平行线经典习题

合集下载

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。

平行线的判定专项练习题有答案

平行线的判定专项练习题有答案

平行线的判定专项练习题有答案Last revised by LE LE in 20211.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗为什么14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行为什么19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗为什么22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF 平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,D E⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗为什么45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN 平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC 上,EF⊥AB,垂足为F.(1)CD与EF平行吗为什么(2)如果∠1=∠2,DG∥BC吗为什么51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗(2)AB∥CD吗为什么56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗AB与CD呢若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行。

四年级认识平行线练习题及答案

四年级认识平行线练习题及答案

四年级认识平行线练习题及答案
一、我会填。

1、在同一个平面内不相交的两条直线的位置关系是( )。

2、长方形的每组对边互相( ),每组邻边互相( )。

3、教室中黑板的长边和短边互相( )。

4、数学书中的两条长边互相( )。

5、五线谱的五条横线互相( )。

二、判断。

1、 不相交的两条直线叫做平行线。

( )
2、长方形相对的两条边是一组平行线。

( )
3、
中两条线没有相交,就可以看作一组平行线。



4、互相平行的两条直线,无论怎样延长都不会相交。

( ) 三、是平行线的在( )里画“√”。

( ) ( ) ( ) ( ) ( ) ( )
四、
互相平行的有:( ) 互相垂直的有:( )
b c d e f g a
答案:
一、1、平行2、平行垂直3、垂直4、平行5、平行
二、 1.× 2. √ 3. √
三、
四、 d 和e c和f c和a f和a。

平行线培优练习题及中考真题

平行线培优练习题及中考真题

相交线与平行线一、选择题1. (2011山东德州4,3分)如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于 (A )55° (B ) 60° (C )65° (D ) 70°【答案】C2. (2011山东日照,3,3分)如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为( ) (A )70° (B )80° (C )90° (D )100°【答案】B3. (2011山东泰安,8 ,3分)如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=200,则∠α的度数为( )A.250B.300C.200D.350 【答案】A4. (2011四川南充市,3,3分) 如图,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( )(A )∠C=60° (B )∠DAB=60° (C )∠EAC=60° (D )∠BAC=60°EDCBAl 1l 2123【答案】B5. (2011山东枣庄,2,3分)如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70° 【答案】A6. (2010湖北孝感,3,3分)如图,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT=( ) A.30° B.45° C. 60° D. 120°【答案】C7. (2011河北,2,2分)如图1∠1+∠2=( )1图1A .60°B .90°C .110°D .180° 【答案】B8. (2011宁波市,8,3分)如图所示,AB ∥CD ,∠E =37°, ∠C =20°, ∠EAB 的度数为 A . 57° B . 60° C . 63° D. 123°【答案】A9. (2011浙江衢州,12,4分)如图,直尺一边AB 与量角器的零刻度线CD 平行,若量角器的一条刻度线OF 的读书为70°,OF 与AB 交于点E ,那么AEF ∠= 度.A CB D E【答案】7010.(2011浙江绍兴,3,4分)如图,已知//,,34AB CD BC ABE C BED ∠∠=︒∠平分,则 的度数是( )A.17︒B. 34︒C. 56︒D. 68︒AD【答案】D11. (2011浙江义乌,8,3分)如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E 等于A. 60°B. 25°C. 35°D. 45° 【答案】C12. (2011四川重庆,4,4分)如图,AB ∥CD ,∠C =80°,∠CAD =60°,则∠BAD 的度数等于( )A .60°B .50°C . 45°D . 40° 【答案】D13. (2011浙江丽水,5,3分)如图,有一块含有45°角的直角三角板的两个顶点放在直尺ABCDE60°的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15° 【答案】B14. (2011台湾台北,8)图(二)中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角。

初中数学 平行线-练习题

初中数学 平行线-练习题

初中数学平行线-练习题1. 已知折线ABCD中,AB与CD是平行线,∠ABC = 70°,∠BDA = 110°,求∠BCD的度数。

解析:根据题意,AB与CD是平行线,因此∠ABC与∠BCD 是同旁内角。

根据同旁内角的性质,我们知道∠ABC与∠BCD的度数应该相等。

所以,∠BCD的度数为70°。

2. 如图,在平行四边形ABCD中,AB与AE的延长线交于点F,以点F为顶点作三角形AFE,求证:∠AFE = ∠CDA。

解析:我们需要证明∠AFE与∠CDA相等。

根据题意,AB与CD是平行线,所以∠DAF与∠CDA是同旁外角。

又因为AE与CD是平行线,所以∠DAF与∠AFE是同旁内角。

根据同旁内角与同旁外角的性质,我们知道∠DAF与∠CDA 相等,∠DAF与∠AFE相等。

所以,∠AFE = ∠CDA。

3. 如图,AB与CD是平行线,AD是射线,∠ADE = 40°,∠BAF = 90°,求证:∠BCA = 90° + ∠CDE。

解析:我们需要证明∠BCA与∠CDE的和等于90°。

根据题意,AB与CD是平行线,所以∠CDE与∠BCA是同旁内角。

又因为AD是射线,所以∠ADE与∠BAF是同旁外角。

根据同旁内角与同旁外角的性质,我们知道∠ADE与∠CDE 的和等于180°,∠ADE与∠BAF的和等于180°。

所以,∠BCA = 180° - ∠ADE = 180° - 40° = 140°。

又因为∠BAF是直角,所以∠BAF的度数为90°。

所以,∠BCA + ∠CDE = 140° + 90° = 230°。

所以,∠BCA = ∠CDE + 90°。

证毕。

4. 如图,平行四边形ABCD中,AB与CF相交于点E,互补角∠ECD、∠ABE的度数之和为180°,求证:CF与DE平行。

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。

平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。

本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。

练习题一:判断下列直线是否平行。

1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。

2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。

3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。

练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。

若AE = 4,求FG的值。

答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。

设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。

根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。

平行线的判定习题精选答案

平行线的判定习题精选答案

平行线的判定习题精选答案平行线的判定一直是初中数学中比较重要的一个知识点,很多同学在学习初中数学时都遇到过此类问题。

那么,如何正确地判定平行线呢?本文将为大家精选几个典型习题并给出详细的答案解析。

一、题目:如图所示,已知直线AB和直线CD,若∠BAC = ∠CDA,证明AB || CD。

首先,我们需要根据题目所给条件判断角度关系。

根据题目可知,∠BAC = ∠CDA,两个角度互相等于,因此可以判断出它们是同位角,即它们是AB和CD两条直线的交点处的相邻内角。

接下来,我们需要利用同位角性质来判断直线的平行关系。

同位角平行线定理表明,若两条平行直线被一条横截线所截,那么它们与这条横截线呈同位角。

在题目中,直线AB和CD被交点A、D连接在一起,即它们之间存在着一条横截线AD。

根据同位角平行线定理,我们可以得出结论:∠BAC = ∠CDA 是AB和CD被AD所截的同位角,因此AB || CD。

由此,我们可以得出本题的证明过程如下:(1)设交点为E。

(2)根据题目可知∠BAC = ∠CDA,即AB和CD被同一条横截线AD所截的同位角。

(3)根据同位角平行线定理,AB || CD。

二、题目:如图,矩形ABCD中,E、F分别是BC、CD的中点,连接AE、BF,交于点G。

证明:AG || DF。

这道题的难点在于如何利用矩形的性质进行判定。

首先,我们需要明确几个结论:(1)在矩形中,对角线相等。

(2)在矩形中,相邻角互补,即一个角是90度,则它对面的角也是90度。

(3)在矩形中,对边平行。

根据这些基本结论,我们可以推出:在矩形ABCD中,AD和BC是对边,因此它们是平行的;同时,角BAD和角ABC互补,角ABD和角ACB互补,因此它们也是平行的。

接下来,我们需要利用这些结论来证明AG || DF。

首先,连接AG和DF,连接BE和AC。

因为E、F分别是BC、CD的中点,所以BE || AD。

又因为角BAD和角ABC是平行的,所以BE和AD也是平行的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. 如图.已知0是直线AB上一点,∠1=50°,0D平分∠BOC,
则∠2的度数是( ).
(A)25° (B)50° (C)65° (D)70°
6.如图.直线a∥b,∠l=70°,那么∠2的度数是( ).
(A)50° (B)60° (C)70° (D)80°
11.若∠l和∠2是对顶角,∠1=25°,则∠2的度数是度.
13.如图,木工师傅用角尺画出工件边缘的两条垂线就可以在工件上找出两条平行线a∥b.木工师傅这样画平行线的方法所依据
教材中的判定方法是.
18.如图,已知CE∥DF,∠ABF=100°,∠CAB=20°,则∠ACE的度
数为度.
24.(本题8分)
完成推理填空:
如图,已知∠l=∠2,∠BAC=70°,∠AGD=110°.将证明EF∥AD的过程填写完整
证明:∵∠BAC=70°, ∠ACD=110°
∴∠BAC+∠AGD=180°
∴∥ ( )
∴∠1= ( )
又∵∠l=∠2.
∴∠2=∠3.
∴EF∥AD( )
26.(本题l0分)
三角形ABC沿直线BC方向平移至三角形DEF的位置,G是DE上一点,连接AG,过点A、D作直线MN.
(1)如图1,求证∠AGE=∠GAD+∠ABC;
(2)如图2,∠EDF=∠DAG , ∠CAG+∠CEG=180°,判断AG 与DE 的位置关系, 并证明你的结论.
5.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是 ( ) A .∠1=∠2 B .∠3=∠4 C .∠5=∠B D .∠B +∠BDC =180°
8.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于 ( ) A.25° B.45° C.75° D.65°
10.下列说法正确的个数是 ( ) ①同位角相等; ②过一点有且只有一条直线与已知直线垂直; ③过一点有且只有一条直线与已知直线平行; ④直线外一点到这条直线的垂线段的长度叫做点到直
线的距离;
⑤若a ∥b ,b ∥c ,则a ∥c.
A.1个
B.2个
C.3个
D.4个 14.如图,已知AB ∥CD ,∠1=60°,则∠2= 度.
18.如图所示,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为 .
19.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是 .
25.(本题6分)完成下面的证明,并在括号里填上根据. 如图,∠1+∠3=180°,∠CDE+∠B=180°,求证:∠A=∠4.
证明:∵∠1=∠2( )
又∵∠1+∠3=180°,
∴∠2+∠3=180°,
(第26题图)
(第8题图)
1
2
A B
C
(第14题图)
(第18题图)
∴∥()
∴∠CDE+=180°
又∠CDE+∠B=180°,
∴∠B=∠C
∴AB∥CD()
∴∠A=∠4()
得分 26.(本题5分)
如图EF∥AD,∠1=∠2,试猜想∠BAC与∠CGD有怎样的大小关系,并说明理由.
6.如图,下列条件中能判定AB∥CD的是( ) .
(A)∠AEC=∠BFD (B)∠CEF=∠BFE
(C)∠AEF+∠CFE=180° (D)∠C =∠B FD
14.如图,直线AB、CD相交于点O,OE⊥AB,∠EOC=o
28,则∠AOD=__________度.
15.把命题“对顶角相等”写成“如果……,那么…….”的形式:
.
20.如图,直线AB∥CD,点E、F分别为直线AB和CD上的点,点P为两条平行线间的一点,连接PE和PF,过点
P作∠EPF的平分线交直线CD于点G,过点F作FH⊥PG,垂足为H,若∠BEP=10°,则∠CGP-∠PFH=度.
23.(本题8分)
完成下面推理过程,并在括号内填上推理依据.
如图,∠BAE+∠AED=180°,∠M=∠N,试说明:∠1=∠2.
解:∵∠BAE+∠AED=180°(已知)
∴ AB ∥()
∴∠BAE= ∠AEC ()
又∵∠M=∠N(已知)
∴∥()
∴∠NAE= ∠AEM ()
∴∠BAE-∠NAE=∠AEC - ∠AEM()
即∠1=∠2
25.(本题10分)
在四边形ABCD中,AD∥BC,AE平分∠BAD交BC于点E,点F是AB上的一点,连接DF,交AE于点H,
∠FDC+1
2
∠ABC=90°,过点D作DG∥AE交BC延长线于点G.
(1)如图1,求证:∠FDC=∠BGD A
B
C D
E
(第6题图)
14题图
28°
O
E
A B
D
C
(第14题图 )
H
F D
C P
A B
(第20题图)
(第23题图)
(2)如图2,延长DF 和CB ,交于点K ,若DK⊥AE,在不添加任何辅助线的情况下,请直接写出与∠CDG 相等的所有角
8.在下列命题中,①两条直线平行,内错角相等.②相等的角是对顶角.③等角的余角相等.④在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.其中正确命
题的个数是( )
A.1
B.2
C.3
D. 4 9.如图,AD ∥BC,∠C =30°,∠ADB ∶∠BDC =1∶2, 则∠DBC 的度数是( )
A 45°
B 30°
C 50°
D 36°
10.如图,直线EF 分别交CD 、AB 于M 、N ,且∠EMD=65°,
∠MNB=115°,则下列结论正确的是( )
A.∠A=∠C
B.∠E=∠F
C.AE ∥FC
D.AB ∥DC 20.如图AD ∥BC ,∠A=30°,∠D=70°,做射线CE ∥AB , 则∠DCE= .
24.(8分)请把以下证明过程补充完整,并在下面的括号内填上推理理由: 已知:如图,∠1=∠2,∠A =∠D. 求证:∠B =∠C 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,( ) ∴∠2=_______,(等量代换)
∴AE ∥FD( ) ∴∠A =∠BFD( ) ∵∠A =∠D (已知)
∴∠D=_______(等量代换)
∴_______∥CD( ) ∴∠B =∠C( )
27.10分)在同一平面内,三条直线两两分别相交于点A 、B 、C 三点,点E 是直线BC 上一动点(点E 不与点B 、C 重合),过点E 分别作直线AB 、AC 的平行线,分别交直线AC 、AB 于点F 、D. (1)如图1,当点E 在B 、C 两点之间时,求证:∠DEF=∠BAC ;
(2)如图2,当点E 在线段BC 延长线时,试判断∠DEF 与∠BAC 的数量关系; (3)如图3,点E 在线段CB 延长线时,∠BEF 的平分线交直线AB 于G ,过点E 作EG 的垂线.交直线AB 于M ,点N 在FE 延长线上;若∠ABC=80°,∠DEM ∶∠BED =2∶3, 求∠BAC 的度数.
C
B
F
H
D
A
G
E (第25题图1)
C
B K
F
H
D
E G
A
(第25题图2)
图1
图3
图2。

相关文档
最新文档