常熟市2015-2016学年七年级下期末考试数学试题
2015-2016学年度北师大版七年级数学下册期末测试卷及答案(精选两套)

2015-2016学年度北师⼤版七年级数学下册期末测试卷及答案(精选两套)2015-2016学年度七年级下册数学期末测试卷(⼀)⼀、选择题(本⼤题共6⼩题,每⼩题3分,共18分) 1.下列各组长度的三条线段能组成三⾓形的是()A.1cm ,2cm ,3cm B.1cm ,1cm ,2cm C.1cm ,2cm ,2cm ;D.1cm ,3cm ,5cm ;2.下⾯是⼀位同学做的四道题:①a 3+a 3=a 6;②(xy 2)3=x 3y 6;③x 2?x 3=x 6;2A.(x+a)(x-a)B.(b+m)(m-b)C.(-x-b)(x-b)D.(a+b)(-a-b) 4.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列⼀个条件后,仍⽆法判定△ADF ≌△CBE 的是()A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC5.如图,⼀只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬⾏,那么蚂蚁爬⾏的⾼度h 随时间t 变化的图象⼤致是()6.将⼀张正⽅形纸⽚按如图1,图2所⽰的⽅向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸⽚展开铺平,再得到的图案是()A .B .C .D .⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分) 7.计算21()2--= _______1A 2A 3A 4A 5A A .B .C .D .8.如图有4个冬季运动会的会标,其中不是轴对称图形的有______个9.已知等腰三⾓形的⼀边长为4,另⼀边长为8,则这个等腰三⾓形的周长为___________. 10.已知:2211,63a b a b -=-=,则22a b +=_______ 11.如图,是我们⽣活中经常接触的⼩⼑,⼑柄外形是⼀个直⾓梯形(挖去⼀⼩半圆),⼑⽚上、下是平⾏的,转动⼑⽚时会形成∠1、∠2,则∠1+∠2=_______.12.如图所⽰,∠E=∠F=90°,∠B=∠C ,AE=AF .给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN .其中正确的结论是.(将你认为正确的结论的序号都填上)第11题图第12题图第13题图13.如图是叠放在⼀起的两张长⽅形卡⽚,图中有∠1、∠2、∠3,则其中⼀定相等的是_____14.如果a 2+b 2+2c 2+2ac-2bc=0,那么2015a b+的值为三、(本⼤题共4⼩题,每⼩题6分,共24分) 15.已知:2x ﹣y=2,求:〔(x 2+y 2)﹣(x ﹣y )2+2y (x ﹣y )〕÷4y 的值.16.若2(1)()a a a b --- =4,求222a b ab +-的值17.已知:如图,AB ∥CD ,∠ABE=∠DCF ,说明∠E=∠F 的理由.18.如图,把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,若△PFH的周长为10cm,求长⽅形ABCD的⾯积.四、(本⼤题共3⼩题,每⼩题8分,共24分)19.将⼀副直⾓三⾓尺BAC和BDE如图放置,其中∠BCA=30°,∠BED=45°,(1)若∠BFD=75°,判断AC与BE的位置关系,并说明理由;(2)连接EC,如果AC∥BE,AB∥EC,求∠CED的度数.20.投掷⼀枚普通的正⽅体骰⼦24次.(1)你认为下列四种说法中正确的为(填序号);①出现1点的概率等于出现3点的概率;②投掷24次,2点⼀定会出现4次;③投掷前默念⼏次“出现4点”,投掷结果出现4点的可能性就会加⼤;④若只连续投掷6次,出现的点数之和不可能等于37.(2)求出现奇数的概率;(3)出现6点⼤约有多少次?21.如图所⽰,在△ABC中,DM、EN分别垂直平分AB和AC,交BC 于D、E,(1)若∠DAE=50°,求∠BAC的度数;(2)若△ADE的周长为19cm,求BC的长.五、(本⼤题共2⼩题,每⼩题9分,共18分)22.⼩明的⽗亲在批发市场按每千克1.8元批发了若⼲千克的西⽠进城出售,为了⽅便,他带了⼀些零钱备⽤.他先按市场价售出⼀些后,⼜降价出售.售出西⽠千克数x与他⼿中持有的钱数y元(含备⽤零钱)的关系如图所⽰,结合图像回答下列问题:(1)降价前他每千克西⽠出售的价格是多少?(2)随后他按每千克下降0.5元将剩余的西⽠售完,这时他⼿中的钱(含备⽤的钱)是450元,问他⼀共批发了多少千克的西⽠?(3)⼩明的⽗亲这次⼀共赚了多少钱?23.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D 不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“⼤”或“⼩”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三⾓形.六、(本⼤题共1⼩题,共12分)24.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)①找出图1中的⼀对全等三⾓形并说明理由;②写出图1中线段DE、AD、BE满⾜的数量关系;(不必说明理由)(2)当直线MN绕点C旋转到图2的位置时, 探究线段DE、AD、BE之间的数量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,问DE、AD、BE之间⼜具有怎样的数量关系?直接写出这个数量关系(不必说明理由).参考答案1~6. CBDBBB 7.4 8.3 9.20 10.1 11.90°12.①②③13.∠2=∠314.1 15. 1.16.8 17.略18. 解:∵把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,∴BF=PF,PH=CH,∵△PFH的周长为10cm,∴PF+FH+HC=BC=10cm,∴长⽅形ABCD的⾯积为:2×10=20(cm 2),19. (1)AC∥BE,理由略(2)45°.20. (1)①④(2)12(3)421. (1)∠BAC=115°;(2)BC=19cm.22(1)3.5元(2)120千克,(3)450﹣120×1.8﹣50=184元,DEA=24. 解:(1)①△ADC≌△CEB.理由如下::∵∠ACB=90°,∠ADC=90°,∠BEC=90°∴∠ACD+∠DAC=90°,∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC与△BEC中,,∴△ADC≌△BEC(AAS);②DE=CE+CD=AD+BE.理由如下:由①知,△ADC≌△BEC,∴AD=CE,BE=CD,∵DE=CE+CD,∴DE=AD+BE;(2)∵AD⊥MN于D,BE⊥MN于E.∴∠ADC=∠BEC=∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.在△ADC和△CEB中,∴△ADC≌△CEB.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)同(2),易证△ADC≌△CEB.∴AD=CE,BE=CD∵CE=CD﹣ED∴AD=BE﹣ED,即ED=BE﹣AD;当MN旋转到图3的位置时,AD、DE、BE所满⾜的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).2015-2016学年度七年级数学下册期末测试卷(⼆)⼀、选择题(本⼤题共6⼩题,每⼩题3分,共18分)1.下⾯有4个汽车标志图案,其中不是轴对称图形的是( )2.下列运算:①x 2+x 4=x 6 ②2x+3y=5xy ③x 6÷x 3=x 3 ④(x 3)2=x 6 其中正确的有()A.1个B.2个C.3个D.4个DA .(2a +b )(2b -a ) B.(12x +1)(-12x -1) C .(3x -y )(-3x +y ) D.(-x -y )(-x +y ) 5.如图,⼀扇窗户打开后,⽤窗钩AB 可将其固定,这⾥所运⽤的⼏何原理是()A.三⾓形的稳定性B.两点之间线段最短C.两点确定⼀条直线D.垂线段最短6.如图,⼩亮在操场上玩,⼀段时间内沿M A B M →→→的路径匀速散步,能近似刻画⼩亮到出发点M 的距离y 与时间x之间关系的图象是()⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分)7.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为cm 0000002.0.这个数⽤科学记数法可表⽰为 cm . 8.已知x+y=4,则x 2﹣y 2+8y= .9.⼀个三⾓形的两边长分别是2和7,最长边a 为偶数,则这个三⾓形的周长为.B .C .D10.如图,把⼀块含有30°⾓(∠A=30°)的直⾓三⾓板ABC 的直⾓顶点放在长⽅形桌⾯CDEF 的⼀个顶点C 处,桌⾯的另⼀个顶点F 与三⾓板斜边相交于点F ,如果∠1=40°,那么∠AFE=11.从2、3、4这三个数字中任取两个数字组成⼀个两位数,其中能被3整除的两位数的概率是.第10题图第12题图12.如图,ABCDE 是封闭折线,则∠A ⼗∠B+∠C+∠D+∠E 为度. 13.⼀种圆环(如图),它的外圆直径是8厘⽶,环宽1厘⽶.①如果把这样的2个圆环扣在⼀起并拉紧(如图2),长度为厘⽶;②如果⽤x 个这样的圆环相扣并拉紧,长度为y 厘⽶,则y 与x 之间的关系式是.14.如图1是长⽅形纸袋,将纸袋沿EF 折叠成图2,再沿BF 折叠成图3,若∠DEF=α,⽤α表⽰图3中∠CFE 的⼤⼩为.三、(本⼤题共4⼩题,每⼩题6分,共24分)15.化简求值:)ab 2(]b a 6)b a ()b a [(3222-÷+--+,其中a=11()2--,b=01.16.已知b a 、是等腰△ABC 的边且满⾜0204822=+--+b a b a ,求等腰△ABC 的周长。
2015-2016学年北师大版七年级下期末数学试题及答案

2015~2016学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是( )A .6322m m m =⋅ B .226)3(m m = C .16)4(22+=+m m D .0)1()1(30=-+-2.现有两根木棒,它们的长度分别是20cm 和30cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .10cm 长的木棒B .20cm 长的木棒C .50cm 长的木棒D .60cm 长的木棒3、已知∆ABC 中,∠A :∠B :∠C=3:7:8,则∆ABC 的形状是A .钝角三角形B .直角三角形C .锐角三角形D .都有可能 4、下面是世界上四个名牌轿车的标志,其中不是轴对称图形的一个是5、七(1)班在五一晚会上,有一个闯关活动:将18个大小重量完全一样的彩球放入一个袋中,其中6个白色的,5个黄色的,4个绿色的,3个红色的.如果任意摸出一个彩球是红色,就可以过关,那么一次过关的概率为( )A .31B .185C .92D .61C’B’C B 6、当老师讲到肥皂泡的厚度为0.00000007m 时,小明立刻举手说:“老师,我可以用科学记数法表示它的厚度”,同学们,你们不妨也试一试,请选择( )A .m 7107.0-⨯B .m 8107.0-⨯C .m 8107-⨯D .m 7107-⨯7、如图,右图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟; (2)AB 表示汽车匀速行驶;(3)在第30分钟时。
15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。
2015-2016学年下学期期末七年级数学答案

襄城区2015-2016学年度下学期期末测试七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案B C A C D A C A BD二.填空题11.3± 12.062≥-x 13.4 14. 25º 15.10352+-=x y 16.67-≤<-m 三.解答题17.解:原式=12324---+- ……………………3分 =102- ……………………5分18.解:由①,得:13--=y x ③ …………………………………………1分 把③代入②,得:82)13(3=---y y …………………………………………2分 解这个方程,得1-=y …………………………………………3分 把1-=y 代入③,得:2=x …………………………………………4分所以这个方程组的解是:⎩⎨⎧-==12y x …………………………………………5分(加减消元法略)19.解:解不等式①,得4<x ……………………………………2分 解不等式②,得3-≥x ……………………………………3分 把不等式①和②的解集在数轴上表示出来:0123-1-2-34………………………………4分从上图可以找出两个不等式解集的公共部分,得不等式组的解集:43<≤-x …………5分 20.证明: ∵AB ∥CD∴∠A+∠D=180°……………………………………2分 又∵AD ∥BC∴∠C+∠D=180°……………………………………4分 ∴∠A=∠C ……………………………………5分 21.解:如下图A 1B 1C 1A 1的坐标为(2,-2),B 1的坐标为(5,4),C 1的坐标为(1,2) (画图正确得2分,每写对一个坐标加1分,共计5分)22.(1)2500%24600=÷. ……………………………………2分 (2)︒=⨯︒14425001000360 ……………………………………4分 (3)鸡汤面24%牛杂面%热干面%1002003004005006007008009001000碗数种类热干面牛杂面鸡汤面60010009003640……………7分23.解:(1)设饮用水和蔬菜分别有x 件与y 件,由题意可得: ⎩⎨⎧+==+202800y x y x ……………………………………2分解得⎩⎨⎧==260540y x ……………………………………4分答: 饮用水和蔬菜分别有540件与260件. ……………………………………5分 (2)设租用甲种货车m 辆,租用乙种)6(m -辆, 由题意可得:⎩⎨⎧≥-+≥-+260)11(3020540)11(3080m m m m ……………………………………7分解得72.4≤≤m ∵m 取自然数∴7,6,5 m ……………………………………9分 ∴存在以下三种安排方案:①甲种货车5辆,乙种货车6辆; ②甲种货车6辆,乙种货车5辆;③甲种货车7辆,乙种货车4辆. ……………………………………10分24.(1)证明:如图1,过点P 作PG ∥1l ∵1l ∥2l , PG ∥1l ∴PG ∥2l∴∠GPF=∠2………………………2分 又∵PG ∥1l∴∠GPE=∠1………………………3分 ∴∠GPF+∠GPE=∠1+∠2即∠3=∠1+∠2………………………4分 (2) ∠3=∠2-∠1 ………………………6分 (3) 如图2,过点P 作PG ∥1l ∵1l ∥2l , PG ∥1l ∴PG ∥2l∴∠GPF+∠2=180°………………………8分 又∵PG ∥1l∴∠GPE+∠1=180°………………………9分 ∴∠GPF+∠GPE+∠1+∠2=360°即∠1+∠2+∠3=360°………………………10分E FP A B1l 2l 3l 121图G E FPAB1l 2l 3l 124l 2图G。
2015-2016人教版七年级数学下册期末考试卷及答案

2014-2015人教版七年级数学下册期末考试卷C及答案 A AA 1 一、选择题:(本大题共10个小题,每小题3分,共30分) 小刚 D P1.若m>-1,则下列各式中错误的是()... B C 1 小军 C BA.6m>-6 B.-5m<-5C.m+1>0 D.1-m<2 1 CB小华2.下列各式中,正确的是( ) (1) (2) (3) 23( 4)A.=±4 B.±=4 C.=-3 D.=-4 1616 277.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三3.已知a>b>0,那么下列不等式组中无解的是()..角形的个数是().4.B.C.D. Ax ax ax ax a A.在各个B.3 C.2 D.1 x bx bx bx b 18内角都相等的多边形中,一个外角等于一个内角的,则这个4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,2多边形的边数是()那么两个拐弯的角度可能为()A.5 B.6 C.7 D.8 (A) 先右转50°,后右转40° (B) 先右转50°,后左转40°9.如图(2),△ABC是由△ABC沿BC方向平移了BC长度的一半得到的,(C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 1112若△ABC的面积为20 cm,则四边形ADCC的面积为() x 1 115.解为的方程.10 cmB.12 c m C.15 cm组是() y 22222 AD.17 cm10.课间操时,小华、小军、小刚的位置如图3,小华对小刚说,如果C. D.我的位x y 1x y 1x y 3x 2y 3 A. B.置用(•0,0)表示,3x y 13x y 53x y 53x y 5小军的位置用(2,1)表示,那么你的位置可以表示成( ) 00 A.(5,4) B.(4,5)C.(3,4)D.(4,3) 6.如图(1),在△ABC中,∠ABC=50,∠ACB=80,BP平分∠ABC,CP平分二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填∠ACB,则∠BPC的大小是()0000在答题卷的横线上.A.100 B.110 C.115 D.120 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 第 1 页共 4 页七年级数学下册期末考试卷C12.不等式5x-9≤3(x+1)的解集是________.19.解不等式组:,并把解集在数轴上x 3(x 2) 4,表示出来.2x 1x 1 13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______. . 25 14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. D李庄A312 x y 20.解方程组:342 火车站15.从A沿北偏东60°的方4(x y) 3(2x y) 17 BC向行驶到B,再从B沿南偏西20°的方向行驶到C,•则∠ABC=_______度. 16.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=_______.21.如图, AD∥BC , AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正明理由。
2015-2016学年度北师大版七年级数学第二学期期末测试卷(附答案)

2015~2016学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 下列各式计算正确的是( )A .8442x x x =+ B .()326x yx y = C .()325x x = D .()853x x x =-⋅-2. 下列各式中,不能用平方差公式计算的是( )A .)43)(34(x y y x ---B .)2)(2(2222y x y x +- C .))((a b c c b a +---+ D .))((y x y x -+-3. PM 2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .0.25×10-5B .0.25×10-6C .2.5×10-5D .2.5×10-64. 如图,∠1与∠2互补,∠3=135°,则∠4的度数是( ) A 、45° B 、55° C 、65° D 、75°5. 在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的关系式为y =10t ;④第1.5小时,甲跑了12千米.其中正确的说法有( ) A .1个 B .2个 C .3个 D .4个第4题第5题6. 如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别 是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( ) A 、5个 B 、4个 C 、3个 D 、2个7. 若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( )A .12B .34C .13D .148. 如下图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 交AB 于点E ,DF ⊥AC 交AC 于点F .若S △ABC =7,DE =2,AB =4, 则AC =( )A .4B .3C .6D .59. 如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于( )A . 25°B . 30°C . 35°D . 40°10. 如图,△ABC 的外角平分线CP 和内角平分线BP 相交于点P ,若∠BPC =35°,则∠CAP =( )A .45°B .50°C .55°D .65°11. 如图,△ABC 中,∠ACB =90°,CD 是高,∠A =30°,AB =4,则BD 的值为( ) A .3 B .2 C .1.5 D .l12. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ; ⑤∠AOB =60°.其中正确的结论的个数是( ) A .2个 B .3个 C .4个 D .5个C第6题A B CFE第8题第9题PDC B A第10题第11题第12题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 长方形面积是a ab a 6332+-,一边长为3a ,则它的另一边长是 。
江苏省苏州市2015_2016学年七年级数学下学期期末模拟试卷(含解析)新人教版
2015-2016学年江苏省苏州市七年级(下)期末数学模拟试卷一、选择题(共10小题,每小题2分,满分20分)1.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)2.如图,已知AB∥CD,则∠A、∠E、∠D之间的数量关系为()A.∠A+∠E+∠D=360°B.∠A+∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A﹣∠E﹣∠D=90°3.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)4.不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数 B.零C.负数 D.非负数5.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤86.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°7.在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a,b】.例如,把图中的ABC先向右平移3格,再向下平移5格得到△A1B1C1,可以把这个过程记为【3,﹣5】.若再将△A1B1C1经过【5,2】得到△A2B2C2,则△ABC经过平移得到△A2B2C2的过程是()A.【2,7】B.【8,﹣3】C.【8,﹣7】D.【﹣8,﹣2】8.现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A.2a+3b B.2a+b C.a+3b D.无法确定9.已知方程组的解满足x+y=2,则k的值为()A.﹣4 B.2 C.﹣2 D.410.若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为()A.0 B.4 C.﹣4 D.﹣4或4二、填空题(共10小题,每小题2分,满分20分)11.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是m.12.已知:x a=4,x b=3,则x a﹣2b= .13.如果x﹣y=2,xy=3,则x2y﹣xy2= .14.若二次三项式4x2+ax+9是一个完全平方式,则a= .15.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE= .16.将二元一次方程3x﹣5y=9化成y=kx+m,则k= ,m= .17.若关于x的不等式组只有4个整数解,则a的取值范围是.18.若(x+m)(x+3)中不含x的一次项,则m的值为.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P= .20.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题21.计算题:①()100×3101﹣(﹣2011)0②5a2b•(﹣2ab3)+3ab•(4a2b3)22.解方程组:(1)(2).23.分解因式:(1)x2y﹣3y.(2)(2x+y)(2x﹣3y)+x(2x+y).24.解不等式组.并把解集在数轴上表示出来..25.如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.26.某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量运往A地的费用运往B地的费用大车15吨/辆630元/辆750元/辆小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.27.如图,AE∥BD,∠CBD=50°,∠AEF=130°.求∠C的度数.28.在数学中,为了简便,记=1+2+3+…+(n﹣1)+n, =(x+1)+(x+2)+…+(x+n).(1)请你用以上记法表示:1+2+3+…+2011= ;(2)化简:;(3)化简: [(x﹣k)(x﹣k﹣1)].29.阅读理解:解方程组时,如果设,则原方程组可变形为关于m、n的方程组,解这个方程组得到它的解为.由,求得原方程组的解为.利用上述方法解方程组:.30.若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.四、附加题做对加分,做错不扣分31.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.32.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2015-2016学年江苏省苏州市七年级(下)期末数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)【考点】同位角、内错角、同旁内角.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选A.2.如图,已知AB∥CD,则∠A、∠E、∠D之间的数量关系为()A.∠A+∠E+∠D=360°B.∠A+∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A﹣∠E﹣∠D=90°【考点】平行线的性质.【分析】先作EF∥AB,根据两直线平行同旁内角互补可知∠A+∠AEF=180°,而AB∥CD,利用平行于同一直线的两条直线平行可得EF∥CD,再根据两直线平行内错角相等可知∠D=∠FED,于是有∠A+∠AEF+∠FED﹣∠D=180°,即可求∠A+∠E﹣∠D=180°.【解答】解:如右图所示,作EF∥AB,∵AB∥EF,∴∠A+∠AEF=180°,又∵AB∥CD,∴EF∥CD,∴∠D=∠FED,∴∠A+∠AEF+∠FED﹣∠D=180°,即∠A+∠E﹣∠D=180°.故选C.3.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【考点】平方差公式的几何背景.【分析】根据正方形和梯形的面积公式,观察图形发现这两个图形阴影部分的面积=a2﹣b2=(a+b)(a﹣b).【解答】解:阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选A.4.不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数 B.零C.负数 D.非负数【考点】完全平方公式;非负数的性质:偶次方.【分析】根据完全平方公式对代数式整理,然后再根据平方数非负数的性质进行判断.【解答】解:x2+y2﹣10x+8y+45,=x2﹣10x+25+y2+8y+16+4,=(x﹣5)2+(y+4)2+4,∵(x﹣5)2≥0,(y+4)2≥0,∴(x﹣5)2+(y+4)2+4>0,故选:A.5.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤8【考点】解一元一次不等式组.【分析】根据不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范围即可.【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a,b】.例如,把图中的ABC先向右平移3格,再向下平移5格得到△A1B1C1,可以把这个过程记为【3,﹣5】.若再将△A1B1C1经过【5,2】得到△A2B2C2,则△ABC经过平移得到△A2B2C2的过程是()A.【2,7】B.【8,﹣3】C.【8,﹣7】D.【﹣8,﹣2】【考点】坐标与图形变化-平移.【分析】2次平移后的横坐标变化分别为3,5,纵坐标变化分别为﹣5,2,那么让坐标分别相加即为△ABC 经过平移得到△A2B2C2的过程.【解答】解:∵2次平移后的横坐标变化分别为3,5,说明图形向右平移了3个单位,又向右平移了5个单位,那么一共向右平移了3+5=8个单位;纵坐标变化分别为﹣5,2,说明图形向下平移了5个单位后,又向上平移了2个单位,那么是平移了﹣5+2=﹣3个单位;∴△ABC经过平移得到△A2B2C2的过程是【8,﹣3】,故选B.8.现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A.2a+3b B.2a+b C.a+3b D.无法确定【考点】多项式乘多项式.【分析】根据题意可知拼成的长方形的面积是4a2+3b2+8ab,再对此多项式因式分解,即可得出长方形的长和宽.【解答】解:根据题意可得:拼成的长方形的面积=4a2+3b2+8ab,又∵4a2+3b2+8ab=(2a+b)(2a+3b),b<3b,∴长=2a+3b.故选A.9.已知方程组的解满足x+y=2,则k的值为()A.﹣4 B.2 C.﹣2 D.4【考点】二元一次方程组的解.【分析】方程组中两方程相减消去k得到关于x与y的方程,与x+y=2联立求出解,即可确定出k的值.【解答】解:,①﹣②得:x+2y=2,联立得:,解得:,则k=2x+3y=4,故选D10.若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为()A.0 B.4 C.﹣4 D.﹣4或4【考点】多项式乘多项式.【分析】根据多项式乘多项式的运算法则,展开后令x的一次项的系数为0,列式求解即可.【解答】解:(x+k)(x﹣4),=x2﹣4x+kx﹣4k,=x2+(k﹣4)x﹣4k,∵不含有x的一次项,∴k﹣4=0,解得k=4.故选B.二、填空题(共10小题,每小题2分,满分20分)11.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是 1.56×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001 56m这个数用科学记数法表示是1.56×10﹣6m.12.已知:x a=4,x b=3,则x a﹣2b= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法及乘法进行计算即可.【解答】解:x a﹣2b=x a÷(x b•x b),=4÷(3×3),=.故答案为:.13.如果x﹣y=2,xy=3,则x2y﹣xy2= 6 .【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:∵x﹣y=2,xy=3,∴x2y﹣xy2=xy(x﹣y)=3×2=6.故答案为:6.14.若二次三项式4x2+ax+9是一个完全平方式,则a= ±12 .【考点】完全平方式.【分析】此题考查了配方法,一次项系数等于二次项系数与常数项的平方根的积的2倍,注意完全平方式有两个,所以一次项系数有两个且互为相反数.【解答】解:a=±2×2×3=±12.故答案为:±12.15.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE= 14°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC﹣∠DAC.【解答】解:∵在△ABC中,AE是∠BAC的平分线,且∠B=42°,∠C=70°,∴∠BAE=∠EAC===34°.在△ACD中,∠ADC=90°,∠C=70°,∴∠DAC=90°﹣70°=20°,∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°.故答案是:14°.16.将二元一次方程3x﹣5y=9化成y=kx+m,则k= ,m= ﹣.【考点】解二元一次方程.【分析】将方程移项后,再将y的系数变为1即可得出结论.【解答】解:∵3x﹣5y=9,∴5y=3x﹣9,∴y=x﹣.故答案为:;﹣.17.若关于x的不等式组只有4个整数解,则a的取值范围是﹣11≤a<﹣8 .【考点】一元一次不等式组的整数解.【分析】首先求出不等式的解集,根据不等式组整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式2x>3x﹣3,得:x<3,解不等式3x﹣a>5,得:x>,∵不等式组只有4个整数解,∴﹣2≤<﹣1,解得:﹣11≤a<﹣8,故答案为:﹣11≤a<﹣8.18.若(x+m)(x+3)中不含x的一次项,则m的值为﹣3 .【考点】多项式乘多项式.【分析】把式子展开,找到x的一次项的所有系数,令其为0,可求出m的值.【解答】解:∵(x+m)(x+3)=x2+(m+3)x+3m,又∵结果中不含x的一次项,∴m+3=0,解得m=﹣3.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P= 90°.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°.故答案为:90°.20.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.【考点】二元一次方程组的解.【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【解答】解:两边同时除以5得,,和方程组的形式一样,所以,解得.故答案为:.三、解答题21.计算题:①()100×3101﹣(﹣2011)0②5a2b•(﹣2ab3)+3ab•(4a2b3)【考点】单项式乘单项式;幂的乘方与积的乘方;零指数幂.【分析】(1)根据积的乘方等于乘方的积,可得答案;(2)根据单项式的乘法,可得整式的加减,根据整式的加减,可得答案.【解答】解:(1)原式=【(﹣)100×3100】×3﹣1=[﹣×3]100×3﹣1=3﹣1=2;(2)原式=﹣10a3b4+12a3b4=2a3b4.22.解方程组:(1)(2).【考点】解三元一次方程组;解二元一次方程组.【分析】(1)应用加减消元法或代入消元法先消去x,求出y的值,然后代入①或②求出y的值即可.(2)是三元一次方程组,应用加减消元法先消去未知数y,将三元一次方程组转化为二元一次方程组,然后再与(1)同法解之.【解答】解:(1)②×3﹣①得:y=1把y=1代入②,得:x=3经检验,原方程组的解为:(2 )①+②,③﹣②得:(5)×3﹣(4)得:把代入③得:y=3经检验:是原方程组的解.23.分解因式:(1)x2y﹣3y.(2)(2x+y)(2x﹣3y)+x(2x+y).【考点】提公因式法与公式法的综合运用.【分析】(1)根据提取公因式法,可得平方差公式,根据平方差公式,可得答案;(2)根据提公因式法,可得答案.【解答】解:(1)原式=y(x2﹣9)=(x+3)(x﹣3);(2)原式=(2x+y)(2x﹣3y+x)=3(2x+y)(x﹣y).24.解不等式组.并把解集在数轴上表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解每一个不等式,再求解集的公共部分即可.【解答】解:不等式①去分母,得x﹣3+6≥2x+2,移项,合并得x≤1,不等式②去括号,得1﹣3x+3<8﹣x,移项,合并得x>﹣2,∴不等式组的解集为:﹣2<x≤1.数轴表示为:25.如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.【考点】二元一次方程组的解.【分析】首先解二元一次方程组,得出的x、y是含a的代数式,然后由已知x和y的绝对值相等,分两种情况求出a的值.【解答】解:方程组得:,已知x和y的绝对值相等,当x、y同号时,则2a﹣12=8﹣a,得:a=,当x、y异号时,则2a﹣12=﹣(8﹣a),得:a=4,所以a的值为:或4.26.某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量运往A地的费用运往B地的费用大车15吨/辆630元/辆750元/辆小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设大车货x辆,则小货车(20﹣x)辆,根据“大车装的货物数量+小车装的货物数量=240吨”作为相等关系列方程即可求解;(2)①调往A地的大车m辆,小车(10﹣m)辆;调往B地的大车(8﹣m)辆,小车(m+2)辆,根据“运往A地的白砂糖不少于115吨”列关于m的不等式求出m的取值范围,②设总运费为W元,根据运费的求算方法列出关于运费的函数关系式W=10m+11300,再结合一次函数的单调性得出w的最小值即可求解.【解答】解:(1)设大货车x辆,则小货车有(20﹣x)辆,15x+10(20﹣x)=240,解得:x=8,20﹣x=20﹣8=12(辆),答:大货车用8辆.小货车用12辆;(2)①调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,由题意得:15m+10(10﹣m)≥115,解得:m≥3,∵大车共有8辆,∴3≤m≤8;②设总运费为W元,∵调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,∴到B的大车(8﹣m)辆,到B的小车有[12﹣(10﹣m)]=(2+m)辆,W=630m+420(10﹣m)+750(8﹣m)+550(2+m),=630m+4200﹣420m+6000﹣750m+1100+550m,=10m+11300.又∵W随m的增大而增大,∴当m=3时,w最小.当m=3时,W=10×3+11300=11330.因此,应安排3辆大车和7辆小车前往A地,安排5辆大车和5辆小车前往B地,最少运费为11330元.27.如图,AE∥BD,∠CBD=50°,∠AEF=130°.求∠C的度数.【考点】平行线的性质;三角形的外角性质.【分析】根据两直线平行,同位角相等求出∠A=∠CBD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AE∥BD,∠CBD=50°,∴∠A=∠CBD=50°,∵∠AEF=130°,∴∠C=∠AEF﹣∠A=130°﹣50°=80°.28.在数学中,为了简便,记=1+2+3+…+(n﹣1)+n, =(x+1)+(x+2)+…+(x+n).(1)请你用以上记法表示:1+2+3+…+2011= ;(2)化简:;(3)化简: [(x﹣k)(x﹣k﹣1)].【考点】整式的混合运算.【分析】(1)根据题意简便的记法,已知第一个式子中令n=2011即可把所求的式子记作;(2)把已知第二个式子中的k化为﹣k,变形后,根据n个x相加记作nx,从1开始连续的自然数相加利用首项加末项除以2乘以项数进行化简,即可得到结果;(3)所求式子表示(x﹣1)(x﹣2)+(x﹣2)(x﹣3)+(x﹣3)(x﹣4),利用多项式乘以多项式的法则变形后,合并同类项即可得到结果.【解答】解:(1)1+2+3+…+2011=;(2)=(x﹣1)+(x﹣2)+(x﹣3)+…+(x﹣n)=(x+x…+x)﹣(1+2+3…+n)=nx﹣;(3) [(x﹣k)(x﹣k﹣1)]=(x﹣1)(x﹣2)+(x﹣2)(x﹣3)+(x﹣3)(x﹣4)=x2﹣3x+2+x2﹣5x+6+x2﹣7x+12=3x2﹣15x+20.29.阅读理解:解方程组时,如果设,则原方程组可变形为关于m、n的方程组,解这个方程组得到它的解为.由,求得原方程组的解为.利用上述方法解方程组:.【考点】解二元一次方程组.【分析】仿照例题,设,则原方程组可变形为关于m、n的方程组,求出m,n的值,进而求出方程组的解.【解答】解:设,则原方程组可变形为关于m、n的方程组,①+②得:8m=24,解得:m=3,将m=3代入①得:n=﹣2,则方程组的解为:,由=3, =﹣2,故方程组的解为:.30.若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.【考点】因式分解的应用.【分析】将已知等式左边第四项去括号后结合,提取公因式变形后,再利用完全平方公式化简,得到底数为0,得到x+z=2y,由周长为48得到x+y+z=48,将x+z=2y代入即可求出y的值.【解答】解:∵(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=(x﹣y)2+(z﹣y)2+2y2﹣2xy﹣2yz+2xz=(x﹣y)2+(z﹣y)2+2y(y﹣x)﹣2z(y﹣x)=(x﹣y)2+(z﹣y)2+2(y﹣x)(y﹣z)=0=[(x﹣y)+(z﹣y)]2=0,即x﹣y+z﹣y=0,∴x+z=2y,又∵x+y+z=48,∴2y+y=48,即3y=48,则y=16.四、附加题做对加分,做错不扣分31.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= 140 °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.32.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】平行线的性质.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.。
【最新】2015-2016学年苏科版数学七年级下册期末模拟试卷及答案
B . a(a- 1)2
C.a( a+ 1)( a- 1)
D. (a2+ a)( a-1)
8.在一年一度的 “安仁春分药王节 ”市场上,小明的妈妈用 280 元买了甲、乙两种药材,甲种药材每斤
20
元,乙种药材每斤 60 元,且甲种药材比乙种药材多买了 2 斤,设买了甲种药材 x 斤,乙种药材 y 斤,
10.把一块直尺与一块三角板如图放置.若∠ 1=40°,则∠ 2 的度数为 ( )
A .125 °
B . 120 ° C. 140 °
D. 130 °
七下数学期终复习练习三
1.已知空气的单位体积质量为
姓名
1.24
-
×10
3
克/厘米
3,将 1.24 ×10-3 用小数表示为
()
A . 0.000124
( )A .三角形的内角和是 180 ° B .多边形的外角和都等于 360 °
C.五边形的内角和是 900 °
D .三角形的一个外角等于和它不相邻的两个内角的和
4.在 6×6 方格中, 将图①中的图形Ⅳ平移后位置如图②所示, 则图形 N 的平移方法中, 正确的是 ( )
A .向下移动 1 格
B.向上移动 1 格 C.向上移动 2 格
A .∠ 1=∠ 2
B.∠ 1=∠ 5 C.∠ 1+∠ 3= 180 ° D.∠ 3=∠ 5
6.下列运算正确的是
()
A . (a+ b)2= a2+ b2
B. x3+ x3 = x6
C
.
(a
3
)
2=
a
5
D
.(
2x2)(-
3x3 )=-
5
6x
7.分解因式 a3- a 的结果是
苏科版2015-2016学年第二学期七年级数学下册期末试卷及答案
2015—2016学年第二学期期末考试试卷初一数学 2016. 6本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上.1. 下列式子计算正确的是A. 660a a ÷=B. 236(2)6a a -=-C. 222()2a b a ab b --=-+D. 22()()a b a b a b ---+=-2. 在人体血液中,红细胞的直径约为7.7-4⨯10cm, 7.7-4⨯10用小数表示为A. 0.000077B. 0. 00077C. -0.00077D. 0.00773. 如果一个三角形的两边长分别为3和7,则第三边长可能是A.3B.4C.7D.104. 如果a b <,下列各式中正确的是A. 22ac bc <B. 11a b >C. 33a b ->-D. 44a b > 5. 如图,直线12//l l ,一直角三角板(90)ABC ACB ∠=︒放在平行线上,两直角边分别与1l 、2l 交于点D 、E ,现测得175∠=︒,则2∠的度数为A. 15°B. 25°C. 30°D. 35°6. 如图4,已知ABC DCB ∠=∠,下列所给条件不能证明ABC DCB ∆≅∆的是A. A D ∠=∠B. AB DC =C. ACB DBC ∠=∠D. AC BD =7. 下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数x ,代数式2610x x -+总是正数;④若三条线段a 、b 、c 满足a b c +>,则三条线段a 、b 、c 一定能组成三角形.其中正确命题的个数是A.1个B. 2个C. 3个D.4个8. 已知关于x 的方程33x m x +=+的解为非负数,且m 为正整数,则m 的取值为A. 1B.1、2C. 1、2、3D. 0、1、2、39. 某商场为促销某种商品,将定价为5元/件的该商品按如下方式销售:若购买不超过5件商品,按原价销售;若一次性购买超过5件,按原价的八折进行销售.小明现有29元,则最多可购买该商品A. 5件B. 6件C. 7件D. 8件10. 如图,ABC ∆中,,AB AC D =、E 分别在边AB 、AC 上,且满足AD AE =.下列结论中:①ABE ACD ∆≅∆,②AO 平分BAC ∠,③OB OC =, ④AO BC ⊥,⑤若1AD BD =,则1OD OC =;其中正确的有A. 2个B. 3个C. 4个D.5个二、填空题 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上.11. 计算: 423228x y x y ÷7= .12. 若 2x =-是方程36ax y +=的解,则a 的值为 .1y =13. 已知123,35y x y x =-+=-,则当x 满足条件 时,12y y <.14. 若一个多边形的每一个内角都是144°,则这个多边形的是边数为 .15. 已知4a b -=,则228a b a --的值为 .16. 如图,ABC ADE ∆≅∆,BC 的延长线交DE 于点G ,若24,54,16B CAB DAC ∠=︒∠=︒∠=︒,则DGB ∠= .17. 如图,四边形ABCD 中,A B C ∠=∠=∠,点E 在AB 边上,且13ADE EDC ∠=∠,110BED ∠=︒,则A ∠= .18. 4个数,,,a b c d 排列成∣ac bd ∣,我们称之为二阶行列式.规定它的运算法则为: ∣ac bd ∣= ad bc -.若∣21x x -+32x x +-∣=-13,则x = . 三、解答题 本大题共10小题,共76分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计19. (本题满分9分,每小题3分)将下列各式分解因式:(1) 21245x x --; (2) 32363x x x -+; (3) 29()4()a x y x y ---.20.(本题满分5分)先化简再求值: 224(1)7(1)(1)3(1)x x x x +--++-,其中12x =-. 21.(本题满分8分,每小题4分)解不等式(组):(1) 3136x x -≥-,并将解集在数轴上表示出来; (2) 2x x >4-2 211132x x -≥- 22.(本题满分8分,每小题4分)解方程组 (1) 13102x y += (2) 6a b c -+= 24x y -= 423a b c ++=9318a b c -+=23.(本题满分7分)某中学团委组织学生去儿童福利院慰问,准备购买15个甲种文具和20个乙种文具,共需885元;后翻阅商场海报发现,下周甲、乙两种文具进行促销活动,甲种文具打八折销售、乙种文具打九折,且打折后两种文具的销售单价相同.(1)求甲、乙两种文具的原销售单价各为多少元?(2)购买打折后的15个甲种文具和20个乙种文具,共可节省多少钱?24.(本题满分7分)如图,在四边形ABCD 中,//,AD BC BD BC =,90A ∠=︒;(1)画出CBD ∆的高CE ;(2)请写出图中的一对全等三角形(不添加任何字母),并说明理由;(3)若2,5AD CB ==,求DE 的长.25.(本题满分7分)已知关于x 、y 的方程组 35x y a -=+的解满足x y >>0; 24x y a +=(1)求a 的取值范围; (2)化简3a a +-.26.(本题满分8分)如图1,已知90,ABC D ∠=︒是直线AB 上的一点,AD BC =,连结DC .以DC 为边,在CDB ∠的同侧作CDE ∠,使得CDE ABC ∠=∠,并截取DE CD =,连结AE .(1)求证: BDC AED ∆≅∆;并判断AE 和BC 的位置关系,说明理由;(2)若将题目中的条件“90ABC ∠=︒”改成“ABC x ∠=︒(0x <<180)”,①结论“BDC AED ∆≅∆”还成立吗?请说明理由;②试探索:当x 的值为多少时,直线AE BC ⊥.27.(本题满分8分)探索:在图1至图2中,已知ABC ∆的面积为a ,(1)如图1,延长ABC ∆的边BC 到点D ,使CD BC =,连接DA ;延长边CA 到点E ,使CA AE =,连接DE ;若DCE ∆的面积为1S ,则1S = (用含a 的代数式表示);(2)在图1的基础上延长AB 到点F ,使BF AB =,连接,FD FE ,得到DEF ∆ (如图2).若阴影部分的面积为2S ,则2S = (用含a 的代数式表示);(3)发现:像上面那样,将ABC ∆各边均顺次延长一倍,连接所得端点,得到DEF ∆ (如图2),此时,我们称ABC ∆向外扩展了一次.可以发现,扩展n 次后得到的三角形的面积是ABC ∆面积的 倍(用含n 的代数式表示);(4)应用:某市准备在市民广场一块足够大的空地上栽种牡丹花卉,工程人员进行了如下的图案设计:首先在ABC ∆的空地上种紫色牡丹,然后将ABC ∆向外扩展二次(如图3).在第一次扩展区域内种黄色牡丹,第二次扩展区域内种紫色牡丹,紫色牡丹花的种植成本为100元/平方米,黄色牡丹花的种植成本为95元/平方米.要使得种植费用不超过48700元,工程人员在设计时,三角形ABC 的面积至多为多少平方米?28.(本题满分9分)如图,E 、F 分别是AD 和BC 上的两点,EF 将四边形ABCD 分成两个边长为5cm 的正方形,90DEF EFB B D ∠=∠=∠=∠=︒;点H 是CD 上一点且CH =lcm ,点P 从点H 出发,沿HD 以lcm/s 的速度运动,同时点Q 从点A 出发,沿A →B →C 以5cm/s 的速度运动.任意一点先到达终点即停止运动;连结EP 、EQ .(1)如图1,点Q 在AB 上运动,连结QF ,当t = 时,//QF EP ; (2)如图2,若QE EP ⊥,求出t 的值; (3)试探究:当t 为何值时,EPD ∆的面积等于EQF ∆面积的7.。
北师大版2015-2016学年七年级数学下学期期末试卷
B ′C ′D ′O ′A ′ODC BA(第4题图)2015—2016学年度第二学期期末七年级质量检测数 学 试 题一.选择题(共12小题,每题3分,共计36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是( )A .14B .12C .34 D .12、下列运算正确的是( )A 、()1122+=+a a B 、(a3b2-2a2b+ab)÷ab=a2b-2aC 、(a+2b)(a-2b)=a2-2b2D 、(-12a2b)3= -18a6b33.如图,AE ∥BD, ∠1=120°, ∠2=40°,则∠C的度数是( )A.10°B.20°C.30°D.40°4.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB 的依据是 ( ) A .SASB .ASAC .AASD .SSS5、下列条件中能判定△ABC ≌△DEF 的是 ( )A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠B =∠E ,∠C =∠FC .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF6.甲、乙两人以相同路线前往距离单位10km 的培训中心参加学习.图中l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km )随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有( ) A . 4个B . 3个C . 2个D . 1个7.如图,在△ABC 中,∠ABC=50°,∠ACB=80°,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( ) A .100°B .110°C .115°D .120°8. 若定义()()a b b a f ,,=,()()n m n m g --=,,,例如()()2,33,2=f ,()()4,14,1=--g ,则()()6,5-f g 的值为( )A .(6-,5)B .(5-,6-)C .(6,5-)D .(5-,6)9.如图,AB ∥DE ,AC ∥DF ,AC=DF ,下列条件中不能判断△ABC ≌△DEF 的是( ) A . AB=DE B .∠B=∠E C . EF=BCD . EF ∥BC10、如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( ) A .11B . 5.5C . 7D . 3.511、如图,P ABC ∆为的边AB 、AC 的中垂线的交点,52A ∠=,则BCP∠的度数为( )A 、104B 、26C 、38D 、2812.有一游泳池已经注满水,现按一定的速度将水排尽,然后进行清扫,再按相同的速度注满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量V (立方米)随时间t (小时)变化的大致图象可以是( )二、填空题:(共10小题,每题3分,共计30分)1、在等腰ABC ∆中,两条边长分别为3和4,,则等腰ABC ∆的周长等于 ; 等腰三角形的一个角为100°,则它的底角为 . 2.计算:82014×(﹣0.125)2015= .()32+-m (_________)=942-m ; ()232+-ab =_____________.3.已知∠1=30°,则∠1的余角的补角的度数是 4.若m+n=2,mn=1,则m2+n2= .5.从A 沿北偏东60°的方向行驶到B ,再从B 沿南偏西20°的方向行驶到C ,则∠ABC=________度.6、正方形的边长为3,若边长增加x ,则面积增加y ,y 与x 的关系式为__________ 7.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=35°,则∠2的度数为 .A.B.C.D..8.如图,在等腰三角形纸片ABC 中,AB=AC ,∠A=50°,折叠该纸片,使点A 落在点B 处,折痕为DE ,则∠CBE= °.9、 在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.则根据图像,起跑后1小时内,跑在前面的是 ;最终 先到达终点; 整个赛程是 公里.10.如图,∠ABC=50°,AD 垂直平分线段BC 于点D ,∠ABC 的平分线BE 交AD 于点E ,连接EC ,则∠AEC 的度数是_____. 三、解答题(共54分) 1、(12分)计算与化简(1))6(3)2(3322b a ab b a -÷∙- (2)22()()(4)a b a b ab ⎡⎤+--÷-⎣⎦(3)运用乘法公式计算:1992-12.(10分)化简求值:(1)2(2)(24)(3)a b a b a b -+--,其中2|1|(1)0a b -++=(2)[]22(2)()(4)5(2)x y x y x y yx +-+--÷,其中1,22x y ==-4.(7分)已知,如图,△ABC 中,∠BAC=90°,AB=AC ,l 是过A 的一条直线,BE ⊥l 于E ,CD ⊥l 于D . (1)求证:BE=AD ;(2)若BE=5,CD=7,求DE 的长.5.(7分)如图,在Rt △ABC 中,∠ACB=90°.(1)用尺规在边BC 上求作一点P ,使PA=PB (不写作法,保留作图痕迹)(2)连接AP ,当∠B 为 度时,AP 平分∠CAB .6.(6分)某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B 点,选对岸正对的一颗树A ; ②沿河岸直走20步有一树C ,继续前行20步到达D 处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.7、(12分)甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”“石头”“剪子”“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负.(1)若甲先摸,则他摸出“石头”的概率是多少?(2)若甲先摸出了“石头”,则乙获胜的概率是多少?(3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大?。