svg动态无功补偿装置的原理
SVG原理

SVG补偿原理一、基本工作原理SVG的基本原理是利用大功率电力电子器件(IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当的调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流,就可以使该电路吸收或发出满足要求的无功电流,实现动态无功补偿的目的。
INPSVG采用基于瞬时无功功率的无功电流检测方式,逆变主电路采用IGBT组成的H桥功率单元级联拓扑结构,并辅助小容量电容储能。
它由几个电平合成阶梯波已逼近正弦输出电压,这种逆变器由于输出电平数的增加,是的输出波形具有更好的谐波频谱,并且每个开关器件所承受的电压应力较小。
可避免dv/dt所导致的各种问题。
2、瞬时无功检测根据瞬时无功功率理论计算三相电流的无功电流分量检测原理:三相电路各相电压和电流的瞬时值分别为e a、e b、e c 和i a、i b、i c。
为分析问题方便,把它们变换到βα-两相正交的坐标系上研究。
由下面的变换可以得到α、β两相瞬时电压eα、eβ和α、β两相瞬时电流iα、iβ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡ee e c e e cba32βα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡ii ic i i cba32βα 其中,⎥⎦⎤⎢⎣⎡---=23230212113232c为了方便分析研究在两相坐标系中将电压与旋转坐标系P 轴放在同一个方向上。
αβe βi pβi βi qβiqi p αe αi qαi αi ipe ϕϕiϕe三相电路瞬时有功电流i p 和瞬时无功电流i q 分别为: ϕcos ⋅=i i pϕsin ⋅=i iq设母线电流为i a,i b,i c,SVG 电流为i sa ,i sb ,i sc 。
根据以上原理就可以检测到负载的电流。
负载电流为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡sccsbbsaalclblai i i i i i II I 检测到的负载无功电流为:⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i c c ii iqcqbqaqdq e 01322c c 3223=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-cqbqaqdqqii i c c e i 231210 考虑检测到的无功电流是流入SVG 的3倍,最终得到SVG 所补偿的电流为:=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡cSVGbSVGaSVGII I⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡q c c i i i dq e cqbqaq 0133332323、 载波移相SPWM 原理载波相移SPWM 技术是一种开关调制策略,适用于大功率组合逆变器和级联型多电平逆变器。
MCR、TCR、SVG比较

现在主要的动态补偿方式为TCR型SVC、MCR型SVC和SVG三种方式,以下分别介绍这三种动态无功补偿方式的原理,并且通过占地面积、响应速度、损耗、噪音等性能指标来论述这三种补偿方式的特点。
一、 MCR型动态无功补偿装置MCR+FC型动态无功补偿装置上世纪60年代由英国GEC公司制成第一台自饱和电抗器型SVC,后期俄罗斯人演变为可控饱和电抗器(CSR)型,也可称为MCR型动态无功补偿装置。
其原理是三相饱和电抗器的工作绕组并联在电网上,通过改变饱和电抗器的直流控制绕组的励磁电流,借以改变铁心的饱和特性,从而改变工作绕组的感抗,达到改变其所吸收的无功功率的目的。
图九 MCR无功补偿原理磁阀式可控电抗器的主铁心分裂为两半(即铁心1和铁心2),截面积为A,每一半铁心截面积具有减小的一段,四个匝数为N/2的线圈分别对称地绕在两个半铁心柱上(半铁心柱上的线圈总匝数为N),每一半铁心柱的上下两绕组各有一抽头比为δ= N2 / N 的抽头,它们之间接有晶闸管KP1 ( KP2 ),不同铁心上的上下两个绕组交叉连接后,并联至电网电源,续流二极管则横跨在交叉端点上。
在整个容量调节范围内,只有小面积段的磁路饱和,其余段均处于未饱和的线性状态,通过改变小截面段磁路的饱和程度来改变电抗器的容量。
在电源的一个工频周期内,晶闸管KP1 、KP2 的轮流导通起了全波整流的作用,二极管起着续流作用。
改变KP1 、KP2 的触发角便可改变控制电流的大小,从而改变电抗器铁心的饱和度,以平滑连续地调节电抗器的容量。
占地面积由于MCR没有像TCR一样采用晶闸管阀组以及空心相控电抗器,而是采用晶闸管控制部分饱和式电抗器,因此,比TCR面积要小。
响应速度MCR型SVC的响应速度一般在100 ~ 300ms之内。
可控式饱和电抗器铁芯内的磁通有惯性,从空载到额定的变化,一般在秒级以上。
虽然现在也可采取一些措施提高MCR型SVC的响应速度,但一般也很难低于150ms。
SVG工作原理、控制系统及关键技术说明书

SVG工作原理、控制系统与关键技术说明SVG(Static Var Generator, 动态无功补偿装置)是一种采用自换相变流电路的现代无功补偿装置,是当今无功补偿领域最新技术,又称为STAT〔Static Synchronous pensator, 动态无功补偿装置〕。
SVG 动态无功补偿装置在响应速度、稳定电网电压、降低系统损耗、增加传输能力、提高瞬变电压极限、降低谐波和减少占地面积等多方面更具优势。
SVG产品技术特点:※触发、监控单元分相独立化设计,运行速度快,抗干扰性强;※基于瞬时无功功率理论的无功检测技术;※直流侧电压平衡控制;※完善的保护功能;※专用的IGBT 驱动电路,保证了IGBT 高频开断的可靠性,并将状态监控信息实时上传至上层监控系统;※链节自取能设计,可靠性高;※链式结构模块化设计,满足系统高可靠性的要求,维护方便;※叠层铜排应用,满足IGBT 高频触发的要求;※响应时间可达5ms。
※能够提供从感性到容性的连续、平滑、动态、快速的无功功率补偿;※能够解决负荷的不平衡问题;※电流源特性,输出无功电流不受母线电压影响;※对系统阻抗参数不敏感。
电网电能质量存在的问题1.1非线性负荷大量接入电网和负载的频繁波动,对电能质量产生严重影响:(1) 输电系统缺乏与时的无功调节,系统振荡容易扩大,降低输电系统的稳定性;(2) 负荷中心缺乏快速的无功支撑,容易造成电压偏低;(3) 功率因数低,增加电网损耗,加大生产本钱,降低生产效率;(4) 产生的无功冲击引起电网电压降低、电压波动与闪变,严重时导致传动装置与保护装置无常工作甚至停产;(5) 产生大量谐波电流,导致电网电压畸变,引起:①保护与安全自动装置误动作;②电容器组谐波电流放大,使电容器过负荷或过电压,甚至烧毁;③增加变压器损耗,引起变压器发热;④导致电力设备发热,电机力矩不稳甚至损坏;⑤加速电力设备绝缘老化;⑥降低电弧炉生产效率,增加损耗;⑦干扰通讯信号;(6) 导致电网三相电压不平衡,产生负序电流使电机转子发生振动。
SVG原理简介

静止无功发生器——(SVG)原理简介静止无功发生器 (SVG) 是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。
SVG 的思想早在 20 世纪 70 年代就有人提出 ,1980 年日本研制出了 20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991 年和 1994 年日本和美国分别研制成功了80MVA 和 10OMVA 的采用 GTO 晶闸管的SVG 。
目前国际上有关 SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾 , 国内有关的研究也已见诸报道。
与传统的以 TCR 为代表的 SVC 相比 ,SVG 的调节速度更快 , 运行范围宽 , 而且在采取多重化或 PWM 技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是 ,SVG 使用的电抗器和电容元件远比 SVC 中使用的电抗器和电容要小 , 这将大大缩小装置的体积和成本。
由于 SVG 具有如此优越的性能 , 是今后动态无功补偿装置的重要发展方向。
一、SVG 的基本原理及特点SVG 的基本原理是将桥式变流电路通过电抗器并联 ( 或直接并联 ) 在电网上 , 适当调节桥式变流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流 , 使该电路吸收或者发出满足要求的无功电流 , 从而实现动态无功补偿的目的。
在单相电路中 , 与基波无功功率有关的能量是在电源和负载之间来回往返的。
但是在平衡的三相电路中 , 不论负载的功率因数如何 , 三相瞬时功率之和是一定的 , 在任何时刻都等于三相总的有功功率。
因此总体上看,在三相电路的电源和负载之间没有无功能量的来回往返 ,无功能量是在三相之间来回往返的。
所以 , 如果能用某种方法将三相各部分总体上统一起来处理 , 则因为总体来看三相电路电源和负载间没有无功能量的传递 , 在总的负载侧就无需设置无功储能元件。
三相桥式变流电路实际上就具有这种将三相各部分总体上统一起来处理的特点。
SVG工作原理、控制系统及关键技术说明

SVG⼯作原理、控制系统及关键技术说明SVG⼯作原理、控制系统及关键技术说明SVG(Static Var Generator, 动态⽆功补偿装置)是⼀种采⽤⾃换相变流电路的现代⽆功补偿装置,是当今⽆功补偿领域最新技术,⼜称为STATCOM(Static Synchronous Compensator, 动态⽆功补偿装置)。
SVG 动态⽆功补偿装置在响应速度、稳定电⽹电压、降低系统损耗、增加传输能⼒、提⾼瞬变电压极限、降低谐波和减少占地⾯积等多⽅⾯更具优势。
SVG产品技术特点:※触发、监控单元分相独⽴化设计,运⾏速度快,抗⼲扰性强;※基于瞬时⽆功功率理论的⽆功检测技术;※直流侧电压平衡控制;※完善的保护功能;※专⽤的IGBT 驱动电路,保证了IGBT ⾼频开断的可靠性,并将状态监控信息实时上传⾄上层监控系统;※链节⾃取能设计,可靠性⾼;※链式结构模块化设计,满⾜系统⾼可靠性的要求,维护⽅便;※叠层铜排应⽤,满⾜IGBT ⾼频触发的要求;※响应时间可达5ms。
※能够提供从感性到容性的连续、平滑、动态、快速的⽆功功率补偿;※能够解决负荷的不平衡问题;※电流源特性,输出⽆功电流不受母线电压影响;※对系统阻抗参数不敏感。
电⽹电能质量存在的问题1.1⾮线性负荷⼤量接⼊电⽹和负载的频繁波动,对电能质量产⽣严重影响:(1) 输电系统缺乏及时的⽆功调节,系统振荡容易扩⼤,降低输电系统的稳定性;(2) 负荷中⼼缺乏快速的⽆功⽀撑,容易造成电压偏低;(3) 功率因数低,增加电⽹损耗,加⼤⽣产成本,降低⽣产效率;(4) 产⽣的⽆功冲击引起电⽹电压降低、电压波动及闪变,严重时导致传动装置及保护装置⽆法正常⼯作甚⾄停产;(5) 产⽣⼤量谐波电流,导致电⽹电压畸变,引起:①保护及安全⾃动装置误动作;②电容器组谐波电流放⼤,使电容器过负荷或过电压,甚⾄烧毁;③增加变压器损耗,引起变压器发热;④导致电⼒设备发热,电机⼒矩不稳甚⾄损坏;⑤加速电⼒设备绝缘⽼化;⑥降低电弧炉⽣产效率,增加损耗;⑦⼲扰通讯信号;(6) 导致电⽹三相电压不平衡,产⽣负序电流使电机转⼦发⽣振动。
浅论动态无功补偿装置SVG在光伏电站的应用

浅论动态无功补偿装置SVG在光伏电站的应用摘要:随着时代的发展,我国电力行业也取得了很大的发展,而在光伏电站中,使用无功补偿装置可以有效将系统的稳定性以及光伏输送容量提高,此外,还可以有效避免出现电压崩溃的情况。
SVG即为无功补偿装置,该装置在电力系统中得了大量的应用。
关键词:动态无功补偿装置;SVG;光伏电站引言随着时代的发展,人们对电力行业的要求也在不断提高,在电网中应用光伏电站对过去系统的潮流分布进行了改变,过去的电网如果接入的容量过大会导致并网点的电压超出限制。
此外,随着外界环境中光照以及温度的不同,也会导致并网点输出的有功功率出现变动,这时就需要对系统的无功输出进行调节,从而实现对并网点的电压进行稳定。
如果电网出现故障,也会对并网点产生影响,会使得其电压跌落,而如果采用光伏电站,其具备的无功输出可以为电力系统提供电力支撑。
但由于光伏发电系统的输出功率会受到天气和温度等因素影响,且这种影响具有随机性,在电网运行过程中,随着时间变化的功率不仅会对电能的质量造成影响,还会影响电网的稳定性,而随着新能源发电应用的增多,其对电能和电网的影响会越来越大。
就目前情况而言,大多数光伏电站已经使用了SVG装置,由于SVG这种无功补偿调节装置对电压控制能力更加平滑、响应时间更短,即使在欠电压的情况下,补偿能力也很强,因而,其能很好的改善光伏电站的性能,从而保障电能的质量,并有效提高电网稳定性。
1SVG无功补偿装置1.1SVG原理简介SVG装置属于IGBT全控式有源型无功发生器,作为大功率电力电子技术领域的一份子,可以实现对无功功率的动态发出和吸收。
该装置的核心是链式H桥电压逆变器,其确定输出功率的容量和性质的主要方式是对系统电压幅值和输出电压幅值进行调解,当其幅值大于系统侧电压幅值的时候,输出容性无功;如果其幅值小于系统侧电压幅值,此时输出的感性无功,图1为主电路图。
图1 链式SVG主电路结构1.2SVG的特点1.2.1谐波特性好谐波作为非线性负荷的属性之一,谐波问题属于的是非线性符合用电特性问题,谐波问题的发生一旦出现这类负荷就会存在。
无功补偿装置SVG简介

高压SVG培训我是思源清能电气电子有限公司,服务工程师,张治福,我的手机号是:第一章装置电气原理与构成1.1电气原理SVG装置的主电路采用链式逆变器拓扑结构,Y形连接,10kV装置每相由12个功率单元串联组成,6kV装置每相由8个功率单元串联组成,运行方式为N+1模式。
下图所示为SVG装置的连接原理图。
图1-1 10kV装置的连接原理图图1-2 6kV装置的连接原理图10kV装置的电气原理如下图。
图1-3 10kV装置的电气原理图1.2装置构成SVG装置主要由五个部分组成:控制柜、功率柜、启动柜、连接电抗器和冷却系统。
这里采用风冷。
1.2.1控制柜控制柜由控制器、显示操作面板、控制电源、继电器、空气开关等部分组成。
控制电源提供了DC24V和DC5V电源系统,为控制器和继电器操作供电。
操作面板包括了液晶屏显示、信号指示灯。
操作部分包括启机按钮、停机按钮和复位按钮。
空气开关的功能如下表所示。
表2-1 空气开关功能表第二章装置的控制面板说明2.1 装置的运行状态SVG装置带电时,运行在五种工作状态:待机、充电、运行、跳闸、放电。
各状态说明和转换关系如下:1)待机状态装置上电后立即进入待机状态,然后进行自检。
若无任何故障且状态正常,装置复位后,则点亮就绪灯。
若在就绪情况下收到用户启机命令,则闭合主断路器。
主断路器闭合后即转入充电状态。
2)充电状态表示装置的直流电容正在充电,由于装置为自励启动,主断路器闭合即表示装置已经进入了充电状态。
若在主断路器闭合后直流电压充电到超过直流设定值,则自动闭合启动开关以短路充电电阻,启动开关闭合后延时10s自动转入并网运行状态。
3)运行状态表示装置处于并网运行的工作状态,可以在各种控制方式下输出电流,达到补偿无功、负序或谐波的效果。
若在此过程中出现报警,报警指示灯亮,不影响装置正常运行;若在此过程中出现过流、同步丢失等可恢复故障,装置将闭锁,待手动或自动复位消除故障后,装置将重新解锁运行;若在此过程中出现严重故障或收到停机命令,装置将发跳闸命令,并转到跳闸状态。
SVG工作原理、控制系统及关键技术说明

SVG工作原理、控制系统及关键技术说明SVG(Static Var Generator, 动态无功补偿装置)是一种采用自换相变流电路的现代无功补偿装置,是当今无功补偿领域最新技术,又称为STATCOM(Static Synchronous Compensator, 动态无功补偿装置)。
SVG 动态无功补偿装置在响应速度、稳定电网电压、降低系统损耗、增加传输能力、提高瞬变电压极限、降低谐波和减少占地面积等多方面更具优势。
SVG产品技术特点:※触发、监控单元分相独立化设计,运行速度快,抗干扰性强;※基于瞬时无功功率理论的无功检测技术;※直流侧电压平衡控制;※完善的保护功能;※专用的IGBT 驱动电路,保证了IGBT 高频开断的可靠性,并将状态监控信息实时上传至上层监控系统;※链节自取能设计,可靠性高;※链式结构模块化设计,满足系统高可靠性的要求,维护方便;※叠层铜排应用,满足IGBT 高频触发的要求;※响应时间可达5ms。
※能够提供从感性到容性的连续、平滑、动态、快速的无功功率补偿;※能够解决负荷的不平衡问题;※电流源特性,输出无功电流不受母线电压影响;※对系统阻抗参数不敏感。
电网电能质量存在的问题1.1非线性负荷大量接入电网和负载的频繁波动,对电能质量产生严重影响:(1) 输电系统缺乏及时的无功调节,系统振荡容易扩大,降低输电系统的稳定性;(2) 负荷中心缺乏快速的无功支撑,容易造成电压偏低;(3) 功率因数低,增加电网损耗,加大生产成本,降低生产效率;(4) 产生的无功冲击引起电网电压降低、电压波动及闪变,严重时导致传动装置及保护装置无常工作甚至停产;(5) 产生大量谐波电流,导致电网电压畸变,引起:①保护及安全自动装置误动作;②电容器组谐波电流放大,使电容器过负荷或过电压,甚至烧毁;③增加变压器损耗,引起变压器发热;④导致电力设备发热,电机力矩不稳甚至损坏;⑤加速电力设备绝缘老化;⑥降低电弧炉生产效率,增加损耗;⑦干扰通讯信号;(6) 导致电网三相电压不平衡,产生负序电流使电机转子发生振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
svg动态无功补偿装置的原理
SVG动态无功补偿装置是一种现代化的无功补偿设备,它可以针对电力系统中的电压波动、电力质量、电容补偿等问题进行有效控制,为保障电力系统的稳定运行提供了重要支持。
下面,我们简单介绍一下SVG动态无功补偿装置的原理。
SVG动态无功补偿装置的主要原理是基于PWM(脉宽调制)技术,通过控制固态开关元件MOSFET的导通和断开,改变电容器的电流和电压,最终实现无功功率的调节和控制。
具体来说,SVG动态无功补偿装置由三部分构成:电源模块、电容模块和控制模块。
其中,电源模块用来向其他两个模块提供直流电源,而电容模块则是所谓的无功补偿器,通过对电容器电流的调节来实现无功功率的补偿;控制模块则是核心设备,根据电网运行情况,通过对电容器电流和电压的精确控制,实现无功功率的精确调节和控制。
具体来说,当电网运行负载有很大波动时,就会出现电压波动、电流波动等问题,这时SVG动态无功补偿装置就会自动调整电容器电流和电压,实现对电网的无功功率的负载调节,从而保证电力系统的稳定运行。
同时,SVG动态无功补偿装置还可以针对电容器的电流进行精确控制,以进一步优化电力质量和提高系统运行效率。
为了实现这一功能,控制模块采用最先进的控制算法和电路设计,对电容器电流波形进行精确计算和控制,从而使得电力系统的功率因数和效率得到进一步提升。