非牛顿流体的管路计算

合集下载

非牛顿流体的流变特性研究

非牛顿流体的流变特性研究

非牛顿流体的流变特性研究流变学是物理学和工程学的一个重要分支,研究物质的流动和变形行为。

非牛顿流体是一类特殊的流体,其流变特性与牛顿流体有所不同。

本文将探讨非牛顿流体的流变特性以及相关研究进展。

一、非牛顿流体简介非牛顿流体是指在变形应力与变形速率不成比例关系的流体。

与牛顿流体不同,非牛顿流体的黏度会随着剪切速率或剪切应力的变化而变化。

根据剪切速率变化对黏度的影响,非牛顿流体可以分为剪切稀释流体和剪切增稠流体两类。

剪切稀释流体在剪切速率增加时,黏度会下降,即流体的流动性增加。

这种现象常见于高分子溶液、悬浊液等。

剪切增稠流体则在剪切速率增加时,黏度会增加。

其中最著名的例子是玉米淀粉和水混合后形成的液体,即所谓的“奇观物质”。

二、非牛顿流体的流变模型非牛顿流体的流变行为可以通过多种模型来描述,其中最常用的是幂律模型和卡门模型。

幂律模型基于幂律关系,即剪切应力与剪切速率的幂函数关系。

该模型形式如下:τ = K × (γ・)^n其中,τ表示剪切应力,K为比例常数,γ・为剪切速率,n为流变指数。

流变指数n的值可以用来刻画非牛顿流体的流变类型。

若n>1,表示为剪切增稠流体;若0<n<1,表示为剪切稀释流体;若n=1,表示为牛顿流体。

卡门模型则假设非牛顿流体的黏度与剪切应力呈指数关系。

该模型形式如下:η = A × e^(Bτ) + C其中,η表示黏度,A、B和C为常数,τ为剪切应力。

卡门模型适用于描述粘弹性较高的非牛顿流体。

三、非牛顿流体的研究进展随着科学技术的不断发展,非牛顿流体的研究也取得了丰富的进展。

研究人员通过实验和理论模拟,深入探讨了非牛顿流体的性质和应用。

在实验方面,研究人员通过流变仪等工具,对不同类型的非牛顿流体进行流变学特性测试。

例如,他们研究了聚合物溶液的剪切流变行为以及微乳液的流动性等。

实验结果揭示了非牛顿流体在不同温度、浓度和剪切条件下的特性,为相关领域的应用提供了理论基础。

流体流动的基本方程

流体流动的基本方程

4)运动粘度
v

单位: SI制:m2/s; 物理单位制:cm2/s,用St表示。
1St 100cSt 104 m 2 / s
关于黏度的讨论
① 黏度是流体的重要物理性质之一,可由实验测定 ② 常见流体的黏度值可由相关手册中查取;当缺乏实验数据 时,还可由经验公式计算 ③ 一般气体的黏度值远小于液体的黏度值 ④ 流体的黏度是温度T的函数 气体:T↑,黏度↑ 液体:T↑,黏度↓
运动流体的流速、压强、密度等有关物理量 稳态流动: 仅随位置而改变,而不随时间而改变 上述物理量不仅随位置而且随时间变化的流 非稳态流动: 动。
三、牛顿粘性定律与流体的粘度
1. 牛顿粘性定律
流体的内摩擦力:运动着的流体内部相邻两流体层间的作 用力。又称为粘滞力或粘性摩擦力。 ——流体阻力产生的来源
一、流量与流速
1、流量
单位时间内流过管道任一截面的流体量,称为流量。 若流量用体积来计量,称为体积流量VS;单位为:m3/s。 若流量用质量来计量,称为质量流量mS;单位:kg/s。 体积流量和质量流量的关系是: mS VS
2、流速
单位时间内流体在流动方向上流过的距离,称为流速u。
VS 单位为:m/s。数学表达式为: u A
mS u1 A11 u2 A2 2
若流体为不可压缩流体
uA 常数
VS
mS

u1 A1 u2 A2
uA 常数
——一维稳态流动的连续性方程
对于圆形管道,
2 2 u1 d1 u2 d 2 4 4
u1 d 2 u2 d 1
?
⑤ 流体的黏度值一般不随压力而变化
流体的分类: 按流体流动时应力与速度梯度之间的关系,流体可分为 牛顿型流体: 服从牛顿粘性定律的流体, 应力与速度梯度成正比例关 系 非牛顿型流体:不服从牛顿粘性定律的流体 , 应力与速度梯度不满足正 比例关系

流体力学中的非牛顿流体

流体力学中的非牛顿流体

流体力学中的非牛顿流体流体力学是研究物质在流动状态下力的作用和运动规律的学科。

在流体力学中,我们通常将流体分为牛顿流体和非牛顿流体。

本文将重点介绍非牛顿流体的特性、流动行为以及其在工程和科学领域中的应用。

一、非牛顿流体的特性非牛顿流体是指其粘度随着应力或剪切速率的改变而变化的流体。

与牛顿流体相比,非牛顿流体表现出更复杂的流动行为。

根据其流变特性,非牛顿流体可以分为剪切变稀型和剪切变稠型。

剪切变稀型的非牛顿流体是指其粘度随剪切速率的增加而减小的流体。

常见的剪切变稀型非牛顿流体包括血液、糊状物和溶胶等。

这些流体在流动过程中,随着剪切力的增加,粒子之间的相互作用减弱,从而导致粘度的降低。

剪切变稀型流体的特性使其在工程领域中得到广泛应用,如石油钻井、医疗器械以及食品加工等。

剪切变稠型的非牛顿流体是指其粘度随剪切速率的增加而增加的流体。

常见的剪切变稠型非牛顿流体有浆料、高聚物溶液和胶体等。

这些流体在流动过程中,由于粒子之间的相互作用增强,导致粘度的增加。

剪切变稠型流体广泛应用于涂料、油漆和火箭发动机燃料等领域。

二、非牛顿流体的流动行为非牛顿流体的流动行为与牛顿流体有所不同。

牛顿流体遵循牛顿流体模型,其粘度独立于剪切速率,流动行为符合牛顿第二定律。

而非牛顿流体则不满足牛顿流体模型,其剪切应力和剪切速率之间的关系是非线性的。

非牛顿流体的流动行为通常由流变学进行描述。

流变学是研究物质应力-应变关系的科学,其中应力指流体内部单位面积上的力,应变指流体的变形程度。

通过流变学可以确定非牛顿流体的粘度与剪切速率之间的关系。

在非牛顿流体的流动过程中,通常存在剪切层滞后和剪切变薄等现象。

剪切层滞后是指在流动过程中,不同位置处的流体粘度不同,形成剪切层。

而剪切变薄是指在流动过程中,流体的某一部分变得更稀薄。

三、非牛顿流体的应用非牛顿流体的特性使其在工程和科学领域中得到广泛应用。

以下列举了一些常见的应用领域:1. 医学领域:血液作为一种剪切变稀型的非牛顿流体,在心血管系统中的流动行为对于疾病诊断和治疗具有重要意义。

牛顿流体与非牛顿流体全解

牛顿流体与非牛顿流体全解

(6)汤姆孙减阻效应 1948 年,汤姆(TOMS)在第1 届国际流变学会议上宣布了他 的减阻实验。将少量的聚甲基丙烯酸加入管内一氯代苯低分子 溶液的湍流中,在一定流量下,管内流动的摩擦阻力显著下降 ,这一现象称为减阻现象。由下图可以看出,当流动由层流转 变为湍流时,流线变密,流量增加,出现减阻现象。湍流减阻 可以使流量增大,对传热、传质有利。
1Pa s 1000 mPa s
3、流变方程中反映流体流变特性的参数只有一个 。对牛顿 流体来说,其流变方程只有一种形式。 4、典型的牛顿流体:水、甘油、低分子量的成品油,空气。 5、牛顿流体内部结构特点:单相流体、分散相浓度很低的假 均匀多相混合物流体。
(三)牛顿流体曲线:
剪切应力/剪切速率= tanα =恒定值, 由于牛顿流体的流动曲线是通过座标原点的直线,因此在 (即粘度 )均为恒定值。如前所述 任一剪切速率下求得的 / ,牛顿流体可通过求任意剪切速率下的剪切应力而求粘度。反 之,若已知粘度值,则可知该直线与横座标的夹角(tanα= )即 斜率,因此该流体的流动性就充分得到了说明。
大多数高分子溶液和乳状液具有明显的假塑性。 (3)剪切稠化流体:也称胀塑性流体,与假塑性流体相反 ,膨胀流体的表观粘度随切变速率增加而增大,这种现象称为 剪切增稠现象。 一些浓稠悬浮体、蛋白质及某些高分子溶液可表现出切力 增稠现象。 2、时变性非牛顿流体 这类流体的粘度函数不仅与应变速率有关,而且还与剪切 持续时间有关。大致可分为两类: (1)触变性和流凝性流体:随着切应力作用时间的延长, 表观粘度越来越小的流体叫做触变性流体;随着切应力作用时 间的延长,表观粘度越来越大的流体叫做流凝性流体,这种流 体在实际中非常少见。然而,在实际中我们遇到的触变性体系 较多,例如:某些粘土悬浮液、陈胶、溶胶及高聚合物可表现 出触变性。

非牛顿流体粘滞系数测量

非牛顿流体粘滞系数测量

非牛顿流体粘滞系数测量以非牛顿流体粘滞系数测量为标题,本文将介绍非牛顿流体的特点以及常用的测量方法。

一、非牛顿流体的特点非牛顿流体是指在流动过程中黏性随剪切速率或剪切应力的变化而变化的流体。

相比于牛顿流体,非牛顿流体的粘滞特性更加复杂。

非牛顿流体的粘滞特性可以分为剪切稀化和剪切增稠两种类型。

剪切稀化是指流体的黏度随剪切速率的增加而减小,例如乳液、泥浆等。

剪切增稠是指流体的黏度随剪切速率的增加而增大,例如胶体溶液、高聚物溶液等。

二、非牛顿流体粘滞系数的测量方法1. 旋转式粘度计测量法旋转式粘度计是一种常用的测量非牛顿流体粘滞系数的仪器。

该方法通过在流体中插入一个旋转圆盘或圆柱体,测量所需的扭矩和转速来计算粘滞系数。

2. 振荡式粘度计测量法振荡式粘度计也是一种常用的测量非牛顿流体粘滞系数的仪器。

该方法通过在流体中振动一个悬挂的物体或平板,测量所需的阻尼力和振动频率来计算粘滞系数。

3. 压降法测量法压降法是一种简便的测量非牛顿流体粘滞系数的方法。

该方法通过在流体中施加一定的压力差,测量流体通过管道时的压降来计算粘滞系数。

4. 球体自由下落法测量法球体自由下落法也是一种常用的测量非牛顿流体粘滞系数的方法。

该方法通过测量球体在非牛顿流体中自由下落的速度和时间来计算粘滞系数。

这些测量方法各有优缺点,选择合适的方法取决于实际需求和流体特性。

三、测量结果的分析与应用通过上述测量方法得到的非牛顿流体粘滞系数可以用来描述流体的黏性特性。

在工程应用中,粘滞系数的测量结果可以用于流体的输送和处理过程中的流体力学分析,以优化流体的流动性能和工艺参数。

非牛顿流体粘滞系数的测量对于许多工业领域也具有重要意义。

例如,在油漆、涂料和胶黏剂的生产中,通过测量粘滞系数可以控制产品的质量和性能;在食品和医药领域,粘滞系数的测量可以用于确定流体的口感和流动性。

总结:非牛顿流体粘滞系数的测量是研究非牛顿流体特性和工程应用的重要手段。

通过旋转式粘度计、振荡式粘度计、压降法测量和球体自由下落法等方法的应用,可以获得粘滞系数的准确数值,以进一步分析和应用非牛顿流体的特性。

研究非牛顿流体与水流传输过程的研究

研究非牛顿流体与水流传输过程的研究

研究非牛顿流体与水流传输过程的研究随着工业和科技的发展,流体力学的研究越来越受到人们的关注。

非牛顿流体作为一类特殊的流体,其性质与牛顿流体明显不同,其在相关领域的应用也逐渐得到了重视。

本文将介绍非牛顿流体的基本性质以及其在水流传输过程中的研究现状。

一、非牛顿流体的基本性质非牛顿流体是指其剪切应力与剪切速率不符合牛顿流体的比例关系,因此它们具有一些独特的性质。

其中最常见的非牛顿流体是粘弹性流体和塑性流体。

粘弹性流体的流变学特性介于固体和液体之间,表现出粘度和弹性的双重特性。

在受到剪切应力的作用下,粘弹性流体会发生形变,但不会立即回复至原状,而是会有一定的时间延迟。

这类流体可被用于伸展、填缝和粘合等方面。

塑性流体则是在达到一定剪切应力阈值后才表现出流动性。

这类流体可用于固体加工、模具填充等领域,其中最典型的塑性流体就是塑料。

二、非牛顿流体的应用非牛顿流体在工业、化工、生物和医药等领域中有广泛的应用。

其中最常见的应用包括:1.油墨和涂料:非牛顿流体的高粘度和抗剪切性能使其成为制造油墨和涂料的理想材料。

2.食品:非牛顿流体的变形和流动性能使其成为制造果酱、酸奶、卡脆饼干等食品的理想材料。

3.皮肤保养品:非牛顿流体的流变特性使其成为制造护肤品的理想材料。

4.药物:粘弹性流体能够维持药物在患处的稳定性,而塑性流体则可用于眼药水和鼻腔喷雾。

三、非牛顿流体在水流传输过程中的研究现状水流传输过程中,流体性质的变化对传输效果有着重要的影响,其中非牛顿流体的研究也取得了一定的进展。

1.微通道内的非牛顿流体流动行为通过微流体技术,研究者可以更直观地观察到非牛顿流体在小管道中的流动行为,以及其可视化的效果。

研究表明,填料微通道结构可以增加流体相互作用,改善流体混合性,进而促进反应过程的展开。

2.非牛顿流体在排水沟中的应用针对城市排水问题,研究者通过将非牛顿流体与水混合,制成耐水性能较好的聚合物,此聚合物可用于制造排水沟防渗涂料、绿化水景等工程中,以提高其抗渗透性、防漏性和装饰性,达到保护生态环境的效果。

非牛顿流体


Introduction
• 考虑了之前常被忽略的因素: 速度分布 加热和冷却在杀菌中的贡献 和环境空气的热交换 产品温度的非均匀分布 传质、传热过程中有效扩散参数
• 本研究的目的不是为了建立流体力学模型(需要复杂的有 限元去划分材料设备),而是通过全局平衡,使模型的复 杂度降低而容易使用,解决模型问题所需时间减少,保证 其在优化过程中的可行性。
Results & Discusssion
温度以及浓分布度
Results & Discusssion
模型假设的影响
Results &Conclusion
• 我们建立了在管系统中的非理想层流的非牛顿流体食物的 连续热加工过程的数学模型模拟,并用刺果番茄汁进行检 验,它是假塑性流体,加热主要是对酵母以及霉菌的破坏。 我们得到的结果是一致的,我们进行了一系列的模拟去研 究模型中假设的影响。 • 我们观察到: • (a)加热、冷却部分对于过程致死力有贡献; • (b)保温管的进口温度需要升高以补偿和周围环境的热 交换,从而导致致死力的上升; • (c)热量以及质量的有效扩散系数被用来表征非理想层 流,这对于温度分布以及过程的致死力有显著影响。
Mathematical Model
无量纲的轴向区域( η =z/L) 0-1(加热部分) 1-2(保温部分) 2-3(冷却部分) 无量纲径向结构域(x=r/Ri) 0(管中心) 1(内管的内壁)
Mathematical Model
传质方程
Mathematical Model
传热方程
Mathematical Model
Conclusion
• 为了达到SA=5.74的杀菌效果,最大流速下的经典的保温方 法需要19m长的保温管,然而我们推荐的模型预测达到相 同的杀菌效果只需要5m长的保温管。 模型要求:大量的过程参数,可以解方程的数学处理器。 优点:灵活性,可以通过很短的计算时间,表征热处理过 程中的不同阶段,从而满足设备设计以及处理过程的优化 的要求。 展望:进一步工作会是通过完全仪器单元以及参数评估程 序对模型进行更全面的确认,可以预料到这个全面的数学 模型可以促进食品工业生产出满足消费者要求的高品质的 加工产品。

《非牛顿流体的流动》课件


地描述非牛顿流体的流动行为。
深入研究非牛顿流体的微观机制
02
通过先进的实验技术和计算机模拟,深入了解非牛顿流体的微
观结构和流变特性。
探索非牛顿流体的应用
03
发掘非牛顿流体的潜在应用价值,如生物医学、石油工业、食
品加工等领域。
非牛顿流体的发展前景
推动相关领域的发展
随着对非牛顿流体研究的深入,将推动流变学、物理、工程等领 域的进步。
屈服值
在流动曲线上,非牛顿流体从静止状态开始流动所需的最小应力。屈服值是非牛 顿流体的一个重要特性,它反映了流体抵抗外力作用的能力。
流动行为与流变模型
流动行为
描述非牛顿流体在受到外力作用时如何响应和流动。不同的非牛顿流体具有不同的流动行为,如触变性、震凝性 、假塑性和胀流性等。
流变模型
为了更好地描述非牛顿流体的流动特性,根据其流动行为和流变特性建立的数学模型。常见的流变模型包括幂律 模型、卡森模型、伯格斯模型和柯西模型等。这些模型可以用来预测非牛顿流体的流变性质和流动行为,为工程 应用提供重要的参考依据。
材料。
石油加工
非牛顿流体在石油加工过程中也 有应用,如用于制作润滑油、燃 料油和添加剂等。通过调整非牛 顿流体的性质,可以提高石油产
品的性能和质量。
04
非牛顿流体的研究方法
实验研究
实验研究是通过实际操作和观察来研究非牛顿流体的流动特性。这种方法可以提供 直接、真实的数据,有助于深入了解非牛顿流体的流动行为。
生物医学研究
非牛顿流体在生物医学研究中也有应用,如模拟生物组织 的流动行为,为研究提供更接近实际的模型。
石油工业
油田开采
非牛顿流体在石油工业中用于油 田开采,通过调整采出液体的流 变性质,可以提高油田的采收率

流体力学中的流体中的非牛顿流体

流体力学中的流体中的非牛顿流体流体力学中的非牛顿流体非牛顿流体是指在流动过程中,其粘度随着剪切应力或剪切速率的变化而变化的流体。

相比于牛顿流体,非牛顿流体在流动性质上更加复杂,因此在流体力学的研究中具有重要的意义。

本文将对非牛顿流体的特点、分类及其在流体力学中的应用进行探讨。

一、非牛顿流体的特点非牛顿流体具有以下几个特点:1. 粘度随剪切应力变化:牛顿流体的粘度是恒定的,而非牛顿流体的粘度随着剪切应力的变化而变化。

在低剪切应力下,非牛顿流体的粘度较低,流动性较好;而在高剪切应力下,非牛顿流体的粘度较高,流动性较差。

2. 粘度随剪切速率变化:除了受剪切应力的影响外,非牛顿流体的粘度还与剪切速率有关。

通常情况下,非牛顿流体的粘度随着剪切速率的增加而降低。

3. 存在流变学行为:非牛顿流体在流动过程中可能出现流变学行为,包括剪切稀化、剪切增稠、剪切硬化等。

剪切稀化指的是流体粘度随着剪切应力的增加而减小;剪切增稠则相反,指的是流体粘度随着剪切应力的增加而增加;剪切硬化是指流体的粘度在一定范围内保持不变。

二、非牛顿流体的分类根据粘度随剪切应力变化的特点,非牛顿流体可以分为剪切变稀流体和剪切变稠流体。

1. 剪切变稀流体:剪切变稀流体是指在剪切应力作用下,流体的粘度随着剪切应力的增加而降低的流体。

常见的剪切变稀流体有溶液、乳液等。

2. 剪切变稠流体:剪切变稠流体则相反,指的是在剪切应力作用下,流体的粘度随着剪切应力的增加而增加的流体。

例如,淀粉浆料、气凝胶等都属于剪切变稠流体。

三、非牛顿流体在流体力学中的应用非牛顿流体在流体力学中有广泛的应用,涉及科学研究、工程技术等多个领域。

1. 食品工业:非牛顿流体在食品工业中具有重要的应用价值。

例如,蛋黄酱、胶体状食品等都属于非牛顿流体。

了解和掌握非牛顿流体的流动特性可以优化食品的生产过程,提高产品的质量。

2. 建筑工程:非牛顿流体在建筑工程中也有一定的应用。

例如,混凝土、石膏浆料等都是非牛顿流体。

牛顿流体与非牛顿流体全解


(2 )粘弹性流体:粘弹性流体同时具有粘性液体和弹性固 体的性质,哪种性质的表现程度如何要取决于外力作用时间的 快慢长短。粘弹性流体除粘度函数与剪切持续时间有关外,在 剪切流动中还表现出法向应力差效应。
(三)非牛顿流体的流变特性
( 1 )剪切稀化现象:粘度随剪切变形速率增大而减小,变 形速率愈大,表观粘度愈小,流动性就愈好。 (2)爬杆现象(韦森堡效应)
(二)非牛顿流体的分类
图3-1 流体的流变图
根据表1-1中非牛顿流体的粘度函数是否和剪切持续时间有 关,可以把非牛顿流体分成两类:非时变性非牛顿流体和时变 性非牛顿流体。 1、非时变性非牛顿流体 这类流体的切应力仅与剪切速率有关,即粘度函数仅与应 变速率或(切应力)有关,而与时间无关。非时变性非牛顿流 体主要包括: (1)宾汉流体:又称塑性流体,它是只当剪切应力大于某 一数值时才开始流动的流体,这时体系并非全部发生形变,而 是产生滑动,中间未发生变化的部分仍按原来的结构形式一起 向前运动。当应力大于屈服值后,其流动性跟牛顿流体完全一 样。一些浓悬浮液如糊状物、软膏、面团、淤泥等,在适当条 件下可表现出这种行为。 (2)剪切稀化流体:也称假塑性流体,这种流体没有屈服 值,表观粘度随剪切速率增加而减小。这种粘度随剪切速率增 大而减小的现象称为剪切变稀现象。
粘度单位为 Pa s ,粘度数值上等于单位速度梯度下流体所受 的剪应力。
(二)牛顿流体的特点:
1、牛顿流体流变曲线为通过原点的直线。
(著名的牛顿流体内摩擦定律) 2、 其中,剪切应力 的单位为Pa,剪切速率 的单位为s-1, 比例系数 为动力粘度,单位为 Pa s(帕秒),有时对某些粘 度较小的流体, Pa s 这种单位太大,而用 mPa s (毫帕秒 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档