2020高中物理竞赛习题专题八:恒定磁场(Word版含答案)
《志鸿优化设计》2020届高考物理一轮复习单元检测(浙江专用)八:磁场 Word版含解析

单元检测八磁场(时间:60分钟满分:100分)一、选择题(本题8小题,每小题7分,共56分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全选对的得7分,选对但不全的得4分,有选错或不答的得0分) 1.关于磁场和磁感线的描述,正确的说法是( )A.磁感线从磁体的N极动身,终止于S极B.磁场的方向就是通电导体在磁场中某点受磁场作用力的方向C.沿磁感线方向,磁场渐渐减弱D.在磁场强的地方同一通电导体受的安培力可能比在磁场弱的地方受的安培力小2.如图所示,在竖直向上的匀强磁场中,水平放置着一根长直导线,电流方向垂直纸面对外,A、B、C、D是以直导线为圆心的同一圆周上的四点,在这四点中()A.A、B两点磁感应强度相同B.C、D两点磁感应强度大小相等C.A点磁感应强度最大D.B点磁感应强度最大3.下列四个试验现象中,不能表明电流能产生磁场的是()A.甲图中,导线通电后磁针发生偏转B.乙图中,通电导线在磁场中受到力的作用C.丙图中,当电流方向相同时,导线相互靠近D.丁图中,当电流方向相反时,导线相互远离4.(2022·德州模拟)如图所示,通电导体棒静止于水平导轨上,棒的质量为m,长为l,通过的电流大小为I且垂直纸面对里,匀强磁场的磁感应强度B的方向与导轨平面成θ角,则导体棒受到的()A.安培力大小为BIl B.安培力大小为BIl sin θC.摩擦力大小为BIl sin θD.支持力大小为mg-BIl cos θ5.粒子甲的质量与电荷量分别是粒子乙的4倍与2倍,两粒子均带正电,让它们在匀强磁场中同一点以大小相等、方向相反的速度开头运动。
已知磁场方向垂直纸面对里。
以下四个图中,能正确表示两粒子运动轨迹的是()6.空间存在垂直于纸面方向的均匀磁场,其方向随时间做周期性变化,磁感应强度B随时间t变化的图象如图所示。
规定B>0时,磁场的方向穿出纸面。
一电荷量q=5π×10-7 C、质量m=5×10-10 kg的带电粒子,位于某点O处,在t=0时刻以初速度v0=π m/s沿某方向开头运动。
高二物理-磁场专题训练及答案(全套)

中学物理磁场专题训练一、磁场、安培力练习题一、选择题1.关于磁场和磁感线的描述,正确的说法有[]A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种物质B.磁感线可以形象地表现磁场的强弱与方向C.磁感线总是从磁铁的北极动身,到南极终止D.磁感线就是细铁屑在磁铁四周排列出的曲线,没有细铁屑的地方就没有磁感线2.一束带电粒子沿水平方向飞过小磁针上方,并与磁针指向平行,能使磁针的S极转向纸内,如图1所示,那么这束带电粒子可能是[]A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.问左飞行的负离子束3.铁心上有两个线圈,把它们和一个干电池连接起来,已知线圈的电阻比电池的内阻大得多,如图2所示的图中,哪一种接法铁心的磁性最强[]4.关于磁场,以下说法正确的是[]A.电流在磁场中某点不受磁场力作用,则该点的磁感强度肯定为零B.磁场中某点的磁感强度,依据公式B=F/I·l,它跟F,I,l都有关C.磁场中某点的磁感强度的方向垂直于该点的磁场方向D.磁场中任一点的磁感强度等于磁通密度,即垂直于磁感强度方向的单位面积的磁通量5.磁场中某点的磁感应强度的方向[]A.放在该点的通电直导线所受的磁场力的方向B.放在该点的正检验电荷所受的磁场力的方向C.放在该点的小磁针静止时N极所指的方向D.通过该点磁场线的切线方向6.下列有关磁通量的论述中正确的是[]A.磁感强度越大的地方,穿过线圈的磁通量也越大B.磁感强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大C.穿过线圈的磁通量为零的地方,磁感强度肯定为零D.匀强磁场中,穿过线圈的磁感线越多,则磁通量越大7.如图3所示,条形磁铁放在水平桌面上,其中心正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面对外的电流,[]A.磁铁对桌面的压力减小、不受桌面摩擦力的作用B.磁铁对桌面的压力减小、受到桌面摩擦力的作用C.磁铁对桌面的压力增大,个受桌面摩擦力的作用D.磁铁对桌面的压力增大,受到桌面摩擦力的作用8.如图4所示,将通电线圈悬挂在磁铁N极旁边:磁铁处于水平位置和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将[]A.转动同时靠近磁铁B.转动同时离开磁铁C.不转动,只靠近磁铁D.不转动,只离开磁铁9.通电矩形线圈平面垂直于匀强磁场的磁感线,则有[]A.线圈所受安培力的合力为零B.线圈所受安培力以任一边为轴的力矩为零C.线圈所受安培力以任一对角线为轴的力矩不为零D.线圈所受安培力必定使其四边有向外扩展形变的效果二、填空题10.匀强磁场中有一段长为0.2m的直导线,它与磁场方向垂直,当通过3A的电流时,受到60×10-2N的磁场力,则磁场的磁感强度是______特;当导线长度缩短一半时,磁场的磁感强度是_____特;当通入的电流加倍时,磁场的磁感强度是______特.11.如图5所示,abcd是一竖直的矩形导线框,线框面积为S,放在磁场中,ab边在水平面内且与磁场方向成60°角,若导线框中的电流为I,则导线框所受的安培力对某竖直的固定轴的力矩等于______.12.一矩形线圈面积S=10-2m2,它和匀强磁场方向之间的夹角θ1=30°,穿过线圈的磁通量Ф=1×103Wb,则磁场的磁感强度B______;若线圈以一条边为轴的转180°,则穿过线圈的磁能量的改变为______;若线圈平面和磁场方向之间的夹角变为θ2=0°,则Ф=______.三、计算题13.如图6所示,ab,cd为两根相距2m的平行金属导轨,水平放置在竖直向下的匀强磁场中,通以5A的电流时,棒沿导轨作匀速运动;当棒中电流增加到8A时,棒能获得2m/s2的加速度,求匀强磁场的磁感强度的大小;14.如图7所示,通电导体棒AC静止于水平导轨上,棒的质量为m长为l,通过的电流强度为I,匀强磁场的磁感强度B的方向与导轨平面成θ角,求导轨受到AC棒的压力和摩擦力各为多大?一、磁场、安培力练习题答案一、选择题1.AB 2.BC 3.D 4.D5.CD 6.D 7.A 8.A 9.AB二、填空题三、计算题13.1.2T 14.mg-BIlcosθ,BI lsinθ二、洛仑兹力练习题一、选择题1.如图1所示,在垂直于纸面对内的匀强磁场中,垂直于磁场方向放射出两个电子1和2,其速度分别为v1和v2.假如v2=2v1,则1和2的轨道半径之比r1:r2及周期之比T1:T2分别为 [ ] A.r1:r2=1:2,T1:T2=1:2B.r1:r2=1:2,T1:T2=1:1C.r1:r2=2:1,T1:T2=1:1D.r1:r2=1:1,T1:T2=2:12.如图2所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外、有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子. [ ]A.只有速度大小肯定的粒子可以沿中心线通过弯管B.只有质量大小肯定的粒子可以沿中心线通过弯管C.只有动量大小肯定的粒子可以沿中心线通过弯管D.只有能量大小肯定的粒子可以沿中心线通过弯管3.电子以初速V0垂直进入磁感应强度为B的匀强磁场中,则 [ ]A.磁场对电子的作用力始终不变B.磁场对电子的作用力始终不作功C.电子的动量始终不变D.电子的动能始终不变它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面对里).在图3中,哪个图正确地表示出这三束粒子的运动轨迹?[ ]5.一个带电粒子,沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图4所示,径迹上的每一小段可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量渐渐减小(带电量不变).从图中可以确定 [ ]A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电 D.粒子从b到a,带负电6.三个相同的带电小球1、2、3,在重力场中从同一高度由静止起先落下,其中小球1通过一附加的水平方向匀强电场,小球2通过一附加的水平方向匀强磁场.设三个小球落到同一高度时的动能分别为E1、E2和E3,忽视空气阻力,则 [ ]A.E1=E2=E3B.E1>E2=E3C.E1<E2=E3D.E1>E2>E37.真空中同时存在着竖直向下的匀强电场和垂直纸面对里的匀强磁场,三个带有等量同种电荷的油滴a、b、c在场中做不同的运动.其中a静止,b向右做匀速直线运动,c向左做匀速直线运动,则三油滴质量大小关系为 [ ]A.a最大 B.b最大C.c最大 D.都相等8.一个带正电荷的微粒(重力不计)穿过图5中匀强电场和匀强磁场区域时,恰能沿直线运动,则欲使电荷向下偏转时应采纳的方法是[ ]A.增大电荷质量B.增大电荷电量C.削减入射速度D.增大磁感强度E.减小电场强度二、填空题9.一束离子能沿入射方向通过相互垂直的匀强电场和匀强磁场区域,然后进入磁感应强度为B′的偏转磁场内做半径相同的匀速圆周运动(图6),则这束离子必定有相同的______,相同的______.10.为使从炙热灯丝放射的电子(质量m、电量e、初速为零)能沿入射方向通过相互垂直的匀强电场(场强为E)和匀强磁场(磁感强度为B)区域,对电子的加速电压为______.11.一个电子匀强磁场中运动而不受到磁场力的作用,则电子运动的方向是______.12.一质量为m、电量为q的带电粒子在磁感强度为B的匀强磁场中作圆周运动,其效果相当于一环形电流,则此环形电流的电流强度I=______.三、计算题13.一个电视显像管的电子束里电子的动能E K=12000eV.这个显像管的位置取向刚好使电子水平地由南向北运动.已知地磁场的竖直向下重量B=5.5×10-5T,试问(1)电子束偏向什么方向?(2)电子束在显像管里由南向北通过y=20cm路程,受洛仑兹力作用将偏转多少距离?电子质量m=9.1×10-31kg,电量e=1.6×10-19C.14.如图7所示,一质量m、电量q带正电荷的小球静止在倾角30°、足够长的绝缘光滑斜面.顶端时对斜面压力恰为零.若快速把电场方向改为竖直向下,则小球能在斜面上滑行多远?洛仑兹力练习题答案一、选择题1.B 2.C 3.BD 4.C5.B 6.B 7.C 8.C二、填空题三、计算题三、单元练习题一、选择题1.安培的分子环流假设,可用来说明 [ ]A.两通电导体间有相互作用的缘由B.通电线圈产生磁场的缘由C.永久磁铁产生磁场的缘由D.铁质类物体被磁化而具有磁性的缘由2.如图1所示,条形磁铁放在水平桌面上,在其正中心的上方固定一根长直导线,导线与磁铁垂直,给导线通以垂直纸面对外的电流,则[ ]A.磁铁对桌面压力减小,不受桌面的摩擦力作用B.磁铁对桌面压力减小,受到桌面的摩擦力作用C.磁铁对桌面压力增大,不受桌面的摩擦力作用D.磁铁对桌面压力增大,受到桌面的摩擦力作用3.有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是 [ ]A.氘核 B.氚核C.电子D.质子4.两个电子以大小不同的初速度沿垂直于磁场的方向射入同一匀强磁场中.设r1、r2为这两个电子的运动轨道半径,T1、T2是它们的运动周期,则 [ ]A.r1=r2,T1≠T2B.r1≠r2,T1≠T2C.r1=r2,T1=T2 D.r1≠r2,T1=T25.在垂直于纸面的匀强磁场中,有一原来静止的原子核.该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图2中a、b所示.由图可以判定 [ ]A.该核发生的是α衰变B.该核发生的是β衰变C.磁场方向肯定是垂直纸面对里D.磁场方向向里还是向外不能判定6.如图3有一混合正离子束先后通过正交电场磁场区域Ⅰ和匀强磁场区域Ⅱ,假如这束正离子束流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的 [ ] A.速度 B.质量C.电荷 D.荷质比7.设空间存在竖直向下的匀强电场和垂直纸面对里的匀强磁场,如图4所示,已知一离子在电场力和洛仑兹力的作用下,从静止起先自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽视重力,以下说法中正确的是 [ ]A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点后,将沿原曲线返回A点8.如图5所示,在正交的匀强电场和磁场的区域内(磁场水平向内),有一离子恰能沿直线飞过此区域(不计离子重力) [ ]A.若离子带正电,E方向应向下B.若离子带负电,E方向应向上C.若离子带正电,E方向应向上D.不管离子带何种电,E方向都向下9.一根通有电流I的直铜棒用软导线挂在如图6所示匀强磁场中,此时悬线中的张力大于零而小于铜棒的重力.欲使悬线中张力为零,可采纳的方法有 [ ]A.适当增大电流,方向不变B.适当减小电流,并使它反向C.电流大小、方向不变,适当增加磁场D.使原电流反向,并适当减弱磁场10.如图7所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直纸面对外运动,可以[ ]A.将a、c端接在电源正极,b、d端接在电源负极B.将b、d端接在电源正极,a、c端接在电源负极C.将a、d端接在电源正极,b、c端接在电源负极D.将a、c端接在沟通电源的一端,b、d接在沟通电源的另一端11.带电为+q的粒子在匀强磁场中运动,下面说法中正确的是 [ ]A.只要速度大小相同,所受洛仑兹力就相同B.假如把+q改为-q,且速度反向大小不变,则洛仑兹力的大小,方向均不变C.洛仑兹力方向肯定与电荷速度方向垂直,磁场方向肯定与电荷运动方向垂直D.粒子只受到洛仑兹力作用,其运动的动能、动量均不变12.关于磁现象的电本质,下列说法中正确的是 [ ]A.有磁必有电荷,有电荷必有磁B.一切磁现象都起源于电流或运动电荷,一切磁作用都是电流或运动电荷之间通过磁场而发生的相互作用C.除永久磁铁外,一切磁场都是由运动电荷或电流产生的D.依据安培的分子环流假说,在外界磁场作用下,物体内部分子电流取向大致相同时,物体就被磁化,两端形成磁极二、填空题13.一质子及一α粒子,同时垂直射入同一匀强磁场中.(1)若两者由静止经同一电势差加速的,则旋转半径之比为______;(2)若两者以相同的动进入磁场中,则旋转半径之比为______;(3)若两者以相同的动能进入磁场中,则旋转半径之比为______;(4)若两者以相同速度进入磁场,则旋转半径之比为______.14.两块长5d,相距d的水平平行金属板,板间有垂直于纸面的匀强磁场.一大群电子从平行于板面的方向、以等大小的速度v从左端各处飞入(图8).为了不使任何电子飞出,板间磁感应强度的最小值为______.15.如图9所示,M、N为水平位置的两块平行金属板,板间距离为d,两板间电势差为U.当带电量为q、质量为m的正离子流以速度V0沿水平方向从两板左端的中心O点处射入,因受电场力作用,离子作曲线运动,偏向M板(重力忽视不计).今在两板间加一匀强磁场,使从中心O处射入的正离流在两板间作直线运动.则磁场的方向是______,磁感应强度B=______.16.如图10所示,质量为m,带电量为+q的粒子,从两平行电极板正中心垂直电场线和磁感线以速度v飞入.已知两板间距为d,磁感强度为B,这时粒子恰能直线穿过电场和磁场区域(重力不计).今将磁感强度增大到某值,则粒子将落到极板上.当粒子落到极板上时的动能为______.17.如图11所示,绝缘光滑的斜面倾角为θ,匀强磁场B方向与斜面垂直,假如一个质量为m,带电量为-q的小球A在斜面上作匀速圆周运动,则必需加一最小的场强为______的匀强电场.18.三个带等量正电荷的粒子a、b、c(所受重力不计)以相同的初动能水平射入正交的电场磁场中,轨迹如图12,则可知它们的质量m a、m b、m c大小次序为______,入射时的初动量大小次序为______.19.一初速为零的带电粒子,经过电压为U的电场加速后垂直进入磁感强度为B的匀强磁场中,已知带电粒子的质量是m,电量是q,则带电粒子所受的洛仑兹力为______,轨道半径为______.20.如图13在x轴的上方(y≥0)存在着垂直于纸面对外的匀强磁场,磁感强度为B.在原点O有一个离子源向x轴上方的各个方向放射出质量为m、电量为q的正离子,速率都为v,对那些在xy平面内运动的离子,在磁场中可能到达的最大x=______,最大y=______.三、计算题21.以速率v垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图14所示,磁感强度B的方向与离子的运动方向垂直,并垂直于纸面对里.(1)求离子进入磁场后到达屏S上时的位置与O点的距离.(2)假如离子进入磁场后经过时间t到达位置P,试证明:直线OP与离子入射方向之间的夹角θ跟t的关系是22.如图16所示,AB为一段光滑绝缘水平轨道,BCD为一段光滑的圆弧轨道,半径为R,今有一质量为m、带电为+q的绝缘小球,以速度v0从A点向B点运动,后又沿弧BC做圆周运动,到C点后由于v0较小,故难运动到最高点.假如当其运动至C点时,突然在轨道区域加一匀强电场和匀强磁场,使其能运动到最高点此时轨道弹力为0,且贴着轨道做匀速圆周运动,求:(1)匀强电场的方向和强度;(2)磁场的方向和磁感应强度.单元练习题答案一、选择题1.CD 2.A 3.B 4.D 5.BD 6.AD7.ABC 8.AD 9.AC 10.ABD 11.B 12.BD二、填空题三、计算题21.(1)2mv/qB。
2020年高中物理竞赛(电磁学)静电场和稳恒电场(含真题练习题):导体壳和静电屏蔽(共17张PPT)

接地时 4 0 a点 1 2 3 0
2 0 2 0 2 0 b点 1 2 3 0
2 0 2 0 2 0
1 A 2 3 B
a
E3 E2 E1
A板 1S 2S Q
1 2 3
b
电荷分布
E1 E2 E3
1 0
2
3
Q S
A
B
电荷分布 1 0
2
3
Q S
1 A 2 3 B
4 0r 2
r R1 R2 r R3 R1 r R2 r R3
Q q
场
强 分
E
布
0 r R1 R2 r R3
q q
q
4 0r 2
R1 r R2 B
A R1 R2 O R3
4 0r 2
r R3
球心的电势
R1
R2
R3
uo E • dr Edr Edr Edr Edr
2020高中物理学奥林匹克竞赛
电磁学篇[基础版] (含往年物理竞赛真题练习)
二、导体壳和静电屏蔽
1、空腔内无带电体的情况
腔体内表面不带电量, 腔体外表面所带的电量为带电体所带总电量。 导体上电荷面密度的大小与该处表面的曲率有关。
q2
2、空腔内有带电体
腔体内表面所带的电量和腔内带电体所带的电量等 量异号,腔体外表面所带的电量由电荷守恒定律决定。
u
r
Edr
4 0r
练习 已知: 两金属板带电分别为q1、q2 求:1 、2 、3 、4
q1
q2
1 2 3 4
1
4
q1 q2 2S
2
3
q1 q2 2S
问题:
2020年高中物理竞赛(电磁学)电磁场和电磁波(含真题练习题)位移电流(共15张PPT)

LE dl S t dS
对稳恒磁场
SB dS 0
lH dl I0
静电场和稳恒磁场的基本规律
静电场
SD dS V dV
E涡
E dl 0
L
稳恒磁场
SB dS 0
H dl
j dS
Id
L
S
E dl
L
B
变
dS
S t
LH
dl
磁场的角度看,变化的电场可以等效为一种电流。
若把最右端电通量的时间变化率看作为一种电流,那
么电路就连续了。麦克斯韦把这种电流称为位移电流。
定义
Id
de
dt
d dt
D dS
S
D
dS
S t
jd
D t
0
E t
P (位移电流密度) t
位移电流的方向
位移电流与传导电流方向相同 如放电时
2020高中物理学奥林匹克竞赛
电磁学篇[基础版] (含往年物理竞赛真题练习)
1820年奥斯特 1831年法拉第
电 产生 磁 磁 产生 电
变化的磁场 激发 电场
? 变化的电场
磁场
11-1 位移电流 麦克斯韦方程组
一. 位移电流
1、电磁场的基本规律
对静电场
S D dS q0
L E dl 0 对变化的磁I
+++++++++
I
电容器上极板在充放电过程中,造成极板上电荷
积累随时间变化。
D Q
S
电位移通量 e DS Q
单位时间内极板上电荷增加(或减少)等于通入
第八章恒定电流的磁场作业及解答

A
aP
dO I
B
OQ
=
m0
4π
I r
(sinβ2
sinβ1 )
=
4π
4π×10-7 ×20
×2.0 ×10-2×0.86
(1
1 2
)
=1.73×10-4 T
结束 目录
8-13 两根长直导线沿半径方向引到铁环 上A、B 两点,并与很远的电源相连,如图 所示。求:环中心的磁感应强度。
AI
O
BI
结束 目录
=q (0.2 i +0.5 j )×( 5×106 j )
i jk = 1.6×10-19 × 0.2 0.5 0
0 5×106 0
= 1.6×10-13 k N
结束 目录
8-32 一束单价铜离子以1.0×105m/s 的速度进入质谱仪的均匀磁场,转过1800 后各离子打在照相底片上,如磁感应强度 为 0.50 T。试计算质量为63u和65u的两 个同位素分开的距离(1u=1.66×10-27kg)。
结束 目录
解:(1)
H0
=
N l
I
=
200×100×10-3 10×10-2
=200(A
/m
)
B0 =m0H0 = 4p×10-7×200=2.5×10-4(T )
(2) H =H0 =200(A /m )
B =m0mrH0 =mrB 0= 4200×2.5×10-4
=1.05(T ) (3) B =B0+B ´
2
)
LB0´.dl =m 0I ´´
B
´
0
2πd
=
m 0Id 2 R2 r 2
×× × × ×
2020高中物理 8 电流的磁场(含解析)

课时分层作业(八)电流的磁场(时间:40分钟分值:100分)[基础达标练]1.(6分)把一根长直导线平行地放在磁针的正上方附近,当导线中有电流通过时,磁针会发生偏转.首先观察到这个实验现象的物理学家是( )A.奥斯特B.爱因斯坦C.牛顿D.伽利略A [首先观察到电流的周围存在磁场的实验现象的物理学家是奥斯特,故选A。
]2.(6分)如图所示,在水平直导线正下方,放一个可以自由转动的小磁针.现给直导线通以向右的恒定电流,不计其他磁场的影响,则下列说法正确的是()A.小磁针保持不动B.小磁针的N极将向下转动C.小磁针的N极将垂直于纸面向里转动D.小磁针的N极将垂直于纸面向外转动C [通过安培定则可判断出导线下方磁场方向垂直纸面向里,小磁针的N极将垂直于纸面向里转动.]3.(6分)用安培定则来判定通电螺线管的电流方向跟它的磁感线方向之间的关系时,下列关于大拇指所指方向的说法正确的是( )A.大拇指所指的方向就是磁感线的方向B.大拇指所指的方向就是螺线管内部磁感线的方向C.大拇指所指的方向就是螺线管外部磁感线的方向D.以上说法都不对B [用安培定则判断通电螺线管磁感线方向时,四指应指电流方向,大拇指所指的方向是螺线管中心轴线上的磁感线方向,亦即螺线管内部磁感线的方向.所以B项正确.]4.(6分)关于电流的磁场,正确的说法是()A.直线电流的磁场,只分布在垂直于导线的某一个平面上B.直线电流的磁场的磁感线是一些同心圆,离导线越远磁感线越密C.通电螺线管的磁感线分布与条形磁铁相似,但管内无磁场D.通电螺线管的环形电流和直线电流的磁场方向可用安培定则判断D [不管是磁体的磁场还是电流的磁场,都是在整个立体的空间分布的,故A错误;直线电流产生的磁场,离导线越远,磁场越弱,因此磁感线越疏,故B错误;磁感线都是闭合曲线,不管是条形磁铁还是螺线管,内部由S极到N极,外部由N极到S极,故C错误.]5.(6分)在空间坐标系中,如图所示,若在x轴正方向通有电流,则y轴P点的磁场方向为()A.y轴正方向B.y轴负方向C.z轴正方向D.z轴负方向C [由安培定则可知,沿-x方向看,在zOy平面内磁感线应是以O为圆心逆时针方向的同心圆,所以P点的磁场方向应该沿z 轴正方向,故选项C正确.]6.(6分)(多选)如图所示,处在竖直平面的环形导线圈的正中心有一个磁针a,在圆环外侧有一小磁针b,a、b与圆环都处于同一竖直面内,当导线中通以图示方向的恒定电流时(不考虑地磁场的影响和两小磁针间的作用),则( )A.小磁针a的N极向纸里转动B.小磁针a的N极向纸外转动C.小磁针b的N极向纸里转动D.小磁针b的N极向纸外转动AD [根据安培定则,环形电流在环中心处产生的磁场方向垂直于纸面向里,在外侧的磁场方向垂直于纸面向外,所以小磁针a 的N极向纸里转动,小磁针b的N极向纸外转动.]7.(6分)1820年,奥斯特发现,把一根导线平行地放在磁针的上方(如图所示),给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样.这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应.以下哪种情况比较正确地反映了奥斯特实验?( )电流能使磁针偏转A.电流流向由南向北时,其下方的小磁针N极偏向东边B.电流流向由东向西时,其下方的小磁针N极偏向北边C.电流流向由南向北时,其下方的小磁针N极偏向西边D.电流流向由西向东时,其下方的小磁针N极偏向北边C [为使小磁针能产生明显的偏转,实验时应使电流流向沿南北方向,选项B、D错误.当电流流向由南向北时,由安培定则判断其下方的磁场方向由东向西,故小磁针N极指向西边,选项A错误,选项C正确.]8.(8分)如图所示,(a)(b)是直线电流的磁场,(c)(d)是环形电流的磁场,(e)(f)是螺线管电流的磁场,试在各图中补画出电流方向或磁感线方向.[解析] 根据安培定则,可以确定(a)中电流方向垂直纸面向里,(b)中电流的方向从下向上,(c)中电流方向是逆时针,(d)中磁感线的方向向下,(e)中磁感线方向向左,(f)中磁感线的方向向右.[答案]见解析[能力提升练]9.(6分)如图所示,当开关S闭合时电磁铁和物体ab相互吸引,则正确的说法是( )A.ab一定是磁铁,且a端一定是N极B.ab一定是磁铁,且a端一定是S极C.ab可能是磁铁,且a端是S极D.ab仅是一块铁,而不是磁铁C [S闭合时,螺线管就产生了磁场,且右边是N极,若ab是磁铁,则左边是S极;也可能ab是一块铁.]10.(6分)(多选)如图所示,一束带电粒子沿着水平方向平行地飞过磁针的上方时,磁针的S极向纸内偏转.这束带电粒子束可能是()A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.向左飞行的负离子束BC [S极向里转,表明小磁针所在处的磁场方向垂直纸面向外,由安培定则知,磁针上方的电流方向水平向左.若是正离子束,其飞行方向是水平向左;若是负离子束,飞行方向是水平向右.]11.(6分)如图所示,一个小磁针位于圆心,且与圆在同一竖直平面内,现使一个带负电小球在竖直平面内沿圆周逆时针高速旋转,则()A.小磁针的N极向纸面里转B.小磁针的N极向纸面外转C.小磁针在纸面内向左摆动D.小磁针在纸面内向右摆动A [带负电的小球在竖直平面内逆时针旋转,形成顺时针方向的环形电流,根据安培定则,可判断出该环形电流的中心磁场方向垂直纸面向里,所以小磁针的N极向纸面里转,选项A正确.]12.(6分)如图为一种利用电磁原理制作的充气泵的结构示意图.其工作原理类似打点计时器.当电流从电磁铁的接线柱a流入,吸引小磁铁向下运动时,以下选项中正确的是( )A.电磁铁的上端为N极,小磁铁的下端为N极B.电磁铁的上端为S极,小磁铁的下端为S极C.电磁铁的上端为N极,小磁铁的下端为S极D.电磁铁的上端为S极,小磁铁的下端为N极D [当电流从电磁铁a端流入时,由安培定则知,电磁铁上端为S极,此时能吸引小磁铁向下运动,说明小磁铁的下端为N极.]13.(15分)如图所示,已知下列各图中的电流方向,请画出相应的磁感线方向.[答案] 如图所示.14.(11分)在两条相互垂直而不接触的导线中,通以大小相等、方向如图所示的电流,那么,在导线平面内两电流所产生的磁场在哪些区域内方向是一致的?[解析] 在空间某区域有几个磁场同时存在时,则其合磁场是它们的矢量和,本题中Ⅰ、Ⅲ区域中两电流产生的磁场方向一致,Ⅱ、Ⅳ区域中两电流产生的磁场方向相反.[答案]Ⅰ、Ⅲ区域。
2020年高中物理竞赛(电磁学)电磁场和电磁波(含真题练习题)麦克斯韦方程组(共13张PPT)

(3)因为电容器内 I=0,且磁场分布应具有轴对称性,
由全电流定律得 P
rR
L1 H1 dl S Jd dS Jdr 2
O
O
R
H1
2r
0U0
l
r
2
cost
l
H1
0U0
2l
cost
r
B1
0H1
U0
2lc2
cost
r
rR
L2 H2 dl Id JdR2
P
O
O
R
H2
l
l
根据位移电流的定义
P
O
O
R
l
Id
de
dt
dDS
dt
0
dE dt
R2
0R2
l
U0
cost
另解
Id
dQ dt
d CU
dt
C
dU dt
平性板电容器的电容 C 0R2
l
代入,可得同样结果.
(2)由位移电流密度的定义
Jd
D t
0
E t
0 U
l t
0U0 cost
l
或者 Jd Id R2
2020高中物理学奥林匹克竞赛
电磁学篇[基础版] (含往年物理竞赛真题练习)
三、麦克斯韦方程组
麦克斯韦认为静电场的高斯定理和磁场的高斯定
理也适用于一般电磁场.所以,可以将电磁场的基本规
律写成麦克斯韦方程组(积分形式):
SD
LE
dS dl
V S
dV
B t
dS
SB dS
LH dl
Id
2r
2020年高中物理竞赛(电磁学)静电场和稳恒电场(含真题练习题):有电介质时的高斯定理(共13张PP

电磁学篇[基础版] (含往年物理竞赛真题练习)
0
qi
1
0
(
q
qi )
S P dS qi
自由电荷 极化电荷
S
SE
•
dS
1
0
(
q
SP
dS )
S ( 0E P )• dS q
D 0E P 0E 0E 0 r E E
D E
电位移矢量
D
0E
真空中
0 r E 介质中
介质中的高斯定理 D • dS q 自由电荷 S
通过任意闭合曲面的电位移通量,等于该闭 合曲面所包围的自由电荷的代数和。
E
线
D
线
电位移线
方向:切线 D
大小: 电位移线条数
S
Db
Da
b
D
a
8-6 电容 电容器
电容——使导体升高单位电势所需的电量。
导线间电势差
B da
uA uB E • dl E dx
A
a
电容 C
0
uA uB ln d
a
0
ln
d
a
a
0
ln
d a
一、孤立导体的电容
孤立导体:附近没有其他导体和带电体
qU
q C 孤立导体的电容 U
孤立导体球的电容C=40R
单位:法拉(F)、微法拉(F)、皮法拉(pF)
1法拉 1库仑 伏特
1F 106 F 1012 pF
二、电容器及电容
1、电容器的电容 导体组合,使之不受
周围导体的影响 ——电容器
电容器的电容:当电容器的两极板分别带有等值异号 电荷q时,电量q与两极板间相应的电 势差uA-uB的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理竞赛习题专题八:恒定磁场1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。
2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π (C )αB r cos π22(D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B =(C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠(D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNecI =,可解出环中的电子数。
解 通过分析结果可得环中的电子数10104⨯==ecIlN 7 已知铜的摩尔质量M =63.75 g·mol -1,密度ρ =8.9 g · cm -3,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kTπ8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系. 解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14s m 1046.4//--⋅⨯===e ρN M j ne j A m m d v(2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=ed d m kTv v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.8有两个同轴导体圆柱面,它们的长度均为20 m,内圆柱面的半径为3.0 mm,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA电流沿径向流过,求通过半径为6.0 mm的圆柱面上的电流密度.分析如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r的同轴圆柱面上流过的电流I 都相等,因此可得=jπ2/Irl解由分析可知,在半径r=6.0 mm的圆柱面上的电流密度2m=rlIj⋅=π2/-3.mA139如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T.如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?解 设赤道电流为I ,则由教材第7 -4 节例2 知,圆电流轴线上北极点的磁感强度()RIμR R IR μB 24202/3220=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRBI 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接。
求环心O 的磁感强度.分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕-萨定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中I 1 、I 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b 又构成并联电路,故有2211l I l I =将B1 、B2 叠加可得点O 的磁感强度B . 解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0解 (a) 长直电流对点O 而言,有0=⨯r l Id ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.7 -12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .分析 由教材7 -4 节例题可知,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度RIμB π40=,磁感强度的方向依照右手定则确定。
点O 的磁感强度B O 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加。
解 根据磁场的叠加 在图(a)中,k i k k i B RIμR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中,k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中,k j i B RIμR I μR I μπ4π4830000---= 13 如图所示,一个半径为R 的无限长半圆柱面导体,沿长度方向的电流I 在柱面上均匀分布.求半圆柱面轴线OO ′上的磁感强度.分析 毕-萨定理只能用于求线电流的磁场分布,对于本题的半圆柱形面电流,可将半圆柱面分割成宽度θR I d d =的细电流,细电流与轴线OO ′平行,将细电流在轴线上产生的磁感强度叠加,即可求得半圆柱面轴线上的磁感强度.解 根据分析,由于长直细线中的电流R l I I π/d d =,它在轴线上一点激发的磁感强度的大小为I RμB d 2πd 0=其方向在Oxy 平面内,且与由dl 引向点O 的半径垂直,如图7 -13(b)所示.由对称性可知,半圆柱面上细电流在轴线OO ′上产生的磁感强度叠加后,得⎰==0sin d θB B yRIμθθR R I R μθB B x 20π0π0πsin d π2πsin d =⋅==⎰⎰ 则轴线上总的磁感强度大小RIμB B x 20π== B 的方向指向Ox 轴负向.14 实验室中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图(a)所示.一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同.试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场.(提示:如以两线圈中心连线的中点为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为0=dxdB;022=dx B d )分析 设磁感强度在Ox 轴线上的分布为B (x )(可由两个圆电流线圈在轴线上磁场的叠加而得),如在轴线上某点处0d d =xB,这表明在该点附近的磁感强度有三种可能,即有极大值(0d d 22<x B )、极小值(0d d 22>x B ) 或均匀(0d d 22=xB).据此可得获得均匀磁场的条件①.证 取两线圈中心连线的中点为坐标原点O ,两线圈中心轴线为x 轴,在x 轴上任一点的磁感强度()[]()[]2/322202/322202/2/2x d RIR μx d R IR μB ++--+=则当()()()[]()()[]02/2/32/2/32d d 2/5222/52220=+++-⎪⎩⎪⎨⎧-+-=x d Rx d x d R x d IR μx x B()()()[]()()[]02/2/42/2/423d d 2/722222/72222022=++-+-⎪⎩⎪⎨⎧-+-=x d RR x d x d R x d IR μx x B时,磁感强度在该点附近小区域内是均匀的,该小区域的磁场为均匀场. 由0d d =xB, 解得 x =0 由0d d 022==x x B ,解得 d =R① 将磁感强度B 在两线圈中点附近用泰勒级数展开,则()()()()...d 0d 21d 0d 0222+++=x xB x x B B x B 若x <<1;且()0d 0d =xB ;()0d 0d 22=x B .则磁感强度B (x )在中点O 附近近似为常量,场为均匀场.这表明在d =R 时,中点(x =0)附近区域的磁场可视为均匀磁场. 15 如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x [图(b)],载流长直导线的磁场穿过该面元的磁通量为x l xlμΦd π2d d 0=⋅=S B 矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==211200ln π2d π2d d d d Il μx l x l μΦ 16 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等.方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B 在导线内r <R , 2222πππRr r R I I ==∑,因而 202πR Ir μB =在导线外r >R ,I I =∑,因而rI μB 2π0= 磁感强度分布曲线如图所示.(2) 在导线表面磁感强度连续,由I =50 A ,m 1078.1π/3-⨯==s R ,得T 106.52π30-⨯==RI μB 17 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度. 解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2 I μr B 022π=⋅rI μB 2π02=R 2 <r <R 3 ()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3 ()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).18 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B 依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有 ∑=⋅I μr B 02πr <R 102π1=⋅r B01=BR 2 >r >R 1NI μr B 022π=⋅rNI μB 2π02=r >R 2 02π3=⋅r B03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNI μB 2π0≈ 19 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.分析 由题7 -16 可得导线内部距轴线为r 处的磁感强度()202πR Ir μr B = 在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd 解 由分析可得单位长度导线内的磁通量4πd 2π0020I μr R Ir μΦR==⎰ 7 -20 设电流均匀流过无限大导电平面,其面电流密度为j .求导电平面两侧的磁感强度.(提示:可参考本章问题7 -11,并用安培环路定理求解.)分析 依照右手螺旋定则,磁感强度B 和电流j 相互垂直,同时由对称性分析,无限大导电平面两侧的磁感强度大小相同,方向反向平行.如图所示,在垂直导电平面的平面上对称地取矩形回路abc d ,回路所在平面与导电平面相交于OO ′,且使ab ∥c d ∥OO ′,a d ⊥OO ′,c d ⊥OO ′,ab =c d =L ,根据磁场的面对称分布和安培环路定理可解得磁感强度B 的分布. 解 在如图所示的矩形回路abc d 中,磁感强度沿回路的环路积分⎰⎰⎰⎰⎰⋅+⋅+⋅+⋅=⋅dabc cd ab l l B l B l B l B l B d d d d d 由于对称性B 1 =B 2 =B ,B 3 、B 4 与积分路径正交,因而Bl d l2=⋅⎰l B (1) 回路abc d 内包围的电流I =jL ,根据安培环路定理,有jL μBl l 02d ==⋅⎰l B (2)由式(1)和式(2)可得导电板两侧磁感强度的大小为j μB 021=磁感强度的方向由右手螺旋关系确定. 21 设有两无限大平行载流平面,它们的面电流密度均为j ,电流流向相反.求:(1) 两载流平面之间的磁感强度;(2) 两面之外空间的磁感强度.解 由上题计算的结果,单块无限大载流平面在两侧的磁感强度大小为012j μ,方向如图所示,根据磁场的叠加原理可得(1) 取垂直于纸面向里为x 轴正向,合磁场为 i i i B 000j μj μj μ=+=22 (2) 两导体载流平面之外,合磁场的磁感强度 022==i -i B 00j μj μ 22 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示.(2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.116-⨯==g m G p因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.23 在一个显像管的电子束中,电子有41.210eV ⨯的动能,这个显像管安放的位置使电子水平地由南向北运动.地球磁场的垂直分量55.510T B -⊥=⨯,并且方向向下.求:(1) 电子束偏转方向;(2) 电子束在显像管内通过20 cm 到达屏面时光点的偏转间距.解 (1) 如图所示,由洛伦兹力B F ⨯=v q电子带负电,q <0,因而可以判断电子束将偏向东侧.(2) 在如图所示的坐标中,电子在洛伦兹力作用下,沿圆周运动,其轨道半径R (参见教材第7 -7 节)为m 71.62===eBmE eB m R k v 由题知cm 20=y ,并由图中的几何关系可得电子束偏向东侧的距离m 1098.2Δ322-⨯=--=y R R x 即显示屏上的图像将整体向东平移近3 mm .这种平移并不会影响整幅图像的质量.24 试证明霍耳电场强度与稳恒电场强度之比nep B E E C H //=,这里ρ 为材料电阻率,n 为载流子的数密度.分析 在导体内部,稳恒电场推动导体中的载流子定向运动形成电流,由欧姆定律的微分形式,稳恒电场强度与电流密度应满足j E ρC =其中ρ 是导体的电阻率.当电流流过位于稳恒磁场中的导体时,载流子受到洛伦兹力的作用,导体侧面出现电荷积累,形成霍耳电场,其电场强度为B E ⨯-=v H其中v 是载流子定向运动速率.根据导体内电流密度v ne =j由上述关系可得要证明的结果.证 由分析知,在导体内稳恒电场强度为nev ρρC ==j E由霍耳效应,霍耳电场强度B E ⨯-=v H因载流子定向运动方向与磁感强度正交,故E H =vB ,因而B/ne ρB/ρ/ρB/ρ/E E C H ===v v v /25 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度.解 依照分析m/s 63.0===dBU B E H H v 26 磁力可以用来输送导电液体,如液态金属、血液等而不需要机械活动组件.如图所示是输送液态钠的管道,在长为l 的部分加一横向磁场B ,同时沿垂直于磁场和管道方向加一电流,其电流密度为J .(1) 证明在管内液体l 段两端由磁力产生的压力差为p JlB ∆=,此压力差将驱动液体沿管道流动.(2) 要在l 段两端产生1.00 atm (1 atm =101 325 P a )的压力差,电流密度应多大? (l =2.00 cm ,B =1.50T)解 (1) 由题意电流垂直流过管内导电液体,磁场中的导电液体受到安培力的作用,在管道方向产生一压力差JBl S IBl S F p ===Δ (2) 26A/m 1038.3Δ⨯==Blp J 27 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m/s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k 28 从太阳射来的速度为0.80 ×108m/s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径 m 101.1311⨯==eB m R v 地磁北极附近的回转半径 m 2322==eB m R v 29 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力. 解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dl I I μF π22103= ()b d l I I μF +=π22104 故合力的大小为 ()N 1028.1π2π2321021043-⨯=+-=-=b d l I I μd l I I μF F F合力的方向朝左,指向直导线.30 一直流变电站将电压为500kV 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F ·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dI μB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为dI μBI F B π220== dεU C λE F E 022π2== 由0=+E B f f 可得dεU C d I μ02220π2π2= 解得A 105.4300⨯==μεCU I (2) 输出功率 W 1025.29⨯==IU N31 将一电流均匀分布的无限大载流平面放入磁感强度为B 0 的均匀磁场中,电流方向与磁场垂直.放入后,平面两侧磁场的磁感强度分别为B 1 和B 2(如图所示),求该载流平面上单位面积所受磁场力的大小和方向.分析 依照题7 -20 的分析,无限大载流平面两侧为均匀磁场,磁感强度大小为j μ021,依照右手螺旋定则可知,它们的方向反向平行,并与原有磁感强度B 0的均匀外磁场叠加,则有j μB B 00121-= j μB B 00221+= 从而可解得原均匀磁场的磁感强度B 0和电流面密度j .载流平面在均匀外磁场中受到安培力的作用,由于载流平面自身激发的磁场不会对自身的电流产生作用力,因此作用在dS 面积上的安培力0d B l F ⨯=Id由此可求得单位面积载流平面所受的安培力.解 由分析可得j μB B 00121-= (1) j μB B 00221+= (2) 由式(1)、(2)解得()21021B B B += ()1201B B μj -= 外磁场B 0 作用在单位面积载流平面上的安培力()212200021d d d d d d B B μjB y x yB x j S F -=== 依照右手定则可知磁场力的方向为水平指向左侧.32 在直径为1.0 cm 的铜棒上,切割下一个圆盘,设想这个圆盘的厚度只有一个原子线度那么大,这样在圆盘上约有6.2 ×1014个铜原子.每个铜原子有27 个电子,每个电子的自旋磁矩为224m A 103.9⋅⨯=-e μ.我们假设所有电子的自旋磁矩方向都相同,且平行于铜棒的轴线.求: (1) 圆盘的磁矩;(2) 如这磁矩是由圆盘上的电流产生的,那么圆盘边缘上需要有多大的电流.解 (1) 因为所有电子的磁矩方向相同,则圆盘的磁矩 27m A 1056.1⋅⨯==-e μN m(2) 由磁矩的定义,可得圆盘边缘等效电流A 100.2/3-⨯==S m I33 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯- 分析 根据电子绕核运动的角动量π2/0h a m L ==v可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i ==在圆心处,即质子所在处的磁感强度为 002a i μB =解 由分析可得,电子绕核运动的速率 0π2ma h =v 其等效圆电流 2020π4π2ma he ma e i ==该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma he μa i μB 34 半径为R 的圆片均匀带电,电荷面密度为σ,令该圆片以角速度ω绕通过其中心且垂直于圆平面的轴旋转.求轴线上距圆片中心为x 处的P 点的磁感强度和旋转圆片的磁矩.分析 旋转的带电圆盘可等效为一组同心圆电流,在盘面上割取细圆环(如图所示),其等效圆电流σωrdr Trdr σI ==π2d 此圆电流在轴线上点P 处激发的磁感强度的大小为 ()2/32220d 2d x r I r μB +=所有圆电流在轴线上激发的磁场均沿O x 轴,因而点P 处的合磁场为⎰=B B d .由磁矩的定义,等效圆电流的磁矩I r m d πd 2=,方向沿O x 轴正向,将不同半径的等效圆电流磁矩叠加可以得到旋转圆片的磁矩 ⎰=I r m d π2解 由上述分析可知,轴线上x 处的磁感强度大小为 ()⎥⎦⎤⎢⎣⎡-++=+=⎰x R x x R σωμx r r σωr μB R 222d 22222002/32230300223/20222()R r dr B x r x μμσωσω⎤==-⎥+⎦⎰圆片的磁矩m 的大小为403π41πR σωdr σωr m R ==⎰ 磁感强度B 和磁矩m 的方向都沿Ox 轴正向.35 一根长直同轴电缆,内、外导体之间充满磁介质[图(a)],磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰=⋅r πH d 2l H ,利用安培环路定理 ⎰∑=⋅f I d l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=f I r H π2对r <R 1221ππr R I If =∑ 得 2112πR Ir H = 忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR Ir μB =对R 2 >r >R 1I If =∑得 rI H 2π2=填充的磁介质相对磁导率为μr ,有 ()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2 ()()2223223ππR r R R I I If -⋅--=∑ 得 ()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 3 0=-=∑I I If得 04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅=()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c ).36 设长L =5.0 cm ,截面积S =1.0 cm 2的铁棒中所有铁原子的磁偶极矩都沿轴向整齐排列,且每个铁原子的磁偶极矩2230m A 108.1⋅⨯=-m .求:(1) 铁棒的磁偶极矩;(2)要使铁棒与磁感强度T 5.10=B 的外磁场正交,需用多大的力矩? 设铁的密度3cm g 8.7-⋅=ρ ,铁的摩尔质量10mol g 85.55-⋅=M .分析 (1) 根据铁棒的体积和密度求得铁棒的质量,再根据铁的摩尔质量求得棒内的铁原子数N ,即A N M V ρN 0= 其中N A 为阿伏伽德罗常量.维持铁棒内铁原子磁偶极矩同方向排列,因而棒的磁偶极矩0Nm m =(2) 将铁棒视为一个磁偶极子,其与磁场正交时所需力矩0B m M ⋅=解 (1) 由分析知,铁棒内的铁原子数为A N M SL ρN 0=故铁棒的磁偶极矩为 2000m A 85.7-⋅===m N M SL ρNm m A (2) 维持铁棒与磁场正交所需力矩等于该位置上磁矩所受的磁力矩m N 4.110⋅=⋅=B m M37 在实验室,为了测试某种磁性材料的相对磁导率μr ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一环形螺线管.设圆环的平均周长为0.10 m ,横截面积为0.50×10-4 m 2,线圈的匝数为200 匝.当线圈通以0.10 A 的电流时,测得穿过圆环横截面积的磁通量为6.0 ×10-5 Wb ,求此时该材料的相对磁导率μr .分析 根据右手定则,磁感线与电流相互环连,磁场沿环型螺线管分布,当环形螺线管中通以电流I 时,由安培环路定理得磁介质内部的磁场强度为 LNI H = 由题意可知,环内部的磁感强度S ΦB /=,而H μμB r 0=,故有H μB μr 0/=。