九年级第二学期数学练习册答案

合集下载

四川成都市九年级数学下册第二十八章《锐角三角函数》综合经典习题(含答案解析)

四川成都市九年级数学下册第二十八章《锐角三角函数》综合经典习题(含答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若32BE EC=,则AC是⊙O的切线2.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.2 tan2α=C.该圆锥的主视图的面积为82D.圆锥的表面积为12π3.如图,为方便行人推车过天桥,市政府在10m高的天桥两端分别修建了50m长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是()A.sin0.2= B.2ndF sin0.2=C.tan0.2= D.2ndF tan0.2=4.如图,这是某市政道路的交通指示牌,BD的距离为5m,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A .53mB .52mC .()5352m -D .()535m - 5.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .1056.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8m ,坡面上的影长为4m .已知斜坡的坡角为30,同一时刻,一根长为2m 且垂直于地面放置的标杆在地面上的影长为4m ,则树的高度为( )A .10mB .12mC .(63m +D .(423m - 7.下列说法中,正确的有( )个①a 为锐角,则1sina cosa +>;②314172︒+︒=︒cos cos cos ﹔③在直角三角形中,只要已知除直角外的两个元素,就可以解这个三角形﹔④坡度越大,则坡角越大,坡越陡;⑤1302==︒sinA ; ⑥当Rt ABC ∆的三边长扩大为2倍时,则sinA 的值也相应扩大2倍. A .1 B .2 C .3 D .48.如图,以O 为圆心,任意长为半径画弧,与射线OA 交于点B ,再以B 为圆心,BO 长为半径画弧,两弧交于点,C 画射线OC ,则tan AOC ∠的值为( )A .12B .33C .32D .39.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m ︒ C .sin 35m ︒D .m·cos35° 10.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .532 11.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A .34B .43C .35D .4512.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E,作PF BC⊥于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.13.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC与DF共线,将△DEF沿CB方向平移,当EF经过AC的中点O时,直线EF交AB于点G,若BC=3,则此时OG的长度为()A 322B332C.32D3332214.如图,△ABC中,∠C=90°,BC=2AC,则cos A=()A .12B .52C .255D .55二、填空题15.如图,在边长为10的菱形ABCD 中,AC 为对角线,∠ABC =60°,M 、N 分别是边BC ,CD 上的点,BM =CN ,连接MN 交AC 于P 点,当MN 最短时,PC 长度为_____.16.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.17.如图ABC 的内接圆于O ,45C ∠=︒,4AB =,则O 的半径为______.18.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OH ⊥AB 于H .若菱形ABCD 的周长为16,∠BAD =60°,则OH =_____.19.如图,“人字梯”放在水平的地面上,AB AC =,当梯子的一边与地面所夹的锐角α为60︒时,两梯角之间的距离BC 的长为2m .周日亮亮帮助妈妈整理换季衣服,先使α为60︒,后又调整α为45︒,则梯子顶端A 离地面的高度下降了___________m .20.如图所示,菱形ABCD 的边长为8,且AE ⊥BC 于E ,AF ⊥CD 于F ,∠B=60°,则菱形的面积为____.21.如图,已知在Rt ABC 中,C 90,AC BC 2∠=︒==,点D 在边BC 上,将ABC 沿直线AD 翻折,使点C 落在点C '处,联结AC ',直线AC '与边CB 的廷长线相交于点F ,如果DAB BAF ∠∠=,那么BF =_________.22.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,BC=23,则AB=_____.23.如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BA C ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠=__________,……按此规律,写出tan n BA C ∠=__________(用含n 的代数式表示).24.如图,正方形ABCD 的边长为22,过点A 作AE ⊥AC,AE=1,连接BE ,则tanE= .25.乐乐同学的身高为166cm ,测得他站立在阳光下的影长为83cm ,紧接着他把手臂竖直举起,测得影长为103cm ,那么乐乐竖直举起的手臂超出头顶的长度约为___________cm .26.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.三、解答题27.如图,AB 为O 的直径,,C D 为O 上两点,且C 为弧BD 的中点,过点C 作AD 的垂线,交AD 的延长线于点E ,交AB 的延长线于点F ,连结AC(1)求证:EF 是O 的切线;(2)当32,sin 5BF F ==时,求AE 的长.28.(1)计算: 2127-2cos 30132-⎛⎫+-- ⎪⎝⎭(2)解方程:2216124x x x --=+- 29.计算:25864sin 453+⨯-︒ 30.如图,在平面直角坐标系中,矩形ABCO 的边6,12AB BC ==,直线32y x m =-+与y 轴交于点P ,与边BC 交于点E ,与边OA 交于点D .(1)已知矩形ABCO 为中心对称图形,对称中心(点F )为对角线AC OB ,的交点,若直线32y x m =-+恰好经过点F ,求点F 的坐标和m 的值﹒ (2)在(1)的条件下,过点P 的一条直线绕点P 顺时针旋转时,与直线BC 和x 轴分别交于点,N M 、试问是否存在ON 平分CNM ∠的情况.若存在,求线段AM 的长,若不存在,说明理由﹒(3)将矩形ABCO 落在(1)条件下的直线32y x m =-+折叠,若点О落在边CB 上,求出该点坐标,若不在边CB 上,请你说明将(1)中的直线32y x m =-+沿y 轴进行怎样的平移,使矩形ABCO 沿平移后的直线折叠,点O 恰好落在边CB 上.【参考答案】一、选择题1.C2.C3.B4.D5.B6.C7.B8.D9.D10.B11.D12.A13.A14.D二、填空题15.【分析】连接AMAN证明△AMB≌△ANC推出△AMN为等边三角形当AM⊥BC时AM 最短即MN最短在Rt△ABM中求出AM的长在Rt△AMP中求出AP的长即可解决问题【详解】解:连接AMAN∵ABC16.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故17.【分析】连接OAOB根据圆周角定理易知:∠AOB=90°即△AOB是等腰直角三角形;已知了斜边AB的长可求出直角边即半径的长【详解】解:如图连接OAOB由圆周角定理知∠AOB=2∠C=90°;∵OA18.【分析】由菱形的性质可得AB=BC=CD=ADBO=DO可证△ABD是等边三角形可得BD=4BO=2解直角三角形即可求解【详解】∵四边形ABCD是菱形∴AB=BC=CD=ADBO=DO∵菱形ABCD19.m【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD的长同理算出进而20.【分析】根据已知条件解直角三角形ABE可求出AE的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD的边长为8∴AB=BC=8∵AE⊥BC于E∠B=60°∴sinB=即∴AE∴菱形的面积故答案21.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC是由△ACD翻折22.4【解析】分析:由CE所在直线垂直平分线段AD可得出CE平分∠ACD进而可得出∠ACE=∠DCE由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB结合∠ACB=90°可求出∠ACE∠A的度23.【分析】作CH⊥BA4于H根据正方形的性质勾股定理以及三角形的面积公式求出CHA4H根据正切的概念求出tan∠BA4C总结规律解答【详解】试题24.【详解】如图延长CA使AF=AE连接BF过B点作BG⊥AC垂足为G∵四边形ABCD是正方形∴∠CAB=45°∴∠BAF=135°∵AE⊥AC∴∠BAE=135°∴∠BAF=∠BAE∵在△BAF和△B25.40【分析】如下图利用∠BCA=∠E可得对应的正切值相等转化为线段比可得BD长【详解】如下图AB为乐乐身高BD是乐乐手臂超出头顶部分AC是乐乐站立在阳光下的影长AE是乐乐举起手臂后的影长根据题意AC26.【分析】连接PMPN根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x则PB=2a -x然后利用锐角三角函数求出PM和P三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】A、连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,过O作OH⊥AC于H,根据三角函数得到OH=32AO≠OB,于是得到C选项错误;D、根据等边三角形的性质和等量代换即可得到D选项正确.【详解】A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确,不符合题意.B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确,不符合题意.C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH3≠OB,∴C 选项错误,符合题意.D 、如C 中的图,∵BE =32EC , ∴CE 23, ∵AB =BC ,BO =BE ,∴AO =CE 23OB , ∴OH 3=OB , ∴AC 是⊙O 的切线,∴D 选项正确.故选:C .【点睛】本题为圆的综合题,掌握切线的判定和性质、平行线的判定和性质以及勾股定理是解答本题的关键.2.C解析:C【分析】根据圆锥的侧面展开图的弧长等于圆锥底面周长,可知2πr =180n l π,求出r 以及圆锥的母线l 和高h 即可解决问题.【详解】解:设圆锥的底面半径为r ,高为h .A 选项,由题意:2πr =1206180π⨯⨯,解得r =2,故错误; B 选项,h 226242-=,所以tanα2442=,故错误; C 选项,圆锥的主视图的面积=12×4×4282 D 选项,表面积=4π+2π×6=16π,故错误.故选:C .本题考查圆锥的有关知识,记住圆锥的侧面展开图的弧长等于圆锥底面周长,即2πr =180n l π,圆锥的表面积=πr 2+πrl 是解决问题的关键,属于中考常考题型. 3.B解析:B【分析】 先利用正弦的定义得到10sin 0.250A ==,然后利用计算器求锐角∠A . 【详解】∵ 10sin 0.250A ==, ∴ 用计算器求值的顺序为20.2ndFsin =,故选:B .【点睛】本题考查了锐角三角函数及计算器的应用,掌握科学计算器的应用是解决本题的关键. 4.D解析:D【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°,∴BD=BC=5,设AC=x m ,则AB=(x +5)m ,在Rt △ABD 中,tan60°=AB BD ,则55x +=解得:5x =,即AC 的长度是()5m ;故选:D .【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 5.B解析:B【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决.解:连接AE 、EF ,如图所示,则AE ∥CD ,∴∠FAE=∠BOD ,∵每个小正方形的边长为1, 则222222112,2425,3332,AE AF EF =+==+==+=∴△FAE 是直角三角形,∠FEA=90°, ∴32310sin ,1025EF FAE AF ∠=== ∴310sin ,10BOD ∠=故选:B .【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键. 6.C解析:C【分析】延长AC 交BF 延长线于D 点,则BD 即为AB 的影长,然后根据物长和影长的比值计算即可.【详解】延长AC 交BF 延长线于D 点,作CE ⊥BD 于E ,则∠CFE=30°,在Rt △CFE 中,∠CFE=30°,CF=4m ,∴CE=2(m ),EF=4cos30°3m ),在Rt △CED 中,∵同一时刻,一根长为2m 、垂直于地面放置的标杆在地面上的影长为4m ,CE=2(m ),则CE :DE=2:4=1:2,AB :BD=1:2,∴DE=4(m ),∴m ),在Rt △ABD 中,AB=12BD=12m ), 故选:C .【点睛】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB 的影长. 7.B解析:B【分析】①根据三角函数的定义判断;②函数值不是简单度数相加;③至少已知一条边能解直角三角形;④根据坡度的性质即可判定④对;⑤只能说∠A=30°;⑥角度数不变,函数值就不变.【详解】①在Rt △ACB 中,设c 为斜边,∠α的对边、邻边分别为a ,b ,那么sinα+cosα=1a b c+>,所以①对; ②不对,函数值是角与边的关系,不是简单度数相加;③不对,只知道角不知道边也不能解直角三角形;④垂直高度与水平距离之比即坡度所以④对;⑤也不对,sinA=1302=︒,是明显错误; ⑥不对,角度数不变,函数值就不变.综上,①④正确,共2个,故选:B .【点睛】 本题主要考查了解直角三角形以及锐角三角函数.学生学这一部分知识时要细心去理解文字所表达的意思.关键是熟练掌握有关定义和性质.8.D解析:D【分析】由题意可以得到∠AOC 的度数,再根据特殊角的锐角三角函数值可以得解.【详解】解:如图,连结BC,则由题意可得OC=OB,CB=OB,∴OC=OB=BC,∴△BOC是等边三角形,∴∠AOC=60°,∴tan∠AOC=tan60°3故选D.【点睛】本题考查尺规作图与三角形的综合应用,由尺规作图的作法得到所作三角形是等边三角形是解题关键.9.D解析:D【分析】根据Rt△ABC中cos35ACABACm︒==,即可得到AC的长.【详解】在Rt△ABC中, AB=m,∠A=35°,cos35ACABACm︒==,∴AC=cos35m⋅︒,故选:D.【点睛】此题考查锐角三角函数的实际应用,正确掌握各三角函数对应边的比值是解题的关键. 10.B解析:B【分析】连接OC,设BC与OA交于点E,根据圆周角定理即可求出∠AOC,然后根据垂径定理可得BC=2CE,利用锐角三角函数求出CE,即可求出结论.【详解】解:连接OC,设BC与OA交于点E∵30ADC ∠=︒∴∠AOC=2∠ADC=60°∵OA BC ⊥∴BC=2CE ,在Rt △OCE 中,CE=OC·sin ∠AOC=532∴BC=53故选B .【点睛】此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键. 11.D解析:D【分析】根据锐角三角函数的定义得出cosα=BC AB进而求出即可. 【详解】解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB =. 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键.12.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==, ∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴2222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())4sin 4542CE PE x x ==-︒=-,∴四边形CEPF 的面积为()22144822x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.13.A解析:A【分析】分别过O 作OH ⊥BC ,过G 作GI ⊥OH ,由O 是中点,根据平行线等分线段定理,可得H为BC 的中点,则可得BH=32,再由三个角都是直角的四边形是矩形,可得GI=BH=32,在等腰直角三角形OGI 中,即可求解.【详解】解:过O 作OH ⊥BC 于H ,过G 作GI ⊥OH 于I ∵∠ABC=90°,∴AB ⊥BC ,∴OH ∥AB ,又O 为中点,∴H 为BC 的中点,∴BH=12BC=32∵GI ⊥OH ,∴四边形BHIG 为矩形,∴GI ∥BH ,GI=BH=32, 又∠F=45°,∴∠OGI=45°,∴在Rt △OGI 中,cos GI OG OGI ==∠故选:A【点睛】本题考查了解直角三角形及平行线等分线段定理,构造合适的辅助线是解题关键. 14.D解析:D【分析】此题根据已知可设AC =x ,则BC =2x ,根据三角函数的定义即可得到结论.【详解】解:∵BC =2AC ,∴设AC =a ,则BC =2a ,∵∠C =90°,∴AB 225AC BC a +=, ∴cosA =555AC AB a==, 故选:D .【点睛】此题考查的知识点是锐角三角函数的定义,勾股定理,关键是熟练掌握锐角三角函数的定义.二、填空题15.【分析】连接AMAN 证明△AMB ≌△ANC 推出△AMN 为等边三角形当AM ⊥BC 时AM 最短即MN 最短在Rt △ABM 中求出AM 的长在Rt △AMP 中求出AP 的长即可解决问题【详解】解:连接AMAN ∵ABC 解析:52【分析】连接AM ,AN ,证明△AMB ≌△ANC ,推出△AMN 为等边三角形,当AM ⊥BC 时,AM 最短,即MN 最短,在Rt △ABM 中求出AM 的长,在Rt △AMP 中求出AP 的长,即可解决问题.【详解】解:连接AM ,AN ,∵ABCD 是菱形,∠ABC=60°,∴△ABC 为等边三角形,∴∠BAC=60°,AB=AC=10,同理可证∠ACN=60°,在△AMB 和△ANC 中,AB AC B ACN BM NC =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△ANC ,∴AM=AN ,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN 为等边三角形,∴MN=AM ,∠MAN=60°,当AM ⊥BC 时,AM 最短,即MN 最短,∵sinB=AM AB , ∴AM=sin60°×10=53.∵∠ABC=60°,∴∠BAM=30°,∴∠MAC=30°,∴∠NAC=30°,∴AP ⊥MN .∵sin ∠AMN=AP AM, ∴AP=sin60°×53=152, ∴CP=10-152=52. 故答案为:52.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,以及锐角三角函数的知识,熟练掌握各知识点是解答本题的关键.16.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.17.【分析】连接OAOB根据圆周角定理易知:∠AOB=90°即△AOB是等腰直角三角形;已知了斜边AB的长可求出直角边即半径的长【详解】解:如图连接OAOB由圆周角定理知∠AOB=2∠C=90°;∵OA解析:2【分析】连接OA、OB,根据圆周角定理,易知:∠AOB=90°,即△AOB是等腰直角三角形;已知了斜边AB的长,可求出直角边即半径的长.【详解】解:如图,连接OA、OB,由圆周角定理知,∠AOB=2∠C=90°;∵OA=OB,∴△AOB是等腰直角三角形;则2sin454222OA AB=⋅=⨯=故答案为:2【点睛】本题主要考查了等腰直角三角形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.【分析】由菱形的性质可得AB=BC=CD=ADBO=DO可证△ABD是等边三角形可得BD=4BO=2解直角三角形即可求解【详解】∵四边形ABCD是菱形∴AB=BC=CD=ADBO=DO∵菱形ABCD3【分析】由菱形的性质可得AB=BC=CD=AD,BO=DO,可证△ABD是等边三角形,可得BD=4,BO=2,解直角三角形即可求解.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD, BO=DO,∵菱形ABCD的周长为16,∴AB=AD=4,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=4,∠ABD=60°,∴BO=DO=2,在Rt△OBH中,∠ABD=60°,BO =2,∴sin60OH︒=,OB∴OH=233=3【点睛】本题考查了菱形的性质,等边三角形的判定和性质,解直角三角形等知识,求出BO的长是解题的关键.19.m【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD的长同理算出进而解析:32m.【分析】根据有一个角是60︒的等腰三角形是等边三角形判断出ABC 是等边三角形,根据等边三角形的三边相等得出BC=AB=AC=2米,在Rt ABD 中根据正弦函数的定义及特殊锐角三角函数值,由AD=AB?sin60︒即可求出AD 的长,同理算出11A D ,进而根据AD-11A D 即可得出答案.【详解】解:如图1,由题意可得:∵∠B=∠C=60︒,AB=AC∴ABC 是等边三角形BC=AB=AC=2米 在Rt ABD 中:23AD 2sin603=︒== 如图2,由题意可得:∵∠B 1=∠C 1=45︒,A 1B 1=A 1C 1=2m在111Rt A B D 中:11222sin4522A D =︒== ∴(1132AD A D -=m . 故答案为:(32m . 【点睛】此题主要考查锐角三角函数定义、等腰三角形的性质、等边三角形的判定和性质、特殊角的三角函数值,正确理解锐角三角函数定义是解题关键. 20.【分析】根据已知条件解直角三角形ABE 可求出AE 的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD 的边长为8∴AB=BC=8∵AE ⊥BC 于E ∠B=60°∴sinB=即∴AE ∴菱形的面积故答案 解析:323【分析】根据已知条件解直角三角形ABE 可求出AE 的长,再由菱形的面积等于底×高计算即可.【详解】∵菱形ABCD 的边长为8,∴AB=BC=8,∵AE ⊥BC 于E ,∠B=60°,∴sinB=AE AB ,即328AE =, ∴AE 43=,∴菱形的面积843323=⨯=,故答案为:323.【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.21.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD 的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC 是由△ACD 翻折解析:232-【分析】首先根据题意画出图形,再根据折叠的性质和DAB BAF ∠∠=,可求出各角的度数,再利用解直角三角形的知识分别求出CD ,DF ,BD 的长度,最后根据线段之间的和差关系即可求出结果.【详解】解:如图所示:∵△ADC’是由△ACD 翻折得到,∴DAC 'DAC ∠∠=,∵DAB BAF ∠∠=,∴DAC 2DAB ∠∠=.∵AC 45B ∠=︒,∴DAB BAF=15∠∠=︒.∴30CAD ∠=︒.在Rt △ACD 中,AC=2∴tan 30CD AC =⋅︒=,cos30AC AD ==︒ . ∵'ADC F DAC ∠=∠+∠∴'30F DAC ∠=∠=︒ .∴3DF AD ==.22BF CD DF BC∴=+-=-=故答案为2.【点睛】本题考查了翻折的性质和解 直角三角形的知识,根据题意画出图形是解题的关键. 22.4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD 进而可得出∠ACE=∠DCE 由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB 结合∠ACB=90°可求出∠ACE ∠A 的度解析:4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD ,进而可得出∠ACE=∠DCE ,由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB ,结合∠ACB=90°可求出∠ACE 、∠A 的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB 的长度. 详解:∵CE 所在直线垂直平分线段AD ,∴CE 平分∠ACD ,∴∠ACE=∠DCE .∵CD 平分∠BCE ,∴∠DCE=∠DCB .∵∠ACB=90°,∴∠ACE=13∠ACB=30°, ∴∠A=60°, ∴AB=602BC sin =︒=4.故答案为4.点睛:本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出∠A=60°是解题的关键.23.【分析】作CH ⊥BA4于H 根据正方形的性质勾股定理以及三角形的面积公式求出CHA4H 根据正切的概念求出tan ∠BA4C 总结规律解答【详解】试题 解析:113, 211n n -+. 【分析】 作CH ⊥BA 4于H ,根据正方形的性质、勾股定理以及三角形的面积公式求出CH 、A 4H ,根据正切的概念求出tan ∠BA 4C ,总结规律解答.【详解】试题 作CH ⊥BA 4于H ,由勾股定理得,BA 42241=17+A 410, △BA 4C 的面积=4-2-32=12, ∴121712, 解得,CH=1717, 则A 4223A C CH -1717, ∴tan ∠BA 4C=4CH A H =113, 1tan 1,BAC ∠= 1=12-1+1, 21tan 3BA C ∠=,3=22-2+1, 31tan 7BA C ∠=,7=32-3+1, ∴tan ∠BA n C=211n n -+. 故答案为: 113, 211n n -+. 【点睛】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.24.【详解】如图延长CA使AF=AE连接BF过B点作BG⊥AC垂足为G∵四边形ABCD是正方形∴∠CAB=45°∴∠BAF=135°∵AE⊥AC∴∠BAE=135°∴∠BAF=∠BAE∵在△BAF和△B解析:2 3【详解】如图,延长CA使AF=AE,连接BF,过B点作BG⊥AC,垂足为G,∵四边形ABCD是正方形,∴∠CAB=45°.∴∠BAF=135°.∵AE⊥AC,∴∠BAE=135°.∴∠BAF=∠BAE.∵在△BAF和△BAE中,BA BA{BAF BAEAE AF∠∠===,∴△BAF≌△BAE(SAS).∴∠E=∠F.∵四边形ABCD是正方形,BG⊥AC,∴G是AC的中点.∴BG=AG=2.在Rt△BGF中,BG2tanFFG3==,即tanE=23.考点:正方形的性质,全等三角形的判定和性质,锐角三角函数的定义,25.40【分析】如下图利用∠BCA=∠E可得对应的正切值相等转化为线段比可得BD长【详解】如下图AB为乐乐身高BD是乐乐手臂超出头顶部分AC是乐乐站立在阳光下的影长AE是乐乐举起手臂后的影长根据题意AC解析:40【分析】如下图,利用∠BCA=∠E,可得对应的正切值相等,转化为线段比可得BD长.【详解】如下图,AB 为乐乐身高,BD 是乐乐手臂超出头顶部分,AC 是乐乐站立在阳光下的影长,AE 是乐乐举起手臂后的影长根据题意,AC=83cm ,AB=166cm ,AE=103cm∵是阳光照射的影长,∴CB ∥ED∴∠BCA=∠E∴tan ∠BCA=tan ∠E ,即:166********BD += 解得:BD=40故答案为:40【点睛】本题考查三角函数的运用,解题关键是将题干抽象成数学模型,然后再利用三角函数的特点求解. 26.【分析】连接PMPN 根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x 则PB=2a -x 然后利用锐角三角函数求出PM 和P 3 【分析】连接PM 、PN ,根据菱形的性质求出∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x ,则PB=2a -x ,然后利用锐角三角函数求出PM 和PN ,然后利用勾股定理求出MN 2与x 的函数关系式,化为顶点式即可求出MN 2的最小值,从而求出结论.【详解】解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30° ∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x ∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠32a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2 ∴MN 的最小值为32a 3. 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.三、解答题27.245【分析】(1)连接OC ,如图,由弧BC=弧CD 得到∠BAC=∠DAC ,加上∠OCA=∠OAC .则∠OCA=∠DAC ,所以OC ∥AE ,从而得到OC ⊥FE ,然后根据切线的判定定理得到结论; (2)设半径OB=OC=3x ,则OF=5x=3x+2,列方程得到OC=3,OD=5,求得AF=8,根据三角函数的定义即可得到结论.【详解】(1)证明:连接OC ,如图,∵点C 为弧BD 的中点,∴弧BC=弧CD .∴∠BAC=∠DAC ,∵OA=OC ,∴∠OCA=∠OAC .∴∠OCA=∠DAC ,∴OC ∥AE ,∵AE ⊥FE ,∴OC ⊥FE .∴FE 是⊙O 的切线;(2)∵3in 5OC s F OF==, ∴设OB=OC=3x ,OF=5x ,∵OF=OB+BF ,BF=2∴5x=3x+2,∴x=1,∴OC=3,OF=5,∴AF=8, ∵3in 58AE AE s F AF ===, ∴245AE =. 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.28.(13+5;(2)原方程无解.【分析】(1)本题涉及绝对值、负整数指数幂、特殊角的三角函数值、开方运算四个知识点,在计算时,需要针对每个知识点根据实数的运算法则进行运算,最后求解即可.(2)观察方程可得最简公分母是:(x +2)(x−2),两边同时乘最简公分母可把分式方程化为整式方程来解答,并进行检验.【详解】解:(1)原式=+-+41, (2)去分母得(x−2)2−(x +2)(x−2)=16, 整理得:-4x =8,解得x =−2,检验:当x =−2时,(x +2)(x−2)=0,则x =−2为原方程的增根,所以原方程无解.【点睛】本题主要考查了实数的综合运算能力及解分式方程的能力.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式等知识点的运算;解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,特别注意分式方程一定要验根. 29.【分析】先代入特殊角三角函数值和进行二次根式的混合运算,再进行合并即可得到结果.【详解】4sin 45︒=42⨯==【点睛】此题考查了二次根式的混合运算以及特殊角三角函数值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式再运算.30.(1)F (6,3),m=12;(2)存在,12+或12-3)不在,需将直线3122y x =-+沿y 轴向下平移94个单位长度. 【分析】(1)由题意得矩形的中心F 坐标为(6,3),代入32y x m =-+,得m=12; (2)分,M N 在y 轴左、右两侧两种情况,证明MON ∆是等边三角形即可得到结论; (3)假设沿直线3122y x =-+将矩形ABCO 折叠,点O 落在边AB 上O′处.连接PO′,OO′.则有PO′=OP ,由(1)得AB 垂直平分OP ,所以PO′=OO′,则△OPO′为等边三角。

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。

九年级补充习题下册数学参考答案

九年级补充习题下册数学参考答案

九年级补充习题下册数学参考答案
导读:本文九年级补充习题下册数学参考答案,仅供参考,如果觉得很不错,欢迎点评和分享。

一、选择题
1.A
2.D
3.D
4.D
5.C
6.B
7.A
8.B
9.B10.D
二、填空题
11.312.13.-114.=
三、15.解:
==.
16.解:
四、17.方程另一根为,的值为4。

18.因为a+b=2++2-=4,a-b=2+-(2-)=2,
ab=(2+)(2-)=1
所以=
五、19.解:设我省每年产出的农作物秸杆总量为a,合理利用量的增长率是x,由题意得:
30%a(1+x)2=60%a,即(1+x)2=2
∴x1≈0.41,x2≈-2.41(不合题意舍去)。

∴x≈0.41。

即我省每年秸秆合理利用量的增长率约为41%。

20.解:(1)∵方程有实数根∴Δ=22-4(k+1)≥0
解得k≤0,k的取值范围是k≤0(5分)
(2)根据一元二次方程根与系数的关系,得x1+x2=-2, x1x2=k+1 x1+x2-x1x2=-2 + k+1
由已知,得-2+ k+1-2
又由(1)k≤0 ∴-2
∵k为整数∴k的值为-1和0. (5分)
六、21. (1)由题意,得解得
∴(3分)
又A点在函数上,所以,解得所以
解方程组得
所以点B的坐标为(1, 2)(8分)
(2)当02时,y1
当1y2;
当x=1或x=2时,y1=y2. (12分)。

[九年级数学练习册答案]九年级数学全效学习答案

[九年级数学练习册答案]九年级数学全效学习答案

[九年级数学练习册答案]九年级数学全效学习答案篇一: 九年级数学全效学习答案九年级数学全效学习答案一、选择题1、求使x-2x-4有意义的x的取值范围是A.x≥2 B.x≤2 C.x≥2且x≠4 D.x≤2且x≠42、某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场A、4个B、5个C、6个D、7个3、若x,y为实数,且|x+2|+ =0,则2011的值为A、1B、-1C、2D、-24、已知、是方程的两个根,则代数式的值A、37B、26C、13D、105、在中最简二次根式是A、①②B、③④C、①③D、①④6、实数x,y满足?A. -2B.4C.4或-2D. -4或27、关于的一元二次方程的一个根是0,则的值为A. -1 B .1 C.1或-1 D.0.58、实验中学2009年中考上线451人,近三年中考上线共1567人,问:2010年、2011年中考上线平均每年增长率是多少?设平均增长率为,则列出下列方程正确的是A.B. 4 51+451=1567C. D.9、关于的方程有实数根,则整数的最大值是A.6 B.7 C.8 D.910、使式子成立的条件是A.a≥5 B.a>5 C.0≤a≤5 D.0≤a 二、填空题:11、在实数范围内分解因式------------12、若两个最简二次根式与可以合并,则x=-------13、若,则的值是---------14、的整数部分是x,小数部分是y,则的值是--------------- 。

15、计算=---------16、现定义一种新运算:“※”,使得a※b=4ab;那么x※x+2※x-2※4=0中x的值是-----三、解答题:17、计算-2 -0 -÷218、选择适当的方法解方程19、,且y的算术平方根是,求:的值23、一块长方形耕地,长160米,宽60米,要在这块耕地上挖2条平行于长边的水渠,挖2条平行于短边的水渠,如果水渠的宽相等,而且要保证余下的耕地面积为8376平方米,那么水渠应挖多宽?24、某电脑公司2008年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2010年经营总收入要达到2160万元,且计划从2008年到2010年每年经营总收入的年增长率相同,问2009年预计经营总收入为多少万元?25.商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元. 据此规律,请回答:商场日销售量增加件,每件商品盈利元;在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?篇二: 九年级第二学期数学练习册答案第二十六章圆与正多边形14课时第二十七章统计初步10课时第二十六章圆与正多边形26.1 圆的确定1.教学目标知道点与圆的三种位置关系,了解三角形外心、外接圆、圆的内接三角形以及多边形的外接圆和圆的内接多边形等概念.理解点与圆的位置关系的判定方法,并能初步运用点与圆位置关系的判定方法解决有关数学问题.会画三角形的外接圆.在教学中,要注意以下几点:关于圆的半径,本节明确指出它是“联结圆心和圆上一点的线段”。

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。

九年级数学练习册答案

九年级数学练习册答案

九年级数学练习册答案第一章:整数运算1.1 加法和减法1.722.-493.354.-125.-226.1351.2 乘法和除法1.-482.-243.1604.-0.755.-6第二章:有理数2.1 数轴和比较1.-12.-63.-34.-95.36.27.02.2 数的运算1.52.-163.124.-15.-3/10第三章:代数式及其运算3.1 代数式的基本概念1.3a + b^22.a^2 - 3ab3.4a^3 + 3a^2b + 2ab^2 + b^34.(a + b)^25.a^2 - 2ab + b^26.a^4 - 2a2b2 + b^43.2 多项式的加法和减法1.7x^2 - 2xy - 5y^22.ab - 3b^23.13xy^2 - 6x^2y + 5x2y24.-2a2b2 - 2ab^2 - 2a^2b5.-5x^3 + 2x^2 - 3x6.(2a - b)(a + b)第四章:平面图形的性质4.1 点、线、线段、射线和角1.射线2.合角3.直角4.钝角5.平角6.平行4.2 三角形和四边形1.直角三角形2.等腰三角形3.三线一点4.长方形5.平行四边形6.正方形第五章:几何变换5.1 平移、旋转和翻转1.向右平移2.顺时针旋转90度3.沿x轴翻转4.沿y轴翻转5.顺时针旋转180度6.沿原点翻转5.2 平移、旋转和翻转的性质1.invariant2.距离保持不变3.角度保持不变4.面积保持不变5.图形重叠以上是九年级数学练习册第一章到第五章的答案,希望对你的学习有所帮助。

注意:本文档中的答案仅供参考,实际答案可能存在差异,建议与老师或教材核对。

2022-2023学年人教版九年级数学下册《27-3位似》同步题型分类练习题(附答案)

2022-2023学年人教版九年级数学下册《27.3位似》同步题型分类练习题(附答案)一.位似变换1.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:AD的值为()A.4:7B.4:3C.6:4D.9:52.如图平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,点A,B,E在x轴上,若正方形ABCD的边长为3,则F点坐标为()A.(16.5,9)B.(18,12)C.(16.5,12)D.(16,12)3.在如图所示的网格中,以点O为位似中心,能够与四边形ABCD是位似图形的为()A.四边形NGMF B.四边形NGME C.四边形NHMF D.四边形NHME 4.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)5.如图,在直角坐标系中,矩形ABCD与矩形EFGO位似,矩形ABCD的边CD在y轴上,点B的坐标为(﹣4,4),矩形EFGO的两边都在坐标轴上,且点F的坐标为(2,1),则矩形ABCD与EFGO的位似中心的坐标是.6.如图,平面直角坐标系中,点A在x轴正半轴上,且OA=4,∠BOA=30°,∠B=90°,以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,则点B的对应点B′的坐标为.7.如图,在平面直角坐标系中,A、B两点的坐标分别为A(﹣1,2)、B(0,2),C、D 两点的坐标分别为C(0,﹣1)、D(2,﹣1).若线段AB和线段CD是位似图形,且位似中心在y轴上,则位似中心的坐标为.8.《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.9.如图,△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,则点A(1,2)在第一象限的对应点A1的坐标是.10.如图,在平面直角坐标系中,O是坐标原点,以点O为位似中心,△A1B1C1和△ABC 相似比为2:1,在网格中画出新图象△A1B1C1,若每个小正方形边长均为1,请写出A1,B1,C1的坐标.11.如图所示,由位似的正△A1B1C1,正△A2B2C2,正△A3B3C3,…正△A n B n∁n组成的相似图形,其中第一个△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,A3是OA2的中点…A n是OA n﹣1的中点,顶点B2,B3,…,B n.C2,C3,…,∁n都在B1C1边上.(1)试写出△A10B10C10和△A7B7C7的相似比和位似中心;(2)求出第n个三角形△A n B n∁n(n≥2)的周长.12.如图,△ABC中,P′是边AB上一点,四边形P'Q'M'N'是正方形,点Q',M'在边BC上,点N′在△ABC内.连接BN′,并延长交AC于点N,过点N作NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.(1)求证:四边形PQMN为正方形;(2)若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.13.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△A′B′C′及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F 的坐标;若不存在请说明理由.14.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.二.作图-位似变换15.如图所示△DEF是△ABC位似图形的几种画法,其中正确的个数是()A.4B.3C.2D.116.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),17.如图,在坐标系中,以A(0,2)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C',若C的对应点C'的坐标为(m,n),则点C的坐标为()A.(m,n+3)B.(m,n﹣3)C.(m,n+2)D.(m,n﹣2)18.如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.19.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是.20.如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA =2.OC=1,则矩形AOCB的对称中心的坐标是;在第二象限内,将矩形AOCB 以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,…,按此规律,则矩形A4OC4B4的对称中心的坐标是.21.在平面直角坐标系中,△ABC的顶点A的坐标为(2,﹣5),若以原点O为位似中心,作△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的位似比为2:1,且点A1和点A 不在同一象限内,则点A1的坐标为.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.23.如图所示,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,0),B(3,1),C (2,3).请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△DEF,△ABC 与△DEF的位似比为;(2)如果△ABC内部一点M的坐标为(a,b),请写出M的对应点M'的坐标(,).24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)在平面直角坐标系中画出位似中心;(2)设点P(a,b)为△ABC内一点,确定点P在△A1B1C1内的对应点P1的坐标.25.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.26.如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移5个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使得△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并写出A2的坐标.27.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.28.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出△A′B′C′各顶点的坐标.参考答案一.位似变换1.解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AC∥DF,∵△ABC的面积与△DEF的面积之比是16:9,∴=,∵AC∥DF,∴△AOC∽△DOF,∴==,∴AO:AD=4:7,故选:A.2.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,∴==,即==,解得:EF=12,OB=4,∴F(16,12).故选:D.3.解:如图,四边形ABCD的位似图形是四边形NGMF.故选:A.4.解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为(﹣5,2).故选:B.5.解:连接BF交y轴于点P,∵C和F是对应点,∴点P为位似中心,由题意得,GF=2,AD=4,GC=4﹣1=3,∵BC∥GF,∴△BPC∽△FPG,∴=,即=2,解得,GP=1,∴OP=2,∴位似中心的坐标是(0,2),故答案为:(0,2).6.解:作BE⊥OA于E,则∠BEO=90°,∵∠ABO=90°,∠BOA=30°,∴OB=OA•cos30°=4×=2,∴BE=OB=,OE=OB•cos30°=2×=3,∴点B的坐标为:(3,),∵以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,∴点B的对应点B'的坐标为:(3×2,×2),即(6,2),故答案为:(6,2).7.解:连接AD交BC于E,则点E为位似中心,∵A(﹣1,2)、B(0,2),C(0,﹣1)、D(2,﹣1).∴AB=1,CD=2,BC=3,∵线段AB和CD是位似图形,∴AB∥CD,∴=,即=,解得BE=1,∴OE=OB﹣BE=1,∴位似中心点E的坐标为(0,1),故答案为:(0,1).8.解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.9.解:∵△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,∵A(1,2),点A(1,2)在第一象限的对应点是A1,∴点A1的坐标为:(2,4).故答案为:(2,4).10.解:如图,△A1B1C1即为所求,A1(0,8),B1(6,6),C1(6,2).11.解:(1)∵△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,∴正△A2B2C2的边长为,正△A3B3C3的边长为()2,正△A10B10C10和的边长为()9,正△A7B7C7的边长为()6,∴正△A10B10C10和正△A7B7C7的相似比==;它们的位似中心为点O;(2)∵第n个三角形△A n B n∁n(n≥2)的边长为()n﹣1,∴第n个三角形△A n B n∁n(n≥2)的周长为.12.(1)证明:∵NM⊥BC,NP⊥MN,PQ⊥BC,∴四边形PQMN为矩形,∵四边形P'Q'M'N'是正方形,∴PN∥P′N′,∴=,∵MN∥M′N′,∴=,∴=,而P′N′=M′N′,∴PN=MN,∴四边形PQMN为正方形;(2)解:作AD⊥BC于D,AD交PN于E,如图,∵△ABC的面积=1.5,∴AB•AC=1.5,∴AB=2,∴BC==2.5,∵BC•AD=1.5,∴AD==,设PN=x,则PQ=DE=x,AE=﹣x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,即PN的长为m.13.解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.14.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.二.作图-位似变换15.解:第一个图形中的位似中心为A点,第二个图形中的位似中心为AD与BC的交点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:A.16.解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.17.解:过点A作x轴的平行线DD′,作CD⊥DD′于D,作C′D′⊥DD′于D′,设C(x,y),则CD=y﹣2、AD=﹣x,C′D′=2﹣n,AD′=m,∵△AB′C′与△ABC的位似比为2:1,∴==,即==,解得:x=﹣m,y=﹣n+3,∴点C的坐标为(﹣m,﹣n+3),故选:A.18.解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).19.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.20.解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).21.解:在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(1,﹣2.5),不在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(﹣1,2.5),故答案为:(﹣1,2.5).22.解:如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是:(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).23.解:(1)如图,△DEF即为所求;(2)M′(﹣2a,﹣2b).故答案为:﹣2a,﹣2b.24.解:(1)如图点O即为位似中心;(2)设点P(a,b)为△ABC内一点,则点P在△A1B1C1内的对应点P1的坐标(2a,2b).25.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.A2的坐标(﹣2.,﹣2).27.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.28.解:(1)如图,(2)2:1,(3)A′(﹣6,0),B′(﹣3,2),C′(﹣4,4).。

九年级数学练习册答案 (4)

九年级数学练习册答案第一章:整数与有理数1.1 整数概念与运算1.1.1 整数的概念整数是由正整数、负整数和0组成的数集。

可以用“+”、“-”以及数字表示整数。

例如,正整数可以写作+3,负整数可以写作-5,0表示为0。

1.1.2 整数的加法和减法运算整数的加法和减法运算遵循以下规则:•正整数与正整数相加、相减,结果仍为正整数。

•负整数与负整数相加、相减,结果仍为负整数。

•正整数与负整数相加、相减,结果由绝对值大的整数和带符号数的符号决定。

例如,+5 + (-3) 的结果为 +2,-7 + (-5) 的结果为 -12。

1.1.3 整数的乘法和除法运算整数的乘法和除法运算遵循以下规则:•正整数与正整数相乘、相除,结果仍为正整数。

•负整数与负整数相乘、相除,结果仍为正整数。

•正整数与负整数相乘、相除,结果为负整数。

例如,+3 × (-2) 的结果为 -6,-12 ÷ (-6) 的结果为 +2。

1.2 有理数的概念与运算有理数包括整数和分数,可以用“+”、“-”以及分数形式表示。

例如,1/2表示一个有理数。

1.2.1 有理数的概念有理数是可以表示为两个整数的比例形式,其中分母不等于0的数。

例如,1/2、-3/4、5/6都是有理数。

1.2.2 有理数的加法和减法运算有理数的加法和减法运算与整数的运算类似,遵循相同的规则。

例如,1/2 + 3/4 的结果为 5/4。

1.2.3 有理数的乘法和除法运算有理数的乘法和除法运算也遵循相似的规则。

例如,1/2 × 3/4 的结果为 3/8。

第二章:代数基础2.1 代数式与数学表达式2.1.1 代数式的概念代数式是由数、字母和运算符号组成的表达式。

字母被称为变量,在代数式中表示未知数。

2.1.2 代数式的运算代数式可以进行加、减、乘、除运算。

根据运算符优先级,可以使用括号来改变运算次序。

2.2 方程与不等式2.2.1 方程的概念与解方程是由等号连接的两个代数式组成的等式。

2024年数学九年级下册三角函数基础练习题(含答案)

2024年数学九年级下册三角函数基础练习题(含答案)试题部分一、选择题:1. 已知sinA = 0.6,cosA = 0.8,那么tanA的值为()A. 0.75B. 0.75C. 0.75D. 0.752. 在直角三角形ABC中,∠C = 90°,若sinB = 3/5,则cosA 的值为()A. 4/5B. 3/4C. 4/3D. 3/43. 若0°<θ<90°,且cosθ = 4/5,则sin(90° θ)的值为()A. 3/5B. 4/5C. 3/4D. 4/34. 已知tanα = 1,则sinα和cosα的值分别为()A. 1, 1B. 1, 0C. 1, 1D. 1, 05. 在直角坐标系中,点P(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 若sinθ = 0.5,则θ的终边可能位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 已知sinα = √3/2,且α为锐角,则cosα的值为()A. 1/2B. √3/2C. 1/√2D. 1/28. 若0°<θ<180°,且cosθ = 1/2,则sinθ的值为()A. √3/2B. √3/2C. 1/2D. 1/29. 在直角三角形中,若一个锐角的正弦值为1/2,则这个锐角的度数为()A. 30°B. 45°C. 60°D. 90°A. sinAB. cosAC. tan(90° A)D. cotA二、判断题:1. 若一个角的正弦值等于它的余弦值,则这个角为45°。

()2. 在直角三角形中,锐角的正弦值随着角度的增大而增大。

()3. 若sinA = 0,则A为90°。

()4. 对于任意锐角α,sinα和cosα的值都在0到1之间。

()5. 在直角坐标系中,第二象限的点的横坐标为正,纵坐标为负。

2021-2022学年北师大版九年级数学下册《1-6利用三角函数测高》同步练习题(附答案)

2021-2022学年北师大版九年级数学下册《1.6利用三角函数测高》同步练习题(附答案)1.如图,小华站在水库的堤坝上的G点,看见水库里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角∠FDC=30°,若小华的眼睛与底面的距离DG=1.6米,BG=0.7米.BG平行于AC所在的直线,迎水坡AB的坡度i=4:3,坡长AB为8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为()米(≈1.732,结果精确到0.1米)A.8B.8.1C.8.3D.8.42.如图,河对岸有铁塔AB,在C处测得塔顶A的仰角为30°,向塔前进14m到达D,在D处测得A的仰角为45°,塔高AB为()A.m B.m C.m D.m 3.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC为1.6m,则树的高度BD为()A.8m B.9.6m C.(4)m D.(8+1.6)m4.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A.30 B.30﹣30C.30D.305.如图,一艘轮船在A处测得灯塔P位于其东北方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()海里.A.15+15B.30+30C.45+15D.606.如图,大楼底右侧有一障碍物,在障碍物的旁边有一栋小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=40m,DE=10m,则障碍物B,C两点间的距离为m.(结果保留根号)7.为了测量某建筑物BE的高度(如图),小明在离建筑物15米(即DE=15米)的A处,用测角仪测得建筑物顶部B的仰角为45°,已知测角仪高AD=1.8米,则BE=米.8.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为米.9.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶D的仰角为20°,教学楼底部B的俯角为30°,量得实验楼与教学楼之间的距离AB=30m.(结果精确到0.1m.参考数据tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,≈1.73)(1)求∠BCD的度数.(2)求教学楼的高BD.10.如图,亮亮在教学楼距水平地面5米高的窗口C处测得正前方旗杆顶部A点的仰角为45°,旗杆底部B点的俯角为30°,升旗时国旗上端挂在距地面2米处,若国旗随国歌冉冉升起,并在国歌播放45秒结束时到达旗杆顶端.(1)求旗杆AB的高度;(精确到0.1米)(2)国旗应以多少米/秒的速度匀速上升?(参考数据:=1.41,=1.73)11.一货轮在A处测得灯塔P在货轮的北偏西23°的方向上,随后货轮以80海里/时的速度按北偏东30°的方向航行,1小时后到达B处,此时又测得灯塔P在货轮的北偏西60°的方向上,求此时货轮距灯塔P的距离(参考数据:sin53°≈,cos53°≈,tan53°≈).12.某班数学兴趣小组利用数学活动课时间测量位于某山顶的一座雕像的高度.已知山的坡度i=1:,山高BC=300米,组员从山脚D处沿山坡向着雕像方向前进540米到达E 处,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.13.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正东方向,有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向,BP =6km.(1)求A、B两观测站之间的距离;(2)小船从点P处沿射线AP的方向前行,求观测站B与小船的最短距离.14.如图,某轮船在海上向正东方向航行,上午8:00在点A处测得小岛O在北偏东60°方向的16km处;上午8:30轮船到达B处,测得小岛O在北偏东30°方向.(1)求轮船从A处到B处的航速;(2)如果轮船按原速继续向东航行,还需经过多少时间轮船才恰好位于小岛的东南方向?15.如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,在顶端E点测得A的仰角∠AEF=45°,(1)若设AB为x米,请用含x的代数式表示AF的长.(2)求出发射塔AB的高度.(cosα≈,sinα≈,tanα≈)16.如图所示,建筑物MN一侧有一斜坡AC,在斜坡坡脚A处测得建筑物顶部N的仰角为60°,当太阳光线与水平线夹角成45°时,建筑物MN的影子的一部分在水平地面上MA处,另一部分影子落在斜坡上AP处,已知点P的距水平地面AB的高度PD=5米,斜坡AC的坡度为(即tan∠P AD=),且M,A,D,B在同一条直线上.(测倾器的高度忽略不计,结果保留根号)(1)求此时建筑物MN落在斜坡上的影子AP的长;(2)求建筑物MN的高度.17.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试航任务.某日航母在南海海域试航,如图,海中有一个小岛A,并测得该岛四周10海里内有暗礁,航母由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后如果航母继续向东航行,途中会有触礁的危险吗?(参考数据:sin55°=0.8,cos55°=0.6,tan55°=1.4,sin25°=0.4,cos25°=0.9,tan25°=0.5)18.济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m 至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)19.如图,一艘轮船在A处测得灯塔P在船的北偏东30°的方向,轮船沿着北偏东60°的方向航行16km后到达B处,这时灯塔P在船的北偏西75°的方向.求灯塔P与B之间的距离(结果保留根号).20.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)21.地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.22.某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.23.在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)24.如图,一艘渔船以16海里/小时的速度由西向东航行,上年10点在A处测得海中小岛C在北偏东60°方向上,10点30分航行到B处,在B处测得小岛C在东北方向上.(1)求小岛C到航线的距离(结果保留到整数,参考数据:≈1.4,≈1.7);(2)小岛C周围10海里内有暗礁,如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?判断并说明理由.25.如图,海中有一小岛A,它周围8海里内有暗礁,渔船由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.(1)求∠BAD的度数;(2)如果渔船不改变航线继续向东航行,有没有触礁的危险?26.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)参考答案1.解:过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.∵i==,AB=8米,∴BE=,AE=.∵DG=1.6,BG=0.7,∴DH=DG+GH=1.6+=8,AH=AE+EH=+0.7=5.5.在Rt△CDH中,∵∠C=∠FDC=30°,DH=8,tan30°==,∴CH=8.又∵CH=CA+5.5,即8=CA+5.5,∴CA=8﹣5.5(米)≈8.4(米).故选:D.2.解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴BC=AB.设AB=x(米),∵CD=14,∴BC=x+14.∴x+14=x∴x=7(+1).即铁塔AB的高为7(+1)米.故选:B.3.解:在Rt△CBH中,∠HCB=45°,CH=8m,∴,∴HB=CH•tan∠HAB=8×tan45°=8m,∴HD=HB+AC=8+1.6=9.6.答:树的高度为9.6m.故选:B.4.解:如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵tan∠DBC=,∴CD=BC•tan60°=30m,∴甲建筑物的高度为30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴乙建筑物的高度为(30﹣30)m.故选:B.5.解:作BD⊥AP,垂足为D,根据题意,得∠BAD=45°,∴AC=PC,即30+BC=PC,又∵∠BPC=30°,∴BP=2BC,PC==BC,∴30+BC=BC,即BC==15(+1),∴BP=2BC=30(+1)=30+30.故选:B.6.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=30m,∠ADF=45°,∴DF=AF=30m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(30﹣10)m.答:障碍物B,C两点间的距离为(30﹣10)m.7.解:过A作AC⊥BE于C,则AC=DE=15,根据题意:在Rt△ABC中,有BC=AC×tan45°=15,则BE=BC+CE=16.8(米),故答案为:16.8.8.解:作AD⊥CB,交CB的延长线于D点.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=270米.在Rt△ACD中,tan∠CAD=,∴AD==90(米).在Rt△ABD中,tan∠BAD=,∴BD=AD•tan30°=90×=90(米).∴BC=CD﹣BD=270﹣90=180(米).答:这栋大楼的高为180米.故答案为180.9.解:(1)过点C作CE⊥BD,则有∠DCE=20°,∠BCE=30°,∴∠BCD=∠DCE+∠BCE=20°+30°=50°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan30°≈17.32m,在Rt△CDE中,DE=CE•tan20°≈10.8m,∴教学楼的高BD=BE+DE=17.32+10.8≈28.1m,则教学楼的高约为28.1m.10.解:(1)如图,作CH⊥AB于H.在Rt△BCH中,∵∠BCH=30°,BH=5米,∴CH=BH=5(米),在Rt△ACH中,∵∠ACH=45°,∴AH=HC=5(米),∴AB=AH+BH=5+5≈13.7(米).(2)国旗上升的速度=≈0.26(米/秒).11.解:由题意可知:∠P AB=53°,由平行线的性质可知∠PBA=180°﹣30°﹣60°=90°,∵AB=80×1=80(海里),在Rt△APB中,∵∠P AB=53°,AB=80,∴PB=AB•tan53°=80×=海里,答:此时货轮距灯塔P的距离为海里.12.解:由题意知,tan D=i=,即∠D=30°,∠DBC=60°过E作EF⊥AC于F,得∠BEF=∠D=30°,而∠AEF=60°∴∠AEB=∠A=30°,∴AB=BE由于BD=2BC=600,而DE=540,故EB=60∴AB=60答:雕像AB的高度为60米.13.解:(1)如图,过点P作PD⊥AB于点D,设PD=x,所以∠PBD=45°即km因为∠P AD=90°﹣60°=30°,所以km所以A、B观测站距离:km(2)∵小船在北偏西60°的方向,∴∠F AB=30°,∴BF=km.14.解:(1)如图,过点O作OD⊥AB,垂足为D.由题意知:∠OAD=30°,∠OBD=60°.在Rt△OAD中,∵OA=16,∠OAD=30°,∴OD=8,AD=24.在Rt△OBD中,∵OD=8,∠OBD=60°.∴BD===8,∴AB=AD﹣BD=24﹣8=16(km),∴v==32(km/h)答:轮船从A处到B处的航速为32km/h.(2)过点O作∠DOE=45°交AD的延长线于点E.∵∠DOE=45°,∠ODE=90°,∴DE=OD=8km,BE=BD+DE=8+8(km),∵=(h),答:轮船按原速继续向东航行,还需要航行小时才恰好位于小岛的东南方向.15.解:(1)∵四边形EDCF为矩形,∴ED=CF=340m,又AC=(452+x)m∴AF=AC﹣CF=452+x﹣340=(112+x)m;(2)在Rt△AEF中,∵∠AEF=45°,∴EF=AF=(112+x)m=CD在Rt△ADC中,∵∠ADC=α,∴tanα=∴,∴x=28答:发射塔AB的高度为28m.16.解:(1)如图,作PH⊥MN于H.则四边形PDMH是矩形.∵tan∠P AD==,PD=5,∴AD=15,P A==5(米),∴此时建筑物MN落在斜坡上的影子AP的长为5米.(2)∵∠NPH=45°,∠PHN=90°,∴∠PNH=∠NPH=45°,∴NH=PH,设NH=PH=x米,则MN=(x+5)米,AM=(x﹣15)米,在Rt△AMN中,∵tan60°=,∴MN=AM,∴x=5+(x﹣15)解得x=(10+25)(米),∴MN=x+5=(10+30)米.17.解:如图,作AD⊥BC于点D,设AD=x海里,在Rt△ACD中,∵∠ADC=90°,∠CAD=25°,∴CD=AD•tan25°=tan25°•x.在Rt△ABD中,∵∠ADB=90°,∠BAD=55°,∴BD=AD•tan55°=tan55°•x.∵BD﹣CD=BC,∴tan55°•x﹣tan25°•x=20,∴x=≈=>10,因为A岛到货轮的航线的最短距离大于10,所以不可能触礁.18.解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30(m)19.解:过点P作PH⊥AB于点H,由题意得∠P AB=30°,∠PBA=45°,设PH=x,则AH=x,BH=x,PB=x,∵AB=16,∴x+x=16,解得:x=8﹣8,∴PB=x=8﹣8,答:灯塔P与B之间的距离为(8﹣8)km.20.解:过点C作CF⊥AB于点F,如右图所示,由题知:四边形CDBF为矩形,BD=12米,∴CF=DB=12米,∵在Rt△ACF中,∠ACF=45°,∴,∴AF=12米,∵在Rt△CEF中,∠ECF=30°,∴,∴,∴米,∴AE=AF+EF=(12+4)米,即条幅AE的长度为米.21.解:作BC⊥P A交P A的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD=,∴tan14°=,即0.25=,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC==,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB==19.5,即电梯AB的坡度是5:12,长度是19.5米.22.解:由题意可得,∠AEC=30°,∠ADC=60°,∠BDC=45°,CH=DG=EF=1.5米,FG=ED=15米,∵∠ADC=∠AED+∠EAD,∴∠EAD=30°,∴∠EAD=∠AED,∴ED=AD,∴AD=15米,∵∠ADC=60°,∠ACD=90°,∴∠DAC=30°,∴DC=米,AC=米,∴AH=AC+CH=+=米,∵∠BDC=45°,∠BCD=90°,∴∠DBC=45°,∴∠BDC=∠DBC,∴BC=CD=米,∴AB=AC﹣BC=﹣=米,即AH=米,AB=米.23.解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.24.解:(1)过C作CD⊥AB于D,由题意得,∠CAB=30°,∠DBC=45°,AB=16×=8(海里),∵∠BDC=90°,∴BD=CD,在Rt△ACD中,AD==CD,∵AB=AD﹣BD=CD﹣CD=8,∴CD≈11(海里),答:小岛C到航线的距离是11海里;(2)没有触礁的危险,理由:∵CD=11>10,∴没有触礁的危险.25.解:(1)∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°.(2)过A作AC⊥BD于点C,则AC的长是A到BD的最短距离.∵∠ABD=90°﹣60°=30°.∴∠ABD=∠BAD.∴BD=AD=12海里.∵Rt△ACD中,∠CAD=30°,∴AC=AD•cos∠CAD=≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.26.解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×0.8=3.2(千米),∵△BCD中,∠CBD=90°﹣35°=55°,∴CD=BD•tan∠CBD=4.48(千米),∴BC=CD÷sin∠CBD≈6(千米).答:B、C两地的距离大约是6千米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第二十六章 圆与正多边形 14课时(13+1) 第二十七章 统计初步 10课时( 9+1)

第二十六章 圆与正多边形 26.1 圆的确定(1课时) 1.教学目标 (1)知道点与圆的三种位置关系,了解三角形外心、外接圆、圆的内接三角形以及多边形的外接圆和圆的内接多边形等概念. (2)理解点与圆的位置关系的判定方法,并能初步运用点与圆位置关系的判定方法解决有关数学问题. (3)会画三角形的外接圆. 在教学中,要注意以下几点: (1)关于圆的半径,本节明确指出它是“联结圆心和圆上一点的线段”。要将半径与半径长区分开来,而以前的课本中有混用的情况,需要修改. (2)对于点与圆的位置关系的研究,可先进行定性讨论,再进行定量分析.在进行定量分析时,由点与圆的位置关系推出相应的“点与圆心的距离”和“圆的半径”之间的大小关系,可以理解为这是点与圆的位置关系的性质.反过来,由“点与圆心的距离”和“圆的半径”的大小关系推出相应的点与圆的位置关系,可以理解为这是点与圆的位置关系的判定.这也是“边款”中关于符号“”的说明的真正含义. (3)例题1是对点与圆位置关系判定方法的初步运用。教学时,要让学生理解每个小问中哪条线段的长可以看作是⊙C的半径.这是解决问题的关键. (4)“思考”是为接下来的“问题”研究作好准备。通过思考,既让学生知道“在平面上,经过给定两点的圆有无数个”这样一个结论,又知道经过平面内给定两个点作圆的方法. (5)在“问题”研究时,学生可能不会想到三个点在同一直线上的情况,直接得出“在平面上,经过三点的圆只有一个”错误的结论。在教学时,应指导学生仔细分析问题,对问题进行分类讨论.让学生真正理解为什么在定理中强调三个点“不在同一直线上”的条件,同时注意到经过同一直线上的三点的圆不存在. (6)例题2是让学生学会画给定三角形的外接圆.例题有意识地安排学生画一个钝角三角形的外接圆.“边款”中也指出这个钝角三角形外接圆的圆心在这个三角形的外部.而课本中图26-5(1)的A、B、C三点其实是一个锐角三角形的顶点,所确定的圆心O是这个锐角三角形外接圆的圆心,这个圆心在三角形的内部.在练习26.1中,又安排学生画出给定的一个直角三角形的外接圆,并要指出这个外接圆圆心的位置.这种安排,是要让学生在会画出各种给定三角形的外接圆的同时,总结出不同类型的三角形的外接圆圆心的位置特点,知道“锐角三角形外接圆的圆心在这个三角形的内部”、“直角三角形外接圆的圆心是这个直角三角形斜边中点”、“钝角三角形外接圆的圆心在这个三角形的外部”这三个几何事实. 2

(7) 练习26.1第3题,是引起学生对四边形外接圆的思考,让学生知道任一四边形不一定存在外接圆. 26.2圆心角,弧,弦,弦心距之间的关系(3课时) 1.教学目标 (1)理解圆心角、弧、弦、弦心距等概念. (2)掌握同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,能初步运用这些定理及其推论解决有关数学问题. 在教学中,要注意以下几点: (1)在圆心角、弧、弦、弦心距概念教学时,要把握准每个概念的含义,帮助学生正确理解概念的文字描述.如“弦心距是圆心到弦的距离,即圆心到弦的垂线段的长,而不是圆心到弦的垂线段.又如“等弧”是指能够重合的两条弧,它包含形状相同、长度也相同两层含义,而不仅仅是长度相同. (2)为了便于研究讨论,“边款”中特别指出没有特别说明,本章中的圆心角通常是指大于0°小于180°的角.同时要向学生讲清楚,涉及到大于180°的圆心角时必须加以说明。 (3)本节仍然用叠合法来导出圆心角、弧、弦、弦心距之间关系的定理.如果用弧长计算公式,那么只能推出两条弧长度相等,不能说明两条弧为什么能重合.课本中对这个定理的证明,虽然是操作说理,但运用叠合法的过程是严谨的。 (4) “问题2”的设置,是引导学生分别由弧相等、或弦相等、或弦心距相等这些条件,化归到圆心角相等,进而根据已有的圆心角、弧、弦、弦心距之间关系的定理,推出其他几组量也相等,得到这个定理的推论. (5)例题1是圆心角、弧、弦、弦心距之间关系的定理的初步运用,要注意规范表达. (6)例题2、例题3是圆心角、弧、弦、弦心距之间关系定理的推论的初步运用。教学时,要指导学生学会如何用“+”、“-”符号表达弧的和与差;还要让学生体验到运用这个定理及其推论可使证明过程更为简明. 26.3 垂径定理(3课时) 1.教学目标 (1)经历垂径定理的探索和证明过程,掌握垂径定理及其推论,能初步运用垂径定理及推论解决有关数学问题. (2)在证明垂径定理的推论的活动中,领会分类讨论的数学思想. 在教学中,要注意以下几点: (1) 本节开头说明了圆是轴对称图形,然后在“思考” 中提出问题,引导学生直观感知垂径定理的真实性,再用推理的方法加以证明。教学中,要注意展现垂径定理的导出和证明过程,让学生获得“实验—归纳—猜测—论证”的过程经历. (2) 对于垂径定理文字描述的理解,在“边款”中特别指出,垂径定理条件中的“弦”可以是直径,结论中“平分弦所对的弧”包括弦所对的劣弧和优弧;垂径定理中的条件“圆的直径垂直于弦”,也可表述为“圆的半径垂直于弦”,或者“圆心到弦的垂线段”.这样,学生在实际问题背景下,可灵活运用垂径定理来解决数学问题. (3) 例题1是垂径定理的初步运用。学生有可能还是习惯用等腰三角形“三线合一”来证明,要引导学生对不同的证明 3

方法进行比较,帮助学生理解新的定理在几何证明中所起的作用,看到不同证明方法之间的联系和课本中证明过程的简约. (4) 例题2 是运用垂径定理解决简单的实际数学问题.本题的背景赵州石拱桥,教学时要指导学生如何将现实生活中的数学问题抽象为数学模型,要关注这个转化的过程,渗透数学建模思想.同时,可结合本例渗透“两纲”教育,激发学生的爱国热情。例题中有拱高,后面又提出了弓形的概念,教学时要向学生解说,并注意“边款”中对“弓形”与“拱形”两个概念的区别的说明。 (5) “问题1”和“问题2”都是为导出垂径定理的推论进行“问题驱动”,是从构造垂径定理的逆命题的角度提出来的,也体现了分类讨论的数学思想. (6) 例题3是垂径定理推论的初步运用,解题过程中用到锐角三角比知识,主要考虑到简化计算过程. (7) 例题4是运用垂径定理的推论作图———等分一条已知弧。可先让学生独立思考作图的方法,然后共同说明作图的依据,并作总结.通过此例,可让学生归纳:要平分一条线段或圆弧,只要作出这条线段或联结这两点的的垂直平分线.结合这道例题,也可要求学生找出这条弧所在圆的圆心位置,并说出作图的理由. (8) 例题5是运用垂径定理的推论进行几何计算。在解题过程中,通过构造直角三角形、运用勾股定理来求圆中的线段长,有一定的综合运用要求,要引导学生把握知识之间的联系和构造直角三角形的基本方法。 (9) 例题6是垂径定理推论的综合运用.要指导学生联系关于同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理分析证明思路.证题后,可提出将题中的条件“AB=CD”与结论“PA=PC”对调,请学生思考如何证明. (10)在例题7中,由于两平行弦间的距离大于圆的半径,因此这两条弦在圆心的两侧。如果两平行弦间的距离小于圆的半径,那么这两条弦可能在圆心的两侧,也可能在圆心的同侧。完成例题7的教学后,要提醒学生注意在一般情况下两平行弦与圆心的位置关系特征,使学生对练习26.3(3)第3题的分析全面些。 26.4直线与圆的位置关系(1课时) 1.教学目标 (1)理解直线与圆的三种位置关系. (2)掌握直线与圆的位置关系用数量关系所描述的性质与判定,并能初步运用它们解决有关数学问题.知道切线的判定定理,会过圆上一点画圆的切线. (3)经历探究直线与圆的位置关系的动态变化过程,从中进一步领会分类讨论、化归的数学思想.体验事物运动变化中量变引起质变的观点,树立辨证唯物主义观点,发展抽象、分析、概括的能力. 教学过程中,应注意以下几点 (1) “操作”是为了直观展现知识的发生过程,同时增强教学的直观性和趣味性.要引导学生将操作过程抽象为数学问题,强调将硬币的边缘看作一个圆.还可利用多面体,提供现实生活中体现直线与圆的位置关系的直观形象,增强学生的感性认识。 (2) “思考”中提出的问题,是引导学生从数量分析的角度研究直线与圆的位置关系.根据直线与圆的三种位置关系,推出相应的圆心到直线的距离与半径的大小关系(即直线和圆的位置关系的性质);再根据圆心到直线的距离与半径的大小关系推出 4

相应的直线与圆的位置关系(即直线与圆位置关系的判定).注意要从正、反两个方面进行解说;对于当dR时推出l上一定有一些点在圆内,可画图分析,如从圆心引直线l的垂直线段和斜线段,由dR可知垂足和斜足之间线段内的点在圆内。 (3) 例题1是根据切线的判定定理作圆的切线,要让学生掌握作图的方法. (4) 例题2是直线与圆位置关系判定的初步运用。解题中求圆心到直线的距离时采用了用面积法,过程简单明了,教学时可以将本例题与练习26.4 第3题进行比较. 26.5圆与圆的位置关系(3课时) 1.教学目标 (1) 理解圆与圆的位置关系及其有关概念,并能初步运用这些知识解决有关问题. (2)经历圆与圆的位置关系的探索过程,进一步领会类比、分类、化归、数形结合等数学思想;体会事物之间相互联系和运动变化,量变引起质变等辩证唯物主义观点;发展分析、归纳、抽象、概括能力以及判断的能力. (3)掌握圆与圆的位置关系用数量关系所描述的性质与判定,并能初步运用它们解决有关数学问题. (4)掌握相关两圆的连心线性质及相切两圆连心线性质. 在教学中,要注意以下几点: (1) “操作”中在 纸上所画的圆的半径为2.5厘米,为的是使这个圆比硬币更大,便于将要进行的操作和观察。教学时,要让学生动手操作,同时将硬币的边缘抽象为一个圆,再观察在操作过程中硬币边缘与所画的圆的公共点的个数.教师在听取学生的回答后,可向学生提出“边款”中的问题,由于不在一直线上的三点确定一个圆,所以两个不同的圆的公共点不可能有三个. (2) 在教学中,可让学生类比直线与圆的位置关系,自主找出两圆可能形成的各种位置关系. 然后对各种位置关系进行分类,再归纳各类位置关系的本质特征,最后由学生给出两圆相离、相切、相交的定义。教师根据学生的定义,加以适当校正,并给出规范定义. (3) 在寻找两圆位置关系时,要让学生动口、动手、动脑,进行观察、思考、猜想、归纳,亲身经历圆与圆的位置关系变化过程,以运动的观点,认识事物的本质,加深对知识的理解.学生知道了两圆相离、相切、相交的概念后,可让学生在这三个概念中找出关键词,说出分类的依据(根据公共点的个数);然后让学生继续观察和比较每一大类中的图形,进行再次分类. (4) “问题”的提出是引导学生用数量分析的方法研究两圆位置关系,探索它与两圆的半径长、圆心距这三个量的数量关系之间的联系。对于用这三个量的数量关系描述圆与圆的位置关系各种情况进行讨论时,可采用“先易后难、突破关键”的教学策略. 先让学生解决两圆“外离”、“外切”、“内切”的情况,通过对图形的观察和分析,容易得到相应的数量关系表达式;然后解决“内含”的情况,注意d可为零;最后对“相交”的情况进行分析,由两圆圆心的联线与两圆的半径构造三角形,利用三角形三边的长度关系,推出描述两圆相交的数量关系表达式.另外,考虑到这部分内容比较抽象,教师可适当借助多媒体教学手段辅助教学,以便于学生思考和理解. (5)当0d时,两圆内含,这时两圆为同心圆.也就是说,同心圆的位置关系是两圆内含的一种特殊情形.注意,同心

相关文档
最新文档