碳纳米管纳米器件的研究和开发

合集下载

纳米科技论文

纳米科技论文

碳纳米管性质及其应用研究进展碳是自然界分布非常普遍的一种元素。

碳元素最大的特点之一是存在着众多的同素异形体,形成许许多多结构和性质完全不同的物质。

长期以来,人们一直认为碳的晶体只有两种:石墨和金刚石。

直到1985年,英国科学家Kroto和美国科学家Smalley在研究激光蒸发石墨电极时发现了碳的第三种晶体形式C60,从此开启人类对碳认识的新阶段。

1991年,日本NEC公司基础研究实验室的电镜专家S.Lijima在用电子显微镜观察石墨电弧法制备富勒烯产物时,发现了一种新的碳的晶体结构--碳纳米管(CarbonNanotubes,CNTs),自此开辟了碳科学发展的新篇章,也把人们带人了纳米科技的新时代。

碳纳米管的结构,形象地讲是由含六边形网格的石墨片卷曲而成的无缝纳米级圆筒,两端的“碳帽”由五边形或七边形参与封闭,根据石墨片层数的不同,碳纳米管可分为单壁管和多壁管。

由于其结构上的特殊性(径向尺寸为纳米量级,轴向尺寸为微米,甚至毫米量级),它表现为典型的一维量子材料,并具有许多异常的力学、电学、光学、热学和化学性能。

碳纳米管在制备、结构、性能、应用等方面引起了物理学、化学和材料学等科学家的极大兴趣,均取得了重大的成果。

近几年来,随着碳纳米管及纳米材料研究的不断深入,其广阔应用前景也不断显现出来。

1碳纳米管的结构和性能碳纳米管可以看作是石墨片绕中心轴按一定的螺旋角度卷绕而成的无缝圆筒,碳原子间是sp2杂化,它具有典型的层状中空结构特征,管径在0.7-30nm之间,长度为微米量级,管身是由六边形碳环组成的多边形结构,两端由富勒烯半球形端帽封口。

碳纳米管的螺旋度通常用螺旋矢量Ch=na1+ma2表示,其数值等于碳纳米管的周长,其中n,m为整数,a1、a2是石墨晶格的基矢(图1)。

在二维石墨晶片上,给定一组(n,m)便确定了一个矢量Ch。

另一个重要参量是Ch与a1,间夹角θ,称为手性角。

当n=m,θ=30°时,称其为扶手椅形碳纳米管;当m=0,θ=0°时,称其为锯齿形碳纳米管;而当0°<θ<30°时形成的所有其他类型均是手性碳纳米管(图2)。

碳纳米管的结构和性质探究

碳纳米管的结构和性质探究

碳纳米管的结构和性质探究碳纳米管是由碳原子构成的管状结构,具有轻质、强度高、导电性好等独特的性质。

它的结构和性质对于物理和化学的研究都有很重要的意义。

本文将介绍碳纳米管的基本结构和性质,并深入探讨其应用领域的研究进展。

一、碳纳米管的基本结构碳纳米管分为单壁碳纳米管(Single-walled Carbon Nanotube,SWNT)和多壁碳纳米管(Multi-walled Carbon Nanotube,MWNT)两种。

其中,SWNT是由一个单层碳原子的六角网格形成的长管,而MWNT是由多层碳原子六角网格环绕成的管状结构,形似同心圆。

碳纳米管的直径为纳米级别,管壁的厚度约为10个碳原子的距离,因此具有很强的柔韧性。

碳纳米管的结构可以用“向量”的形式描述。

在一个二维的晶格中,沿着某个方向“滚动”晶格,就可以得到一个管状结构。

碳纳米管的“向量”可以用两个参数(n,m)来表示,这两个参数决定了碳纳米管的形状和具体的各向异性。

二、碳纳米管的性质1. 电学性质碳纳米管具有非常好的电导性能和电子传输性能。

SWNT的电阻率最小可达10^-6Ω•cm,MWNT的介电常数在300-400之间,接近真空。

在室温下,碳纳米管的电流密度可以达到10^9A/cm^2。

此外,碳纳米管的电学性质还可以由其长度和直径来调控。

2. 机械性能碳纳米管的强度很高,可以承受非常大的拉伸力。

理论上,碳纳米管的强度可以达到理论强度的100倍以上。

此外,碳纳米管的弹性模量和柔性也非常好,可以在较大的变形情况下恢复原状。

3. 热学性质碳纳米管在高温下的热稳定性很好,可以在高达2800℃的温度下稳定存在。

同时,碳纳米管的热传导性能也非常出色,热传导系数高达3000W/m•K。

三、碳纳米管的应用1. 碳纳米管在材料领域由于碳纳米管的强度和柔性等材料特性,因此可以制备出高强度、高韧性和轻质的材料。

如碳纳米管复合材料广泛应用于飞机、汽车等交通工具以及建筑和其他工程领域中。

碳纳米管的制备技术与应用

碳纳米管的制备技术与应用

碳纳米管的制备技术与应用碳纳米管(Carbon nanotubes,CNTs)是一种以碳元素为原材料制备的一维纳米材料,由于其具有良好的力学性能、电学特性以及化学稳定性等特点,已经成为当今研究领域中最为热门的材料之一。

本文将介绍碳纳米管的制备技术以及其在各个领域的应用。

一、碳纳米管的制备技术碳纳米管的制备技术可以分为两种类型:单壁碳纳米管(Single-walled carbon nanotubes,SWCNTs)和多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)。

1. SWCNTs的制备技术SWCNTs是由单个碳原子组成的圆柱形分子,其直径只有1纳米左右,是碳纳米管中最小的一种。

目前SWCNTs的制备技术主要有以下几种:(1) 弧放电法:将石墨电极在惰性气体氛围下通电,随着通电时间的延长,在电极表面就会形成一个由碳原子组成的弧,此时就会产生SWCNTs。

(2) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生SWCNTs。

(3) 气味解法:将金属铝、镁等材料和碳合成物物质放入高温的石墨炉中加热,从而产生SWCNTs。

2. MWCNTs的制备技术MWCNTs是由许多个碳单层环形结构套在一起形成的管状结构,由于其具有较高的机械强度和导电性能,因此在材料科学等领域有着广泛的应用。

其制备主要有以下几种方式:(1) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生MWCNTs。

(2) 电磁纺丝法:将金属铜制成细丝,并加热到一定温度,然后向铜丝上喷射石墨或其它碳源,从而产生MWCNTs。

(3) 化学还原法:将单壁和多壁碳纳米管分散在水溶液中,然后将还原剂缓慢加入到溶液中,之后用超离心机或过滤器将沉淀的MWCNTs分离出来。

二、碳纳米管在材料科学中的应用碳纳米管因其高催化性能、热稳定性及导电性能等优异特点,将在材料科学领域中得到广泛的应用。

碳纳米管

碳纳米管

3.热学性能
由于碳管具有非常大的长径比,因而大量热是沿着长 度方向传递的,通过合适的取向,这种管子可以合成高各 向异性材料。 即在管轴平行方向的热交换性能很高,但在其垂直方 向的热交换性能较低。适当排列碳纳米管可得到非常高的 各向异性热传导材料。
四、碳纳米管的制备
CNTs的制备方法有多种,主要有电弧法,激光 蒸发法,化学气象沉积法等方法。这些方法分别在 不同的实验条件下可以得到MWNT和SWNT。
基本原理: 电弧室充惰性气体保护, 两石墨棒电极靠近,拉起 电弧,再拉开,以保持电 弧稳定。放电过程中阳极 温度相对阴极较高,所以 阳极石墨棒不断被消耗, 同时在石墨阴极上沉积出 含有碳纳米管的产物。 理想的工艺条件:氦气为载气,气压 60—50Pa,电 流60A~100A,电压19V~25 V,电极间距1 mm~4mm, 产率50%。Iijima等生产出了半径约1 nm的单层碳管。
五、纳米管结构的表征:
扫描隧道显微镜 X射线衍射
电子显微镜
拉曼光谱
1.电子显微术
利用不同的电子显微术,可以非常详细地研究碳 纳米管结构,确定其生长机制,反过来又可以帮助人 们改进碳管的生长过程,或者去修饰他们的结构。 利用扫描电子显微镜(SEM)可以获得单壁碳纳 米管管束的图像。透射电子显微镜(TEM)对于碳纳 米管结构的研究更为有用。TEM是一种强有力的技术, 可以确定碳纳米管管壁的层数,还可以准确测量管径 和确定碳管结构中的缺陷。
饭岛澄男 S.Iijima
将这些针状产物在高分辨电子显微镜下观察, 发现该针状物是直径为4~30纳米,长约1微米,由 2个到50个同心管构成,相邻同心管之间平均距离 为0.34纳米。
单壁碳纳米管
多壁碳纳米管
进一步实验研究表明,这些纳米量级的微小管状结构是由碳 原子六边形网格按照一定方式排列而形成,或者可以将其想象成 是由一个六边形碳原子形成的平面卷成的中空管体,而在这些管 体的两端可能是由富勒烯形成帽子。这就是多壁纳米碳管。 在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的 纳米碳管,即单壁碳纳米管产物。

碳纳米管的合成和应用

碳纳米管的合成和应用

碳纳米管的合成和应用碳纳米管(Carbon Nanotubes, CNTs)是由纯碳构成的一种纳米材料,以其独特的物理和化学性质,在材料科学、生物医学等众多领域都有重要的应用和研究价值。

本文将从碳纳米管的合成方法、结构特征以及应用等方面进行讨论。

一、碳纳米管的合成方法碳纳米管最早是由日本科学家Sumio Iijima于1991年发现,并提出了一种制备碳纳米管的方法——电弧放电法。

该方法是通过电弧放电在高温下制备,得到的碳纳米管平均直径为10-20nm。

随后,人们发现在碳纳米管形成的高温条件下,化学气相沉积法(Chemical Vapor Deposition, CVD)也可以用来合成碳纳米管。

通过CVD法合成的碳纳米管平均直径可以达到数纳米级别。

此外,离子束辅助CVD、体积扩散法、等离子炮击法等方法也被用来合成碳纳米管。

这些方法各有优缺点,可以根据具体应用需求选择合适的方法。

二、碳纳米管的结构特征碳纳米管分为单壁碳纳米管(Single-Walled Carbon Nanotubes, SWNTs)和多壁碳纳米管(Multi-Walled Carbon Nanotubes, MWNTs)两种。

SWNTs是由一个或几个碳原子层叠而成的单层碳纳米管,直径在1-2nm左右;MWNTs则是由多层碳原子管叠加在一起构成的,直径在10-30nm左右。

SWNTs的结构主要包括芳香环、周边的螺旋结构以及端部的官能团等。

SWNTs具有高比表面积和高机械性能,同时还有超疏水性、高导电性和热导率等重要的物理和化学性质。

MWNTs的壁层数越多,直径越大,内壁和外壁之间的距离也越大。

MWNTs的直径越大,其比表面积也越小,但其机械性能就越强。

MWNTs和SWNTs相比,其电导率、热导率和力学性能都要略低。

同时,MWNTs相较于SWNTs更便于分散处理,应用更为广泛。

除了单壁和多壁两种结构外,根据碳纳米管的管径、手性和烯结构等进一步可将碳纳米管细分为不同类型,如外径为几百纳米的纳米线状碳纳米管和手性控制的带有特定电学性质的碳纳米管等。

碳纳米管简介

碳纳米管简介

加强基础研究和创新能力
深入研究结构与性能关系
进一步揭示碳纳米管的微观结构和性 能之间的关联,为新应用提供理论支 持。
探索新的合成方法
加强跨学科合作
与化学、物理、生物等学科进行交叉 合作,拓展碳纳米管的应用领域。
开展新合成方法的研究,实现碳纳米 管的绿色合成和可控合成。
建立产业联盟和创新平台
促进产学研合作
导电材料
碳纳米管具有优异的导电性能,可作为复合材料的导电填料,提高材料的导电性能。
半导体领域
晶体管
碳纳米管具有优异的半导体性能,可 用于制造高性能晶体管,提高集成电 路的性能和集成度。
传感器
碳纳米管具有较高的化学敏感性和光 电响应性,可用于制造高性能传感器 ,用于环境监测、生物医学等领域。
纳米电子领域
碳纳米管的应用领域
电池领域
电池电极材料
碳纳米管具有优异的导电性能和比表 面积,可作为高性能电池电极材料, 提高电池的能量密度和充放电效率。
电池隔膜材料
碳纳米管具有较高的机械强度和化学 稳定性,可用于制造高性能电池隔膜 ,提高电池的安全性和稳定性。
复合材料领域
增强材料
碳纳米管具有优异的力学性能和化学稳定性,可作为复合材料的增强剂,提高材料的强度和韧性。
化学反应性
碳纳米管具有较高的化学反应性,可以在高温下与多种氧化剂反应,也可以在催化剂的作 用下进行加氢反应。此外,碳纳米管还可以通过表面修饰改性来提高其化学反应性和相容 性。
表面基团
碳纳米管的表面可以含有多种基团,如羧基、羟基、羰基和环氧基等。这些基团的存在会 影响碳纳米管的化学反应性和相容性。
稳定性
碳纳米管简介
汇报人: 2023-12-15

碳纳米管增强铝基纳米复合材料制备及性能研究

碳纳米管增强铝基纳米复合材料制备及性能研究

碳纳米管增强铝基纳米复合材料制备及性能研究碳纳米管增强铝基纳米复合材料是一种新型的高性能材料,具有独特的优势。

随着科技的不断进步,越来越多的研究人员开始关注这一领域。

本文将探讨碳纳米管增强铝基纳米复合材料制备及其性能研究。

一、碳纳米管碳纳米管是由碳原子排列成的管状结构,直径在几纳米到几十纳米之间,长度可以从纳米到厘米级别。

它具有高强度、高导电性和高导热性等特点,被认为是一种理想的纳米材料。

二、铝基纳米复合材料铝基纳米复合材料是由铝基合金和纳米材料混合制成的复合材料,具有高强度、高硬度、高韧性、高耐腐蚀性和高温稳定性等特点。

与传统的铝合金相比,铝基纳米复合材料的机械性能更加优越。

三、碳纳米管增强铝基纳米复合材料将碳纳米管添加到铝基纳米复合材料中可以改善其力学性能、导电性能和导热性能等。

碳纳米管与铝基复合材料的结合可以增加其界面强度和弹性模量,同时也可以增加其准晶程度和基体强度。

因此,碳纳米管增强铝基纳米复合材料具有非常好的综合性能。

四、碳纳米管增强铝基纳米复合材料的制备碳纳米管增强铝基纳米复合材料的制备方法主要包括机械合金化、熔体渗透、电化学合成和等离子喷涂等方法。

其中,机械合金化方法是一种广泛应用的方法,它可以实现大规模的制备。

五、碳纳米管增强铝基纳米复合材料的性能研究碳纳米管增强铝基纳米复合材料的性能研究主要包括力学性能、导电性能和导热性能等方面。

研究表明,添加适量的碳纳米管可以显著提高铝基纳米复合材料的力学性能,增加导电性能和导热性能。

同时,不同制备方法和制备参数也会对其性能产生影响。

六、未来发展碳纳米管增强铝基纳米复合材料的应用前景十分广泛。

它可以被广泛应用于航空航天、汽车制造、电子电器、医疗器械和建筑材料等领域。

未来,我们需要进一步加强对这种新型材料的研究,探索更加高效的制备方法和更加理想的应用场景。

七、结论碳纳米管增强铝基纳米复合材料是一种非常有前途的新型高性能材料。

研究表明,它具有非常好的力学性能、导电性能和导热性能等优势,可以被广泛应用于多个领域。

碳纳米管及其应用

碳纳米管及其应用

1 引言纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。

碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。

碳纳米管的发现是碳团簇领域的又一重大科研成果,本文探讨了碳纳米管的结构、特性、活化方法,评述了这种纳米尺寸的新型碳材料在电化学器件、氢气存储、场发射装置、碳纳米管场效应晶体管、催化剂载体、碳纳米管修饰电极领域的应用价值,展望了碳纳米管的介入对全球性物理、化学及材料等学科界所带来的美好前景。

在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。

1993年。

S.Iijima等和DS。

Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,AC.Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。

相关的实验研究和理论计算也相继展开。

初步结果表明:碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。

适当加热,氢气就可以慢慢释放出来。

研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。

据推测,单壁碳纳米管的储氢量可达10%(质量比)。

此外,碳纳米管还可以用来储存甲烷等其他气体。

利用碳纳米管的性质可以制作出很多性能优异的复合材料。

例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。

使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。

碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。

碳纳米管上由于存在五元环的缺陷,增强了反应活性,在高温和其他物质存在的条件下,碳纳米管容易在端面处打开,形成一个管子,极易被金属浸润、和金属形成金属基复合材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纳米管纳米器件的研究和开发
纳米技术是二十一世纪最具潜力的研究领域之一,它可以改变我们对材料和物
质的认识,同时带来更优异的性能和应用。碳纳米管作为纳米技术研究的重要组成
部分,因其独特的结构和性质,吸引了广泛的研究人员,这里我们关注的是碳纳米
管纳米器件的研究和开发。

一、碳纳米管的性质和应用
碳纳米管是由碳原子组成的一种奇妙的纳米管状材料,具有优异的力学性质、
电学性质和热学性质等。在研究上,科学家们可以利用碳纳米管的独特结构与性质,
研究其在电子、光学、催化和生物医学等方面的应用。

1.1 碳纳米管的力学性质
碳纳米管的力学性质是其最值得研究的部分之一。碳纳米管的强度比钢还要高
出50倍,更重要的是碳纳米管是一个超级轻型材料,密度乃至于比空气还轻,其
重量只有铁的1/6,但在极端环境下,其耐高温性和耐腐蚀性也让它在空间利用和
能源储存等方面具有广泛的应用前景。

1.2 碳纳米管的电学性质
除了力学性质之外,碳纳米管的电学性质也让人们着迷。碳纳米管的导电性非
常好,可以达到绝缘体中电导率最高的情况,因此可以被使用在电力传输、传感和
绝缘体领域,同时也可以制成电场效应晶体管(FET)以及纳米电子学器件。

1.3 碳纳米管的热学性质
碳纳米管除了力学性质和电学性质,其热学性质也比较特殊。其热稳定性能非
常好,热导率高到难以想象的程度,同时也可以通过调整表面功能来实现纳米管的
热导率。这种独特的热学性质也给医学领域的分子生物学研究带来了很大的帮助。
二、碳纳米管纳米器件的种类和应用
2.1 碳纳米管传感器
碳纳米管传感器是一种检测和测量环境、生物、化学和机械参数的器件。碳纳
米管传感器通常能够检测极小浓度的物质或物质的少量变化。这种器件已经应用在
许多领域,如气体检测、生命科学、生化传感等。其敏感性、快速性和高准确性,
为各类环境分析和医学诊断等方面提供帮助,特别是在肿瘤诊断、药物开发等方面
表现出很大的价值。

2.2 碳纳米管晶体管
碳纳米管晶体管是由碳纳米管和电子元件结合而成的。这种器件能够实现高速、
高性能、低功耗的电子器件。同时,碳纳米管晶体管具有非常小的体积和能耗,非
常适合在移动电子设备和特殊环境中使用。其独特的性能也可以实现独特的功能,
如量子电子学研究等。

2.3 碳纳米管存储器
碳纳米管存储器是一种利用碳纳米管的独特特性来存储信号和数据的器件。这
种存储器具有高存储密度、高速度、低功耗等优点。随着技术的不断升级,其应用
领域也越来越广泛,如通讯、计算机、嵌入式电子等。

三、碳纳米管纳米器件研究的挑战和潜力
3.1 挑战
碳纳米管纳米器件在研究和生产过程中仍有一些困难。首先是碳纳米管的制备
技术和纯化技术的优化,需要不断研究和创新来提高产量和稳定性。其次是纳米器
件的整体设计和制造技术的提高,纳米器件的生产成本和质量控制十分关键。

3.2 潜力
尽管碳纳米管纳米器件的研究还面临许多挑战,但这种新型器件的潜力也越来
越受到业界的关注。碳纳米管纳米器件的应用前景非常广泛,不仅可以用于气体、
生物、化学检测,还可以制造出高速、省电、高效等各种性能优良的电子器件。同
时,碳纳米管纳米器件作为一种新型材料还具有吸声、减震、隔热等领域的应用前
景。可以预见,在不久的将来,这种器件将会在各行业得到广泛应用,带给人们更
多方便和发展机会。

总之,碳纳米管纳米器件是一个令人瞩目的领域,其结合了碳纳米管的特殊结
构和性质与纳米技术领域的应用技术,带来了更多新的应用机会。恰当合理的制备、
设计和优化,可以用于制造出多种高性能的电子器件和传感器,有助于未来的科学
研究,促进社会的进步和发展。

相关文档
最新文档