氮掺杂石墨烯的简易制备及其超级电容性能_英文_
表面活性剂软模板制备石墨烯/镍-铝层状双氢氧化物复合材料及其超级电容性能

Ab s t r a c t : A w e l l — r e d u c e d g r a p h e n e wa s ma d e f r o m g r a p h i t e o x i d e u s i n g mi c r o w a v e i r r a d i a t i o n a n d t h e r ma l a n n e a l i n g
度 达到 l 2 . 9 6 Wh / k g 。 所 制备 的石 墨烯 /镍 铝层状 双金 属 氢氧 化物 复合 材料 提供 了高的 比 电容 、 充-
放 电循 环 稳 定性和 能 量 密度 。
关键词: 软模板 ; 表面活性剂; 石墨烯 ; 镍铝层状双金属氢氧化物; 超级电容器 中 图分 类 号 : O 6 1 4 . 8 1 2; 0 6 1 4 . 8 1 3 文 献标 志码 : A 文 章编 号 : 1 6 7 1—7 1 4 7 ( 2 0 1 3 ) 0 6—0 7 2 5—0 7 S y n t h e s i s o f Gr a p h e n e / Ni c k e l - Al u mi n i u m La y e r e d Do u b l e - Hy d r o x i d e Co mp o s i t e s Us i n g S u r f a c t a n t a s a S o f t Te mp l a t e a n d
石墨烯聚苯胺复合材料的制备及其电化学性能

石墨烯聚苯胺复合材料的制备及其电化学性能一、本文概述本文旨在探讨石墨烯聚苯胺复合材料的制备工艺及其电化学性能。
石墨烯,作为一种二维的碳纳米材料,因其出色的电导性、高比表面积和良好的化学稳定性,在电化学领域具有广泛的应用前景。
聚苯胺,作为一种导电聚合物,具有良好的电化学活性和环境稳定性。
将石墨烯与聚苯胺复合,可以充分发挥两者的优势,提高复合材料的电化学性能。
本文将首先介绍石墨烯和聚苯胺的基本性质,然后详细阐述石墨烯聚苯胺复合材料的制备方法,包括溶液混合法、原位聚合法等。
随后,通过对制备的复合材料进行结构表征和电化学性能测试,分析其电化学性能的影响因素及优化条件。
本文还将讨论石墨烯聚苯胺复合材料在超级电容器、锂离子电池等电化学器件中的应用潜力,并展望其未来的发展前景。
通过本文的研究,旨在为石墨烯聚苯胺复合材料的制备和应用提供理论支持和实践指导,推动其在电化学领域的广泛应用。
二、石墨烯聚苯胺复合材料的制备方法石墨烯聚苯胺复合材料的制备是一个融合了化学合成和纳米材料制备技术的复杂过程。
这种方法的关键步骤包括石墨烯的制备、聚苯胺的合成以及两者的复合。
我们需要制备高质量的石墨烯。
这通常通过化学气相沉积(CVD)法、氧化还原法或剥离法实现。
其中,氧化还原法是最常用的一种方法,它通过将天然石墨与强氧化剂反应,生成氧化石墨,再经过热还原或化学还原得到石墨烯。
接下来,我们合成聚苯胺。
聚苯胺的合成通常通过化学氧化聚合法进行,如使用过硫酸铵作为氧化剂,在酸性条件下将苯胺单体氧化聚合,生成聚苯胺。
制备石墨烯聚苯胺复合材料的核心步骤是将石墨烯和聚苯胺进行有效复合。
这可以通过溶液混合法、原位聚合法或熔融共混法实现。
其中,溶液混合法是最常用的一种方法。
将石墨烯分散在适当的溶剂中,然后加入聚苯胺溶液,通过搅拌或超声处理使两者充分混合。
随后,通过蒸发溶剂或热处理使复合材料固化。
为了进一步提高复合材料的性能,我们还可以在制备过程中引入其他添加剂或进行后处理。
石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。
它是现代科学技术的重要内容,也是未来技术的主流。
是基础研究与应用探索紧密联系的新兴高尖端科学技术。
石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。
由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。
综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。
关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。
研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。
石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。
通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。
通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。
采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。
研究表明PS微球通过公家方式连接到石墨烯的表面。
通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。
制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。
本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。
超级电容器及其电极材料的研究

第5期2018年10月No.5 October,2018随着人类对友好型社会的美好向往,大家逐渐开始重视可再生能源,然而可再生能源不适合电能输送,因其不稳定、不连续性会影响输电质量。
因此我们需要开发良好的储能装置。
超级电容器凭借它具有的诸多良好性质而被关注。
不同电极材料影响着超级电容器的性能,因此我们应注重电极材料的研究。
超级电容器是介于电池和传统电容器之间通过极化电解质储能的电源[1]。
其充电速度快、放电能力超强、循环使用时间长,而且其功率密度极高。
目前研究的主要有法拉第准电容(赝电容)和双电层电容器两种类型。
1 赝电容赝电容是电活性物质处于潜在沉积下,在电极上发生可逆的化学吸附、解吸或氧化还原反应,产生电极的充电电位[2]。
赝电容的电极材料有以下几种。
1.1 金属氧化物氧化钌材料的比电容较大、导电性能极好,但其价格较为昂贵,并不能广泛应用;氧化锰价格低廉、对环境友好、性能良好,价态较多容易获得且价格低廉,因此被广泛使用;氧化镍导电性能好、易获取、制备简单,也很有发展前景。
1.2 复合金属氧化物钼酸盐因其催化和电化学性能的优异性而被研究作为电极材料,有实验小组研究了COMOO 4/MnMOO 4异质结构纳米材料的超电容性,结果发现,COMOO 4纳米棒活性电极电化学性能优异;有文献报道了用NiCO 2O 4作为赝电容的电极材料,其常用的制备方法有水热法(溶剂热法)、微波辅助法、模板法、电沉积法、共沉淀法等;据报道,CuCO 2S 4成功用熔剂法合成,结果显示制得的花瓣状的CuCO 2S 4材料具有较高的比电容、充放电速率很优良、循环性也很稳定,因其特殊的3D 结构,导电率较高、比表面积较大而体现出优异的赝电容性能。
1.3 导电聚合物导电聚合物是利用掺杂原理使材料电导率处于半导体和导体范围间,其主链上含有交替的单键与双键,形成共轭大π体系,因π电子流动而能导电[3]。
其可使用的温度范围宽、其寿命长。
石墨电极的电化学改性及其电学性能

解 液 为 1 m o l L 1的硝酸钠溶液。文中的全部电势值
均相对于汞-氯化汞电极,1(1解池示意图如2 所示。
对石墨电极样品分别进行2.0、2.5、3.0、3.1、3.2 V
的恒电位处理,实验过程中观察石墨表面是否有脱
落现象将制得的石墨电极样品同样置于上述的二.
电极电解池中,将 电 解 液 换 为 1 mol. 的硫酸溶
图 1 石墨烯电极样品图
Fig.l Sample diagram of graphite electrode
2
) 柯 电 位 处 理 石 墨 电 极 :将 制 得 的 石 墨 电 极 样
品 ,放 人 CH丨660E 电化学工作站的二.电极电解池
中电解池中丨'.作电极为制备的1 cm2石墨电极,
参 比 电 极 为 汞 -氯 化 汞 电 极 片 ,辅 助 电 极 为 铂 片 ,电
上规则排列,导电网络结构完整、导 电 高 效 通 常
石墨的电阻率为0.335 I l .rm,制备的导电薄膜的电阻
率分别为0.330
和0.246 fi rm。随着电化学处
理的进行,会剥离下来越来越多的石墨烯片层,所制
备的两个导电薄膜的电肌率减小,分别减小为石墨的 98.5%和7 3 . 4 % 采用的超声剥离工艺会使得石墨烯 片 层 进 一 步 减 少 ,同 时 也 产 生 了 更 多 的 缺 陷 ,缺陷 的增加会大大影响材料的导电性能:
(Zhongyuan University of Technology, Zhengzhou 450007, China)
Abstract: In order to further explore the electrical properties of graphene, the constant potential electrochemical modification method was used to modify graphite with different potentials, and then modified graphite was characterized by cyclic voltammetry test, constant current charging and discharging. Their electrical properties of modified graphite at different potentials were compared. The test results showed that after the graphite electrode was treated under the constant voltage of 3.1 V, voltage range of -0.3-0.3 V, 0.49 mA anode current and 0.49 mA cathode current, the measured mass ratio capacitance reached 18.845 F g m e e t i n g the energy storage requirements of the battery industry. Key words: Graphene electrode; Capacitive performance; Super capacitor; Electrochemical stripping method
MnO_(2)MWCNTsGOPANI复合电极材料的制备及其电化学性能的研究

第37卷第3期 齐 齐 哈 尔 大 学 学 报(自然科学版) Vol.37,No.3 2021年5月 Journal of Qiqihar University(Natural Science Edition) May,2021MnO2/MWCNTs/GO/PANI复合电极材料的制备及其电化学性能的研究戚杨,江姗姗,杨铁金*(齐齐哈尔大学 化学与化学工程学院,黑龙江 齐齐哈尔 161000)摘要:采用改进的Hummers法制备氧化石墨烯,并通过原位聚合法将二氧化锰修饰的聚苯胺嫁接到多壁碳纳米管作载体的氧化石墨烯上,制备出新型复合电极材料。
使用X射线光电子能谱,扫描电镜及电化学工作站对复合电极材料的形貌、结构进行了研究,通过循环伏安、交流阻抗、循环稳定性测试,表征出复合电极材料的电化学性能,并与未掺杂石墨烯的MnO2/PANI/MWCNTs电极材料进行了对比。
结果表明,引入石墨烯的电极材料的比电容有较大的提升,达到了1365F‧g-1。
关键词:石墨烯;超级电容器;原位聚合;二氧化锰;聚苯胺中图分类号:TB33 文献标志码:A 文章编号:1007-984X(2021)03-0035-05近年来,随着新能源技术的不断发展,电能作为一种清洁能源在逐步替代传统的化石能源,生产生活中对高性能储能器件的需求日益增加,而储能技术的研发和创新就成了新能源技术发展的重中之重,因此,超级电容器作为一种高性能的新型储能器件愈发受到重视并受到广泛的研究。
超级电容器(supercapacitor),又名电化学电容器(electrochemical capacitor),是一种介于传统电容器与电池之间的电源,兼具两者的优点[1]。
与传统电容器相比,超级电容器具有更高的能量密度;与传统电池相比,超级电容器具有更高的功率密度、充放电性能和循环稳定性。
并且超级电容器的工作温度范围更广,可以在更极端的环境中使用[2]。
因此,超级电容器在工业控制、电力、交通运输、智能仪表、国防、通信、新能源等众多领域有着巨大的应用价值和市场潜力[3-4]。
超级电容器炭电极材料的研究
超级电容器炭电极材料的研究一、本文概述随着全球能源需求的持续增长以及环境问题的日益严重,高效、环保的能源存储技术成为了科学研究的热点。
超级电容器作为一种介于传统电容器和电池之间的新型储能器件,因其高功率密度、快速充放电性能以及长循环寿命等优点,在电动汽车、智能电网、便携式电子设备等领域具有广泛的应用前景。
炭电极材料作为超级电容器的核心组成部分,其性能直接决定了超级电容器的电化学性能。
因此,研究高性能的炭电极材料对于推动超级电容器技术的发展具有重要意义。
本文旨在探讨超级电容器炭电极材料的研究现状、发展趋势以及未来挑战。
我们将对超级电容器的基本原理和炭电极材料的分类进行简要介绍。
随后,重点分析不同类型炭电极材料的制备工艺、结构特征以及电化学性能,并对比其优缺点。
我们还将讨论炭电极材料在超级电容器应用中的实际问题,如循环稳定性、能量密度和功率密度等。
结合当前的研究热点和技术难点,展望超级电容器炭电极材料未来的发展方向,以期为相关领域的研究提供有益的参考和启示。
二、超级电容器炭电极材料概述超级电容器,作为一种介于传统电容器和电池之间的新型储能器件,因其具有高功率密度、快速充放电、长循环寿命以及宽广的工作温度范围等优点,受到了广泛的关注和研究。
而炭材料,因其优异的导电性、高比表面积、良好的化学稳定性以及低廉的成本,成为了超级电容器电极材料的理想选择。
炭电极材料主要包括活性炭、碳纳米管、石墨烯等。
活性炭是最早被用于超级电容器的炭材料,其具有高比表面积和良好的孔结构,可以提供大量的电荷存储位置。
碳纳米管因其独特的一维结构和优异的电子传输性能,成为了超级电容器电极材料的研究热点。
石墨烯,作为一种新兴的二维纳米材料,因其超高的比表面积、良好的导电性和化学稳定性,被认为是超级电容器炭电极材料的未来之星。
在超级电容器炭电极材料的研究中,如何提高其比表面积、优化孔结构、改善导电性能以及提高电化学稳定性是研究的重点。
通过物理或化学活化方法,可以增大活性炭的比表面积并改善其孔结构,从而提高其电荷存储能力。
碳基超级电容器的制备及其性能研究
碳基超级电容器的制备及其性能研究超级电容器是一种新型的电能储存设备,具有能量密度高、功率密度大、充放电快等特点。
其中,碳基超级电容器作为一种主流的超级电容器,具备安全性高、环境友好、稳定性强等优势。
制备碳基超级电容器的主要步骤包括选材、材料表面处理、电极制备、装配等。
其中,选材是制备碳基超级电容器中最重要的一步。
常见的电极材料包括活性炭、石墨、石墨烯等。
活性炭因其比表面积大、孔径分布均匀等特征受到广泛应用。
但制备过程中易出现结构疏松等问题,降低其储能效率。
石墨烯则因其单层结构和高导电性能受到重视,但制备工艺复杂,成本较高。
在材料表面处理中,通常采用物理氧化、化学处理等方法,使得材料表面微观结构更加均匀,增强材料的储能效率和稳定性。
电极制备中,通常采用混合(mixing)、涂覆、压制等方法,将电极材料与导电添加剂混合或涂覆于导电收集体上。
根据材料的形态和性质,制备不同形式的电极。
在装配中,电极片与电解质层层叠加、固定成电容器的正、负极板,通常采用双层对称结构或者金属电极氧化形式。
超级电容器的性能主要受材料、结构、电解质和制备工艺等方面的影响。
常见的影响因素包括电极表面形貌、导电添加剂、硫酸盐电解质浓度、纳米孔径等。
同时,超级电容器的性能评价指标主要包括比电容、电压范围、循环寿命、能量密度和功率密度等。
其综合性能需要在各方面指标的优化中获得全面提升。
在应用方面,碳基超级电容器广泛应用于能量储存、智能电网等领域。
其高功率密度和短充电时间使得其成为航天、交通等领域的理想能量储存设备。
同时,超级电容器在智能电网、微电网等领域的应用也逐渐增多,对提高电网的稳定性和可靠性起到了重要作用。
总的来说,碳基超级电容器的制备涉及多个方面的技术,需要在材料、制备工艺等方面进行深入研究,以提高其性能并拓宽应用领域。
石墨烯纳米复合材料的制备及其应用研究
石墨烯纳米复合材料的制备及其应用研究摘要:石墨烯是一种新兴的二维碳纳米材料,具有完美的晶体结构和出色的物理和化学性能。
石墨烯独特的电、热、光学和机械性能,在电子、导热材料、气体传感器、光敏元件和环境科学中具有广泛的潜在应用。
由于其潜在的实际应用价值。
本文概述了石墨烯制备的方法,介绍了石墨烯电极材料、环境吸附材料领域的应用。
并进一步对石墨烯及其纳米复合材料的发展前景做出了分析。
关键词:石墨烯;纳米复合材料;制备石墨烯是纳米复合材料研究中相对重要的材料。
纳米石墨烯复合材料具有更高的制备要求。
目的是生产可用于生物、机械和其他生产领域的高质量、高性能材料,发挥纳米石墨烯复合材料的适用性。
目前,就石墨烯复合材料的制备而言,纳米复合材料的制备是主要的发展趋势。
在当今的各个领域,纳米石墨烯复合材料具有非常明显的优势,并具有良好的发展前景。
因此,纳米石墨烯复合材料的制备和应用也受到越来越多的关注。
一、石墨烯复合材料的制备(一)熔融共混法制备通过熔融共混法制备纳米石墨烯复合材料,实际上是借助高温和高剪切力,将石墨烯或氧化石墨烯分散在聚合物基质中。
由于在使用该方法的纳米石墨烯复合材料的制造过程中不需要溶剂,因此非常适用于极性和非极性聚合物。
研究表明,在以单层或多层形式均匀分布的PET(石墨烯)基质中,基质中可能会出现卷曲和皱褶。
以栅格的形式,大大提高了复合材料的导电性。
当PET基体的石墨烯含量达到3vol%时,复合材料的最大电导率可以达到2.11S/m,这与目前电磁屏蔽领域对石墨烯复合材料的需求一致。
通过这种制造方法,一些专家和学者已经制成了高导电复合材料,例如分离的石墨烯-多壁纳米管/超高分子量聚乙烯,它们的导电率非常高,并且其导电渗透率低,仅为0.039vot%[1]。
(二)溶液混合法制备通过溶液混合法制备纳米石墨烯复合材料,实际上是指在溶剂的作用下,将聚合物分子插入GO片材后,通过还原制备纳米石墨烯复合材料。
活性石墨烯_活性炭干法复合电极片制备及其在超级电容器中的应用_郑超
第5卷第4期2016年7月 储 能 科 学 与 技 术 Energy Storage Science and Technology V ol.5 No.4Jul. 2016研究开发活性石墨烯/活性炭干法复合电极片制备及其在超级电容器中的应用郑 超1,周旭峰2,刘兆平2,杨 斌1,焦旺春1,傅冠生1,阮殿波1(1宁波中车新能源科技有限公司超级电容研究所,浙江 宁波 315112;2中国科学院宁波材料技术与工程研究所,浙江 宁波 315201)摘 要:采用干法电极制备工艺成功制备了活性石墨烯/活性炭复合电极片,分别用扣式电容器和软包电容器考察活性石墨烯/活性炭复合电极的电化学性能。
综合结果表明,复合电极中活性石墨烯的含量为10%(质量分数)较为合适,相较于纯活性炭电极,比容量提高了10.8%。
本工作验证了活性石墨烯材料在商用超级电容器中的适用性,证实了活性石墨烯是一种非常具有实际应用价值的电极材料。
但目前,活性石墨烯并未真正产业化,其成本远高于商用活性炭。
在未来,如何解决活性石墨烯工程制备技术难题和降低成本是材料产业界亟待解决的难题。
关键词:活性石墨烯;活性炭;干法电极制备工艺;超级电容器 doi: 10.12028/j.issn.2095-4239.2016.04.012中图分类号:TK 53 文献标志码:A 文章编号:2095-4239(2016)04-486-06Preparation of activated graphene/activated carbon dry compositeelectrode and its application in supercapacitorsZHENG Chao 1, ZHOU Xufeng 2, LIU Zhaoping 2, YANG Bin 1, JIAO Wangchun 1, FU Guansheng 1, RUAN Dianbo 1(1Ningbo CRRC New Energy Technology Co., Ltd, Institute of Supercapacitors, Ningbo 315112, Zhejiang, China; 2Ningbo Instituteof Industrial Technology, CAS, Ningbo 315201, Zhejiang, China)Abstract: Activated graphene/activated carbon composite electrodes were successfully prepared by a dry method. The electrochemical performance of activated graphene/activated carbon electrodes was investigated using coin cell supercapacitor and soft package supercapacitor, respectively. Comprehensive results show that the approprite content of activated graphene in the composite is 10% (weight ratio). Compared to the activated carbon electrode, the specific capacitance of 10% activated graphene/90% activated carbon composite electrode increases by 10.8%. This work verified the applicability of activated graphene material in the commercial supercapacitor, and confirmed that the activated graphene is a kind of electrode material with practical application value. But by now, the activated graphene has not really industrialization, its cost is much higher than that of commercial activated carbon. In the future, how to solve the engineering technical problem of activated graphene and reduce its cost are critical.Key words: activated graphene; activated carbon; dry method of electrode preparation; supercapacitors超级电容器是一种纯物理储能器件,具有极高的安全性、百万次循环寿命、环境友好、能量转换效率极高的优点,是替代蓄电池的有力选择[1-4]。