 两条直线之间,并且在第三条直线FG 的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF ∥DE ,∵∠3=∠ACB ,∴FG ∥AC ,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF ∥DE ;(3)由(2)知:FG ∥AC ,∴∠BFG=∠A=58°,∵CF ⊥AB ,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF 是∠ACB 的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.22.(1)见解析;(2)见解析【分析】(1)根据题意得到90FEB ∠=︒,再根据等量代换的方法求解即可;(2)通过已知条件证明A AEF ∠=∠,即可得到结果;【详解】(1)∵EB EF ⊥,∴90FEB ∠=︒,∴1809090DEF BEG ∠+∠=︒-︒=︒.又∵90EBG BEG ︒∠+∠=,∴DEF EBG ∠=∠.(2)∵EF 平分AED ∠,∴AEF DEF ∠=∠.∵EBG A ∠=∠,DEF EBG ∠=∠,∴A DEF ∠=∠.又∵DEF AEF ∠=∠,∴A AEF ∠=∠,∴//AB EF .【点睛】本题主要考查了平行线的判定,结合角平分线的性质和垂直的性质证明是解题的关键. 23.∠P=25°.【分析】延长ED ,BC 相交于点G .由四边形内角和可求∠G=50°,由三角形外角性质可求∠P 度数.【详解】解:延长ED ,BC 相交于点G .在四边形ABGE 中,∵∠G=360°-(∠A+∠B+∠E )=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG ) =12∠G=12×50°=25°. 【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.24.见解析【分析】根据平行线的判定得出//BC DF ,再根据平行线的性质定理即可得到结论.【详解】证明:∵34∠=∠,∴//BC DF ,∴236180∠+∠+∠=︒,∵56∠=∠,12∠=∠,∴135180∠+∠+∠=︒,∴//CE BF .【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键. 25.HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行【分析】连接EF ,根据垂线定义和平行线的判定与性质可证得34∠=∠,再证明∠DEF=∠EFC ,再根据平行线的性质即可证得结论.【详解】证明:连接EF,FG AC HE AC ⊥⊥,90FGC HEC ︒∴∠=∠=.FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 26.(1)证明见解析;(2)80︒【分析】(1)先根据CD ⊥AB 于D ,FE ⊥AB 得出CD ∥EF ,故可得出∠2=∠DCB ;由∠2=∠DCB ,∠1=∠2得出DG ∥BC ,由此可得出结论;(2)由(1)得B ADG ∠=∠,再证明380ADG ∠=∠=︒,最后由平行线的性质可得结论.【详解】(1)证明:∵CD AB ⊥,FE AB ⊥∴//CD EF∴2BCD ∠=∠.∵12∠=∠,∴1BCD ∠=∠,∴//BC DG(2) 由(1)得B ADG ∠=∠∵AD AG =∴380ADG ∠=∠=︒∵//DG BC∴80ABC ADG ∠=∠=︒【点睛】本题考查的是平行线的判定与性质,用到的知识点为:内错角相等,两直线平行.。

(典型题)初中数学八年级数学上册第七单元《平行线的证明》检测卷(答案解析)

一、选择题1.下列命题,正确的是( ) A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等2.如图,将直尺与30角的三角尺叠放在一起,若270,则1∠的大小是( )A .45︒B .50︒C .55︒D .40︒3.如图,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =105°,则∠DAC 的度数为( )A .80°B .82°C .84°D .86°4.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°5.下列各命题中,属于假命题的是( ) A .若0a b ->,则a b > B .若0a b -=,则0ab ≥ C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠6.若AD ∥BE ,且∠ACB=90°,∠CBE=30°,则∠CAD 的度数为( )A .30°B .40°C .50°D .60°7.在△ABC 中,∠A =80°,∠B =50°,则∠C =( ) A .130°B .50°C .40°D .20°8.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35°9.下列命题中,假命题是( ) A .负数没有平方根 B .两条平行直线被第三条直线所截,同位角相等 C .对顶角相等D .内错角相等10.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒11.如图,现给出下列条件:①1B ∠=∠,②25∠=∠,③34∠=∠,④180BCD D ︒∠+∠=.⑤180B BCD ︒∠+∠=,其中能够得到//AB CD 的条件有( )A .①②④B .①③⑤C .①②⑤D .①②④⑤12.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行; A .1个B .2个C .3个D .4个二、填空题13.如图,在△ABC 中,∠A =50°,BE 平分∠ABC ,CE 平分外角∠ACD ,则∠E 的度数为________.14.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度.15.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.16.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____. 17.如图,已知//DE FG ,则12A ∠+∠-∠=________________18.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直; ②两条直线被第三条直线所截,同旁内角互补; ③数轴上的每一个点都表示一个实数;④如果点()P x,y 的坐标满足xy 0<,那么点 P 一定在第二象限.其中正确命题的序号为 ___.19.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下: 如图1,我们想要证明“如果直线AB ,CD 被直线所截EF ,AB ∥CD ,那么∠EOB=EO D '∠.” 如图2,假设∠EOB≠EO D '∠,过点O 作直线A'B',使EOB '∠=EO D '∠,可得A B ''∥CD .这样过点O 就有两条直线AB ,A B ''都平行于直线CD ,这与基本事实_________矛盾,说明∠EOB≠EO D '∠的假设是不对的,于是有∠EOB=∠EO D '∠.小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.请补充上述证明过程中的基本事实:_________________________20.如图,在ΔABC 中,E 、F 分别是AB 、AC 上的两点,∠1+∠2=235°,则∠A=____度.三、解答题21.完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知://AB EF ,EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD证明://AB EFAPE ∴∠=__________(__________) EP EQ ⊥PEQ ∴∠=_________(___________)即90QEF PEF ∠+∠=︒90APE QEF ∴∠+∠=︒ 90EQC APE ∠+∠=︒ EQC ∠=________//EF ∴_______(__________________) //AB CD ∴(________________) 22.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠; (2)90BCD ADG ∠+∠=︒.25.已知在DEF ∆中,70E F ∠+∠=︒,现将DEF ∆放置在ABC ∆上,使得D ∠的两条边DE ,DF 分别经过点B 、C .(1)如图①所示,若50A ∠=︒,且//BC EF 时,ABC ACB ∠+∠= 度,DBC DCB ∠+∠= 度,ABD ACD +=∠∠ 度;(2)如图②,改变ABC ∆的位置,使得点D 在ABC ∆内,且BC 与EF 不平行时,请探究ABD ACD ∠+∠与A ∠之间存在怎样的数量关系,并验证你的结论;(3)如图③,改变ABC ∆的位置,使得点D 在ABC ∆外,且BC 与EF 不平行时,请探究ABE ∠、ACF ∠、A ∠之间存在怎样的数量关系,请直接写出你的结论.26.补全下面的证明过程和理由:如图,AB 和CD 相交于点O ,//EF AB ,C COA ∠=∠,D BOD ∠=∠.求证:A F ∠=∠证明:C COA ∠=∠,D BOD ∠=∠,又COA BOD ∠=∠(________), C ∴∠=________(________). //AC DF ∴(________).A ∴∠=________(________).//EF AB ,F ∴∠=________(________). A F ∴∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论. 【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意.故选:D.【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.B解析:B【分析】根据平角的定义和平行线的性质即可得到结论.【详解】解:如图:由题意得:∠4=180°−90°−30°=60°,∵AB∥CD,∴∠3=∠2=70°,∴∠1=180°−∠3-∠4=180°−70°−60°=50°.故选:B.【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.3.A解析:A【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【详解】解:∵∠BAC=105°,∴∠2+∠3=75°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=75°,∴∠2=25°.∴∠DAC =105°−25°=80°. 故选A . 【点睛】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键.4.A解析:A 【分析】利用角平分线的定义和三角形内角和定理,余角即可计算. 【详解】由图可知DAE DAC EAC ∠=∠-∠, ∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠,∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠,∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠ ∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠, ∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠, ∴72C ∠=︒. 故选:A . 【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.5.D解析:D 【分析】根据不等式的性质对各选项进行逐一判断即可. 【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0; 故选D . 【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.6.D解析:D 【解析】延长AC 交BE 于F.90,306060ACB CBE AFB AD BECAD AFB ∠=︒∠=︒∴∠=︒∴∠=∠=︒故选D.7.B解析:B 【分析】直接利用三角形内角和定理得到∠C 的度数即可. 【详解】解:∵在△ABC 中,∠A=80°,∠B=50°, ∴∠C=180°-80°-50°=50°, 故选:B . 【点睛】本题考查了三角形内角和定理,正确把握定义是解题的关键.8.C解析:C 【分析】根据平行线的判定定理判断即可. 【详解】解:∵OE 平分∠BOD ,∠BOE=55°, ∴∠BOD=2∠BOE=110°, ∵∠D=110°, ∴∠BOD=∠D ,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.9.D解析:D【分析】根据平方根的概念、平行线的性质、对顶角相等判断即可.【详解】A、负数没有平方根,本选项说法是真命题;B、两条平行直线被第三条直线所截,同位角相等,本选项说法是真命题;C、对顶角相等,本选项说法是真命题;D、两直线平行,内错角相等,本选项说法是假命题;故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.B解析:B【分析】延长DE 交BC 于F ,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求出C ∠的度数.【详解】延长DE 交BC 于F ,如图,∵AB ∥DE ,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.【点睛】此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.11.C解析:C【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】①∵∠1=∠B ,∴AB ∥CD ,故本小题正确;②∵∠2=∠5,∴AB ∥CD ,故本小题正确;③∵∠3=∠4,∴AD ∥BC ,故本小题错误;④∵∠BCD+∠D=180°,∴AD ∥CB ,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB ∥CD ,故本小题正确.综上,正确的有①②⑤.故选:C .【点睛】本题考查了平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b >,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题13.25°【分析】根据角平分线定义得出∠ABC=2∠EBC∠ACD=2∠DCE根据三角形外角性质得出2∠E+∠ABC=∠A+∠ABC求出∠A=2∠E即可求出答案【详解】解:∵BE平分∠ABCCE平分∠A解析:25°【分析】根据角平分线定义得出∠ABC=2∠EBC,∠ACD=2∠DCE,根据三角形外角性质得出2∠E +∠ABC=∠A+∠ABC,求出∠A=2∠E,即可求出答案.【详解】解:∵BE平分∠ABC,CE平分∠ACD,∴∠ABC=2∠EBC,∠ACD=2∠DCE,∵∠ACD=2∠DCE=∠A+∠ABC,∠DCE=∠E+∠EBC,∴2∠DCE=2∠E+2∠EBC,∴2∠E+∠ABC=∠A+∠ABC,∴∠A=2∠E,∵∠A=50°,∴∠E=25°,故答案为:25°.【点睛】本题考查的是三角形外角的性质,三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.14.66【分析】在线段CD上取点E使CE=BD再证明△ADB≅△AEC即可求出【详解】在线段DC取点ECE=BD连接AE∵CE=BD∴BE=CD∵AB=CD∴AB=BE∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD上取点E使CE=BD,再证明△ADB≅△AEC即可求出.【详解】在线段DC取点E,CE=BD,连接AE,∵CE=BD,∴BE=CD,∵AB=CD,∴AB=BE,∠BAE=∠BEA=(180°-48°)÷2=66°,∴∠DAE=48°,∠AED=66°,∴△ADB≅△AEC,∴∠BAD=∠CAE=18°,∴∠CAD=∠DAE+∠CAE=66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.15.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE和BC被AB所截,∠=∠时,AD∥BC(内错角相等,两直线平行).∴当DAB B∠=∠故答案为DAB B【点睛】此题考查平行线的性质,难度不大16.32°【分析】根据三角形的内角和等于180°求出∠A=90°从而得到∠B∠C互余然后用∠C表示出∠B再列方程求解即可【详解】∵∠A=∠B+∠C∠A+∠B+∠C=180°∴∠A=90°∴∠B+∠C=9解析:32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C ,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A 的度数是解题的关键.17.180【分析】根据平行线的性质得到根据平角的性质得到然后根据三角形内角和定理即可求解【详解】∵∴∵又∵∴∴故答案为180【点睛】本题考查了平行线的性质—两直线平行同位角相等三角形的内角和解题过程中注解析:180【分析】根据平行线的性质,得到2AHF ∠=∠,根据平角的性质得到180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒,然后根据三角形内角和定理即可求解.【详解】∵//DE FG∴2AHF ∠=∠∵180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒又∵180AHC ACH A ∠+∠+∠=︒∴180********A ︒-∠+︒-∠+∠=︒∴12180A ∠+∠-∠=︒故答案为180.【点睛】本题考查了平行线的性质—两直线平行同位角相等,三角形的内角和,解题过程中注意等量代换是本题的关键.18.①③【分析】依次分析判断即可得到答案【详解】①在同一平面内过一点有且只有一条直线与已知直线垂直故该项正确;②两条平行线被第三条直线所截同旁内角互补故该项错误;③数轴上的每一个点都表示一个实数故该项正 解析:①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点()P x,y 的坐标满足xy 0<,则x 与y 异号,那么点P 在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.19.经过直线外一点有且只有一条直线与已知直线平行经过直线外一点有且只有一条直线与已知直线平行【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案【详解】解:假设∠EOB≠∠EOD过点O作直线解析:经过直线外一点,有且只有一条直线与已知直线平行,经过直线外一点,有且只有一条直线与已知直线平行.【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案.【详解】解:假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,依据基本事实同位角相等,两直线平行,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实:经过直线外一点,有且只有一条直线与已知直线平行矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.故答案为:经过直线外一点,有且只有一条直线与已知直线平行;经过直线外一点,有且只有一条直线与已知直线平行.【点睛】本题考查了反证法,正确掌握反证法的基本步骤是解题的关键.20.55【分析】根据三角形内角和定理可知要求∠A只要求出∠AEF+∠AFE的度数即可【详解】∵∠1+∠AEF=180°∠2+∠AFE=180°∴∠1+∠AEF+∠2+∠AFE=360°∵∠1+∠2=23解析:55【分析】根据三角形内角和定理可知,要求∠A只要求出∠AEF+∠AFE的度数即可.【详解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°−235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形内角和定理)∴∠A=180°−125°=55°,故答案为:55°【点睛】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A所在的三角形是关键.三、解答题21.∠PEF;两直线平行,内错角相等;90°;垂直的定义;∠QEF;CD;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【分析】根据平行线的性质得到∠APE=∠PEF,根据余角的性质得到∠EQC=∠QEF根据平行线的判定定理即可得到结论.【详解】证明:∵AB∥EF∴∠APE=∠PEF(两直线平行,内错角相等)∵EP⊥EQ∴∠PEQ=90°(垂直的定义)即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∠QEF∴EF∥CD(内错角相等,两直线平行)∴AB∥CD(同一平面内,平行于同一条直线的两条直线互相平行),故答案为:∠PEF;两直线平行,内错角相等;90°;垂直的定义;∠QEF;CD;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.22.(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE与AB相交于点G,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE与AB相交于点G,如图所示:∵CF平分∠DCE,∠DCF=25°,∴∠DCE=50°,∵AB ∥DC ,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE 与AB 、BF 相交于点M 、N ,如图所示:设∠ABF=x ,∠DCF=y ,∵∠EBF=2∠ABF ,CF 平分∠DCE ,∴∠EBF=2x ,∠ABE=3x ,∠FCE=y ,∠DCE=2y ,∵AB ∥DC ,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y ,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x ,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y ,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x ,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠,ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A , 则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键. 25.(1)130;70;60;(2)110ABD ACD A ∠+∠=︒-∠,见解析;(3)110ABE ACF A ∠+∠=︒+∠【分析】(1)根据三角形的内角和即可求出ABC ACB ∠+∠的度数,根据平行线的性质可得到DBC DCB ∠+∠的度数,利用角度的和差关系即可求出ABD ACD ∠+∠的度数;(2)同(1)分别求出ABC ACB ∠+∠,DBC DCB ∠+∠和ABD ACD ∠+∠的度数,故可求解;(3)先求出ABC ACB ∠+∠,DBC DCB ∠+∠,再根据平角的性质即可计算求解.【详解】(1)∵50A ∠=︒,在△ABC 中,ABC ACB ∠+∠=180°-50°=130°,∵//BC EF∴DBC E ∠=∠,DCB F ∠=∠∴DBC DCB ∠+∠=70E F ∠+∠=︒∴ABD ACD +=∠∠(ABC ACB ∠+∠)-()DBC DCB ∠+∠=60°故答案为:130;70;60;(2)由题意,得()180110D E F ∠=︒-∠+∠=︒所以18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴()()18070110ABD ACD ABC ACB DBC DCB A A ∠+∠=∠+∠-∠+∠=︒-∠-︒=︒-∠即110ABD ACD A ∠+∠=︒-∠(3)由题意,得()180110D E F ∠=︒-∠+∠=︒∴18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴360ABE ACF ∠+∠=︒-(DBC DCB ∠+∠)-(ABC ACB ∠+∠)=110A ︒+∠ 即110ABE ACF A ∠+∠=︒+∠.【点睛】此题主要考查三角形的内角和及平行线的性质,解题的关键是熟知三角形的内角和为180°.26.对顶角相等;D ∠,等量代换;内错角相等,两直线平行;ABD ∠,两直线平行,内错角相等;ABD ∠,两直线平行,同位角相等.【分析】证出∠C=∠D ,得出AC ∥DF ,由平行线的性质得出∠A=∠ABD ,∠F=∠ABD ,即可得出结论.【详解】证明:C COA ∠=∠,D BOD ∠=∠,又COA BOD ∠=∠(对顶角相等), C D ∴∠=∠(等量代换).//AC DF ∴(内错角相等,两直线平行).A ABD ∴∠=∠(两直线平行,内错角相等).//EF AB ,F ABD ∴∠=∠(两直线平行,内错角相等).A F ∴∠=∠.故答案为:对顶角相等;D ∠,等量代换;内错角相等,两直线平行;ABD ∠,两直线平行,内错角相等;ABD ∠,两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章平行线的证明检测题
(本检测题满分:100分,时间:90分钟)
一、选择题(每小题3分,共30分)
1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;
③相等的角是对顶角;④同位角相等.其中错误的有()
A.1个B.2个C.3个D.4个
2.点P是直线l外一点,,A为垂足,且PA=4 cm,则点P到直线l的距离()
A.小于4 cm B.等于4 cm C.大于4 cm D.不确定
3.如图,点在的延长线上,下列条件中不能判定AB∥CD的是()
A.∠1=∠2 B.∠3=∠4
C.∠5=∠D.∠+∠BDC=180°

第3题图第4题图第5题图
4.如图,a∥b,∠3=108°,则∠1的度数是()
A.72°B.80°C.82°D.108°
5.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()
A.3对B.4对C.5对D.6对
6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()
A.1个B.2个C.3个D.4个第6题图
7.(2013?安徽中考)如图,AB∥CD,∠A+∠E=75°,则∠C为()
A.60°B.65°C.75°D.80°

相关文档
最新文档