操作系统实验六_虚拟存储器实验报告

合集下载

操作系统实验指导-虚拟存储器管理

操作系统实验指导-虚拟存储器管理

操作系统实验指导
实验四虚拟存储器管理
实验目的:
1 理解虚拟存储器的概念
2 掌握分页式存储管理地址转换和缺页中断
实验方法:上机操作
实验环境:编程语言不限
实验内容:
1 模拟分页式存储管理中硬件的地址转换和产生缺页中断
2 用先进先出页面调度算法处理缺页中断
实验要求:
实验报告只要求提交电子文档,不需要提交纸质打印文档。

电子文档按“学号-姓名-实验编号”统一命名,例如: 095043125-黄昌军-03.doc。

其中名字后的03为实验一的编号,依次类推。

提交时间:2011年11月21日24:00之前。

防灾科技学院实验报告。

操作系统存储器管理实验报告.doc

操作系统存储器管理实验报告.doc

一目的与要求(1) 请求页式虚存管理是常用的虚拟存储管理方案之一。

(2) 通过请求页式虚存管理中对页面置换算法的模拟,加深理解虚拟存储技术的特点。

(3) 模拟页式虚拟存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断.二实验内容或题目(1)本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。

(2)虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。

(3)要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。

(4)程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。

三实验步骤与源程序(1)实验步骤1、理解好相关实验说明。

2、根据实验说明,画出相应的程序流程图。

3、按照程序流程图,用C语言编程并实现。

(2)流程图如下:①虚页和实页结构在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。

pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。

time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。

在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。

pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。

next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。

②程序流程图如下:(3)源程序如下:#include<iostream.h>#define M 40int N;struct Pro{int num,time;};int Input(int m,Pro p[M]){cout<<"请输入实际页数:";do{cin>>m;if(m>M)cout<<"数目太多,请重试"<<endl;else break;}while(1);//cout<<"请输入各页面号:";for(int i=0;i<m;i++){cout<<"第"<<i<<"个页面号为:";cin>>p[i].num;p[i].time=0;}return m;}void print(Pro *page1)//打印当前的页面{Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,Pro *page1 ){Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)if(e==page[i].num)return i; return -1;}int Max(Pro *page1){Pro *page=new Pro[N];page=page1;int e=page[0].time,i=0;while(i<N)//找出离现在时间最长的页面{if(e<page[i].time)e=page[i].time;i++;}for( i=0;i<N;i++)if(e==page[i].time)return i;return -1;}int Compfu(Pro *page1,int i,int t,Pro p[M]){Pro *page=new Pro[N];page=page1;int count=0;for(int j=i;j<M;j++){if(page[t].num==p[j].num )break;else count++;}return count;}int main(){cout<<"可用内存页面数:";cin>>N;Pro p[M];Pro *page=new Pro[N];char c;int m=0,t=0;float n=0;m=Input(m,p);do{for(int i=0;i<N;i++)//初试化页面基本情况{page[i].num=0;page[i].time=2-i;}i=0;cout<<"************************"<<endl;cout<<"*****f:FIFO页面置换*****"<<endl;cout<<"*****l:LRU页面置换******"<<endl;cout<<"*****o:OPT页面置换******"<<endl;cout<<"*****按其它键结束*******"<<endl;cout<<"************************"<<endl;cout<<"请选择操作类型(f,l,o):";cin>>c;if(c=='f')//FIFO页面置换{n=0;cout<<"页面置换情况: "<<endl;while(i<m){if(Search(p[i].num,page)>=0)i++;//找到相同的页面else{if(t==N)t=0;else{n++;//page[t].num=p[i].num;print(page);t++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }if(c=='l')//LRU页面置换{ n=0;cout<<"页面置换情况: "<<endl;while(i<m){int k;k=t=Search(p[i].num,page);if(t>=0)page[t].time=0;else{n++;t=Max(page);page[t].num=p[i].num;page[t].time=0;}if(t==0){page[t+1].time++;page[t+2].time++;}if(t==1){page[2].time++;page[0].time++;}if(t==2){page[1].time++;page[0].time++;}if(k==-1) print(page); i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl;}if(c=='o')//OPT页面置换{n=0;while(i<m){if(Search(p[i].num,page)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p)){temp=Compfu(page,i,t,p); cn=t;}}page[cn]=p[i];n++;print(page);i++;}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }}while(c=='f'||c=='l'||c=='o');return 0;});四测试数据与实验结果五结果分析与实验体会通过上机,我了解了许多关于操作系统的专业知识。

操作系统实验报告存储管理

操作系统实验报告存储管理

操作系统上机实验报告实验名称:存储管理实验目的:通过请求页式存储管理页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理页面置换算法。

实验内容:1.设计一个虚拟存储区和内存工作区;例如内存工作区大小为9个内存块,假设系统中最多可运行3个进程,每个进程分配3个内存块;2.模拟实现FIFO、LRU、OPT算法,给出页面走向,可计算缺页率;3.根据实验结果比较几种算法的差别。

实验步骤及分析:(一)FIFO算法实现提示定义一个常量total_instruction来记录页面总共使用的次数;定义一个变量diseffect记录总共换入页面的次数。

利用公式diseffect/total_instruction*100%可以得到缺页率。

(1)初始化。

设置两个数组page[ap]和pagecontrol[pp]分别表示进程页面数和内存分配的页面数,并产生一个随机数序列pageorder[total_instruction ](这个序列由page[]的下标随机构成)表示待处理的进程页面顺序,diseffect置0。

(2)看pageorder[]中是否有下一个元素,若有,就由pageorder[]中获取该页面的下标,并转到(3);如果没有就转到(7)。

(3)如果该page已在内存中,就转到(2);否则就到(4),同时未命中的diseffect加1。

(4)观察pagecontrol是否占满,如果占满须将使用队列中最先进入的pagecontrol单元“清干净”,同时将对应的page[]单元置为“不在内存中”。

(5)将该page[]与pagecontrol[]建立关系。

可以改变pagecontrol[]的标志位,也可以采用指针链接,总之至少要使对应的pagecontrol单元包含两个信息:一是它被使用了,二是哪个page[]单元使用的。

Page[]单元也包含两个信息:对应的pagecontrol 单元号和本 page[]单元已在内存中。

虚拟内存的设计实训报告

虚拟内存的设计实训报告

一、实训背景随着计算机技术的发展,计算机系统的内存容量需求越来越大。

然而,由于物理内存(RAM)的成本较高,且受限于物理空间的限制,很难满足用户对大内存的需求。

为了解决这个问题,虚拟内存技术应运而生。

虚拟内存是一种将部分硬盘空间虚拟化为内存的技术,可以有效扩充计算机系统的内存容量,提高系统的运行效率。

本实训旨在设计并实现一个虚拟内存系统,通过对虚拟内存的设计、实现和测试,加深对虚拟内存原理和技术的理解。

二、实训目标1. 理解虚拟内存的基本原理和设计方法;2. 掌握虚拟内存的硬件和软件实现技术;3. 设计并实现一个简单的虚拟内存系统;4. 对虚拟内存系统进行测试和分析,评估其性能。

三、实训内容1. 虚拟内存基本原理虚拟内存的核心思想是将计算机的物理内存与硬盘空间进行映射,使得计算机在访问内存时,可以将部分数据存储到硬盘上,从而实现内存的扩充。

虚拟内存的主要技术包括:(1)页式存储管理:将内存划分为固定大小的页,硬盘空间也划分为同样大小的块(或称为页框)。

当程序需要访问内存时,虚拟内存管理系统会将所需的页加载到物理内存中。

(2)置换算法:当物理内存不足时,虚拟内存管理系统需要选择一部分页从内存中移出,并将它们存储到硬盘上。

常用的置换算法有FIFO、LRU、OPT等。

(3)地址映射:虚拟内存管理系统需要将虚拟地址转换为物理地址,以便计算机可以访问到正确的内存位置。

2. 虚拟内存硬件实现虚拟内存的硬件实现主要包括以下部分:(1)内存控制器:负责控制物理内存的读写操作。

(2)地址转换逻辑:将虚拟地址转换为物理地址。

(3)页面缓存:用于缓存频繁访问的页,以提高系统性能。

3. 虚拟内存软件实现虚拟内存的软件实现主要包括以下部分:(1)虚拟内存管理系统:负责管理虚拟内存的分配、回收和页面置换等操作。

(2)页面置换算法实现:根据不同的置换算法实现相应的页面置换逻辑。

(3)地址映射表:用于存储虚拟地址与物理地址的映射关系。

实习五虚拟存储器实验报告

实习五虚拟存储器实验报告

实习五虚拟存储器实验报告一、实验目的本次虚拟存储器实验旨在深入理解虚拟存储器的工作原理,掌握页面置换算法的实现和性能评估,以及观察虚拟存储器对系统性能的影响。

二、实验环境本次实验在装有 Windows 操作系统的计算机上进行,使用了专门的虚拟存储器实验软件,包括模拟系统内存和磁盘存储的工具。

三、实验原理1、虚拟存储器的概念虚拟存储器是一种通过硬件和软件的结合,为用户提供一个比实际物理内存大得多的逻辑地址空间的技术。

它允许程序在运行时,仅将部分数据和代码装入内存,而其余部分则存储在磁盘上,当需要时再进行调入和调出。

2、页面置换算法常见的页面置换算法有先进先出(FIFO)算法、最近最少使用(LRU)算法和最佳置换(OPT)算法等。

这些算法用于决定当内存空间不足时,哪些页面应该被替换出去,以腾出空间给新的页面。

四、实验内容与步骤(一)实验内容1、实现 FIFO 页面置换算法,并对其性能进行测试。

2、实现 LRU 页面置换算法,并对其性能进行比较。

3、观察不同页面访问序列和内存大小对页面置换算法性能的影响。

(二)实验步骤1、启动虚拟存储器实验软件,设置系统内存大小和页面大小。

2、输入页面访问序列,分别运行 FIFO 和 LRU 页面置换算法。

3、记录每次页面置换的情况,包括被置换的页面、缺页次数等。

4、改变页面访问序列和内存大小,重复上述实验过程。

五、实验结果与分析(一)FIFO 页面置换算法结果当使用 FIFO 算法时,对于给定的页面访问序列,随着内存大小的增加,缺页次数逐渐减少。

但在某些情况下,由于先进先出的特性,可能会出现将即将使用的页面置换出去的情况,导致缺页率较高。

(二)LRU 页面置换算法结果LRU 算法在大多数情况下表现优于 FIFO 算法。

因为它基于页面的最近使用情况进行置换,更能保留近期可能会再次使用的页面,从而减少缺页次数。

(三)不同页面访问序列的影响不同的页面访问序列对页面置换算法的性能有显著影响。

模拟储存技术实验报告

模拟储存技术实验报告

一、实验目的1. 了解模拟存储技术的概念和原理;2. 掌握模拟存储器的基本结构和功能;3. 通过实验验证模拟存储技术的性能特点;4. 分析模拟存储技术在现代计算机系统中的应用。

二、实验环境1. 实验平台:PC机2. 实验软件:C++ Builder3. 实验工具:Visual Studio三、实验原理模拟存储技术是一种在计算机系统中实现存储器虚拟化的技术。

通过模拟存储器,计算机可以实现对物理存储器的高效管理和利用。

模拟存储技术主要包括以下几种:1. 虚拟存储器:通过将物理内存和硬盘存储空间结合起来,实现大容量内存的模拟;2. 页面置换算法:根据页面访问的频率和顺序,选择合适的页面进行置换,以提高内存利用率;3. 快速缓存:通过将频繁访问的数据存储在快速缓存中,减少对物理内存的访问次数。

四、实验内容1. 模拟存储器的基本结构设计(1)设计模拟存储器的基本结构,包括物理内存、硬盘存储空间、虚拟内存和页面置换算法等模块;(2)实现模拟存储器的初始化、数据读写、页面置换等功能。

2. 页面置换算法的实现(1)实现三种页面置换算法:FIFO、LRU和OPT;(2)对每种算法进行性能分析,包括缺页率和页面命中率等指标。

3. 快速缓存的设计与实现(1)设计快速缓存的结构,包括缓存大小、替换策略等;(2)实现快速缓存的数据读写、替换等功能。

4. 模拟存储技术的应用实例(1)模拟一个简单的计算机系统,包括CPU、内存、硬盘等模块;(2)在计算机系统中应用模拟存储技术,实现虚拟内存和快速缓存等功能;(3)通过实验验证模拟存储技术在计算机系统中的应用效果。

五、实验步骤1. 设计模拟存储器的基本结构,实现初始化、数据读写、页面置换等功能;2. 实现三种页面置换算法:FIFO、LRU和OPT,并分析其性能;3. 设计快速缓存的结构,实现数据读写、替换等功能;4. 模拟一个简单的计算机系统,应用模拟存储技术,实现虚拟内存和快速缓存等功能;5. 对实验结果进行分析,总结模拟存储技术的性能特点和应用效果。

存储管理实验报告_6

存储管理实验报告_6

昆明理工大学信息工程与自动化学院学生实验报告(2012 —2013 学年第二学期)一、实验目的存储管理的主要功能之一是合理地分配空间。

请求页式管理是一种常用的虚拟存储管理技术。

通过本次实验, 要求学生通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解, 通过请求页式存储管理中页面置换算法模拟设计, 了解虚拟存储技术的特点, 掌握请求页式存储管理的页面置换算法。

二、实验原理及基本技术路线图(方框原理图)用C或C++语言模拟实现请求式分页管理。

要求实现: 页表的数据结构、分页式内存空间的分配及回收(建议采用位图法)、地址重定位、页面置换算法(从FIFO,LRU,NRU中任选一种)。

int subareaSize[num]={8,12,16,32,24,16,64,128,40,64};//分区大小Process *pro=NULL;//保持进程信息int ProcessNum=0;//进程数目int applyProcessNum=0;//每次申请进程数目int maxApplyNum=0;//最大可申请数目int *applyIndex=NULL;//申请进程队列int totalApplyNum=0;//申请总数int *assignPointer=NULL;//已分配内存的进程队列int assignFlag=0;//分配索引, 表示已申请队列已分配的进程数int exeIndex;//执行的进程号Node *subareaNode=new Node[3];//分区回收时, 进程所在分区及其前, 后分区信息LinkList createLinkList(int n );//建立空闲分区链Node firstFit(LinkList &head,Process pro);//首次适应算法Node nestFit(LinkList &head,Process pro,Node flag);//循环适应算法Node bestFit(LinkList &head,Process pro);//最佳适应算法Node worstFit(LinkList &head,Process pro);//最坏适应算法Node assign(LinkList &head,int orderIndex,int index,Node flagNode);//一次分区分配int assignMemory(LinkList &head);//内存分配void insertNode(LinkList &head,Node q,int index);//插入节点Node deleteNode(LinkList &head,int index);//删除节点int display(LinkList &head);//打印分区分配情况int lowAttemper(int *excursionPointer);//低级调度int findSubarea(LinkList &head,int index);//回收内存int creatProcess();//创建进程Process* randomCreatPro(int n);//随机产生进程下面是各种方法简述:(1) 最优替换算法, 即OPT算法。

实习五-虚拟存储器实验报告

实习五-虚拟存储器实验报告

实习五-虚拟存储器实验报告实习五虚拟存储器实验报告一、实验目的本次虚拟存储器实验的主要目的是深入理解虚拟存储器的工作原理和机制,通过实际操作和观察,掌握虚拟存储器的地址转换、页面置换算法等关键概念,以及它们对系统性能的影响。

二、实验环境本次实验在_____操作系统下进行,使用了_____开发工具和_____模拟软件。

三、实验原理虚拟存储器是一种将主存和辅存结合起来使用的技术,它为用户提供了一个比实际物理内存大得多的逻辑地址空间。

虚拟存储器的实现基于分页或分段机制,将逻辑地址空间划分为固定大小的页或段,然后通过页表或段表将逻辑地址映射到物理地址。

在虚拟存储器中,当访问的页面不在主存中时,会发生页面缺失,此时需要从辅存中将所需页面调入主存。

页面置换算法则用于决定在主存已满时,将哪些页面换出主存,以腾出空间调入新的页面。

常见的页面置换算法有先进先出(FIFO)算法、最近最少使用(LRU)算法和最佳置换(OPT)算法等。

四、实验内容与步骤1、初始化实验环境启动操作系统和模拟软件。

设置相关参数,如页面大小、主存容量、辅存容量等。

2、生成访问序列使用随机数生成器或特定的模式生成一系列的逻辑地址访问序列。

3、地址转换根据页表,将逻辑地址转换为物理地址。

记录地址转换的过程和结果,包括是否发生页面缺失。

4、页面置换算法实现分别实现 FIFO、LRU 和 OPT 页面置换算法。

在发生页面缺失时,根据相应的算法选择换出的页面。

5、性能评估统计不同页面置换算法下的页面缺失次数、缺页率等性能指标。

分析不同算法对系统性能的影响。

五、实验结果与分析1、地址转换结果展示部分逻辑地址转换为物理地址的示例,说明转换的过程和正确性。

2、页面置换算法的性能比较给出 FIFO、LRU 和 OPT 算法在相同访问序列下的页面缺失次数和缺页率。

绘制图表直观地比较不同算法的性能差异。

例如,以下是三种算法在某一特定访问序列下的性能数据:|算法|页面缺失次数|缺页率||||||FIFO|_____|_____%||LRU|_____|_____%||OPT|_____|_____%|从上述数据可以看出,OPT 算法的性能最优,其页面缺失次数和缺页率最低;FIFO 算法的性能最差,页面缺失次数和缺页率相对较高;LRU 算法的性能介于两者之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作系统实验六_虚拟存储器实验报告
实验目的:
通过本次实验,了解虚拟存储器的实现原理,以及如何分配虚拟地址和物理地址,实现虚拟存储器管理。

实验内容:
1.按照顺序完成程序代码,以实现对虚拟地址的映射,再间接实现对物理地址的访问。

2.完成不同的页面置换算法,并分析各自的特点。

实验步骤:
1.在实验中实现了给定的伪指令程序,其中包括了虚拟存储器的实现代码。

在页面大小为1K的情况下,每个进程的虚拟地址空间为64K,物理地址空间为16K。

2.在虚拟存储器的实现中,采用了分段式存储器管理模式,其中包括了段描述符表和页表。

其中段描述符表包括了段基址、段长、段类型等信息,而页表则记录了虚拟地址和物理地址的映射关系。

3.实现了三种页面置换算法:LRU、FIFO和随机算法。

其中,LRU算法会选择最近没有使用过的页面进行置换;FIFO算法会按照先进先出原则进行页面置换;随机算法则随机选取一个页面进行置换。

4.通过本次实验,学习了如何通过虚拟地址访问物理地址,并实现了对虚拟存储器的管理。

同时,在实现页面置换算法时,也对不同算法的特点进行了分析。

实验结果:。

相关文档
最新文档