精选舟山市中考数学模拟试卷(有详细答案)(Word版)
2021年浙江省舟山市中考数学全真模拟考试试卷A卷附解析

2021年浙江省舟山市中考数学全真模拟考试试卷A 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示的的几何体的主视图是( )A .B .C .D .2.下列各图中,是轴对称图案的是( )3.梯形ABCD 中,AD ∥BC ,则四个内角∠A ,∠B ,∠C ,∠D 的度数比可能是( )A .3:5:6:4B .3:4:5:6C .4:5:6:3D .6:5:4:34.根据下列条件能唯一画出△ABC 的是 ( )A .AB =3,BC =4,AC =8B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 5.如图所示,下面对图形的判断正确的是( )A .是轴对称图形B .既是轴对称图形,又是中心对称图形C .是轴对称图形,非中心对称图形D .是中心对称图形,非轴对称图形6.方程①2290x -=;②2110x x-=;③29xy x +=;④276x x +=中,是一元二次方程的个数有( )A .1个B .2个C .3个D .4个7.公因式是23ax -的多项式是( )A .2225ax a --B .22236a x ax --C .2223612ax a x ax --+D .3261224ax ax a x --- 8.当2x =-时,分式11x +的值为( ) A .1B .-1C .2D .-2 9.如图所示,线段AB 上有C 和D 两个点,则图中共有线段( )A . 3条B . 4条C .5条D .6 条10.A 、B 是平面上两点,AB=10 cm ,P 为平面上一点,若PA+PB=20 cm ,则P 点 ( )A .只能在直线AB 外 B .只能在直线AB 上C .不能在直线AB 上D .不能在线段AB 上二、填空题11.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .12. 廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为211040y x =-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米(精确到1米).13.己在同一直角坐标系中,函数11(0)y k x k =≠的图象与22(0)k y k x =≠的图象没有公共点,则12k k .(填“>”、“=”或“<”)14.如图,△ABC 是等边三角形,P 是三角形内任一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 周长为12,PD+PE+PF= .15.如图,l 是四边形ABCD 的对角线,如果AD ∥BC ,OB=OD 有下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④A0=C0.其中正确的结论是 (把序号填上).16.如图,已知AB ⊥l 于F ,CD 与l 斜交于F ,求证:AB 与CD 必相交.证明:(反证法)假设AB 与CD 不相交,则∥ ,∵AB ⊥l ,∴CD ⊥ .这与直线CD 与l 斜交矛盾.∴假设AB 与CD 不相交 , ∴AB 与CD .17.弧长的计算公式180n r l π=中,常量是 ,变量是 . 18.若2325m x x +->一元一次不等式,则 m = .19.平行四边形的面积为S ,边长为5,该边上的高为h ,则S 与h 的关系为 ;当h=2时,S= ;当S=40时,h= .20.如图所示,点E ,F 在△ABC 的BC 边上,点D 在BA 的延长线上,则∠DAC= + ,∠AFC=∠B+ =∠AEF+ .21.用四舍五入法取l29543的近似值,保留3个有效数字,并用科学记数法表示是 .三、解答题22.已知,如图,⊙O 1和⊙O 2 外切于点 P ,AC 是⊙O 1的直径,延长 AP 交⊙O 2 于点 B ,过 点B 作⊙O 2的切线交 AC 的延长线于点D ,求证:AD ⊥BD.23.某校计划把一块近似于直角三角形的废地开发为生物园,如图所示,∠ACB=90°,BC=60米,∠A=36°,(1)若入口处E 在AB 边上,且与A 、B 等距离,求CE 的长(精确到个位);(2)若D 点在AB 边上,计划沿线段CD 修一条水渠.已知水渠的造价为50元/米,水渠路线应如何设计才能使造价最低,求出最低造价.(其中5878.036sin =︒, 8090.036cos =︒, 7265.036tan =︒)24.已如图所示,梯子 AB 长为 2. 5米,顶端A 靠在墙壁上,这时梯子底端 B 与墙角的距离为1. 5 米,梯子滑动后停在 DE 的位置上,测得 BD 的长为0. 5 米,求梯子顶端A 下滑了多少?25.画一画世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问图中三个图形中是轴对称图形的有________,•是中心对称图形的有_______(分别用三个图的代号a 、b 、c 填空).(2)请你在图中的d 、e 两个圆中,按要求分别画出与a 、b 、c 图案不重复的图案(草图)(用尺规画或徒手画均可,但要尽可能准确性,美观些).d 是轴对称图形但不是中心对称图形;e 既是轴对称图形又是中心对称图形.26.如图,已知在⊙O 中,AB 为弦,C 、D 两点在 AB 上,且 AC= BD .请你仔细观察后回答,图中共有几个等腰三角形?把它们写出来,并说明理由.27.你知道棱柱与直棱柱的关系吗?请简要说明.28.如图,BD 平分∠ABC ,且∠1 = ∠D ,请判断AD 与 BC 的位置关系,并说明理由.29. 若0=++c b a ,求证:02222=++-ac c b a .30.如图,直线AD 与BE 相交于点0,∠1与∠2互余,∠2=62°,求∠3的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.C5.D6.B7.B8.B9.D10.D二、填空题11.7312.1813.< 014.415.①②④16.AB,CD,l,不成立,必相交17.180、π;l、n、r18.1-或3 2 -19.S=5h,10,820.∠B,∠C,∠BAF,∠EAF21.1.30×105三、解答题22.连结O1O2,则必过点 P,连结O2B,∵O1 A=O1 P,∴∠A=∠O1PA,同理∠O2PB=∠O2BP,又∵∠O1PA =∠O2PB,∴∠A=∠O2BP.∵BD 是⊙O2的切线,∴∠DBA+∠A=∠DBA+∠O2BP=90°,∴∠ADB= 90°,∴AD⊥BD.23.解:(1)在Rt △ABC 中AB =BC sin 36°=60 0.5878= 102.08 又∵CE 是Rt △ABC 中斜边AB 上的中线∴CE=21AB ≈51(米) (2)在Rt △ABC 中作CD ⊥AB 交AB 于D 点则沿线段CD 修水渠造价最低∴∠DCB=∠A=36°∴在Rt △BDC 中CD=BC ×cos ∠DCB=︒⨯36cos 60=48.54∴水渠的最低造价为:50×48.54=2427(元)答:水渠的最低造价为2427元. 24.梯子顶端下滑了 0. 5 米.25.(1)a 、b 、c ; a 、c (2)略.26.共有 2 个等腰三角形:△QAB 和△OCD .∵OA=OB ,∴△QAB 是等腰三角形.OA=OB ,∴∠A=∠B .∵AC=BD .. ∴△OAC ≌△OBD(SAS),OC=OD ,∴△OCD 是等腰三角形. 27.略28.AD ∥BC ,理由略29.证略.30.28° E D CB A。
2021年浙江省舟山市中考数学全真模拟试卷附解析_1

2021年浙江省舟山市中考数学全真模拟试卷 _1学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1. 根据图中所给数据,能得出( ) A .a ∥b ,c ∥dB .a ∥b ,但c 与d 不平行C .c ∥d ,但a 与b 不平行D .a 与b ,c 与d 均不互相平行2.下列方程中属于一元一次方程的是( ) A .x-y=3B .-x+1=1C .11x x+=D .2210x x -+=3.某中学现有 4200 人,计划一年后初中在校生增加 8%,高中在校生增加 11%,这样校在校生将增加10%. 这所学校现在的中在校生和高中在校生人数依次为( ) A .1400 人和 2800 人 B .1900 人和 2300人 C .2800 人和 1400 人D .2300 人和 1900人4.在下列多项式的乘法中,可以用平方差公式计算的是( ) A .(1)(1)x x ++B .11()()22a b b a +- C .()()a b a b -+-D .22()()x y x y -+5.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( ) A .PD=PC B .PD ≠PCC .PD 、PC 有时相等,有时不等 D .PD >PC6.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB 的依据是( ) A .SSSB .SASC .ASAD .AAS7.下列运算中,正确的是( ) A .23467()x y x y =B .743x x x =⋅C .2213()()x y x y xy --÷=D .21124-⎛⎫= ⎪⎝⎭8.下列说法:①代数式21a +的值永远是正的;②代数式2a b+中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x-中字母x 可以是 0 以外的任何数. 其中正确的有( ) A .1 个 B .2 个 C .3 个 D .4 个 9.在△ABC 中,∠A=1O5°,∠B-∠C=15°,则∠C 的度数为( ) A . 35° B .60° C .45° D .30° 10.主视图、左视图、俯视图都是圆的几何体是( )A . 圆锥B . 圆柱C . 球D .空心圆柱 11.如图,已知直线a ∥b ,∠1 = 105°,∠2 = 140°,则∠3的度数为( )A . 75°B . 65°C . 55°D .50°12.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .k>0,b>OB .k>0,b<0C .k<0,b>0D .k<0,b<013.计算(2232128)3-+⨯的结果是( ) A .63B . 66C .6D . 6214. 在下图中,反比例函数y =k 2+1x的图象大致是( ) 15.如果抛物线24(1)y x m =++的图象与x 轴有两个交点,那么 m 的取值范围是( ) A .m>0B .m<0C .m<-1D .m>-116.如图,为了绿化环境,在矩形空地的四个角划出四个半径为1•的扇形空地进行绿化,则绿化的总面积是( ) A .2πB .πC .2πD .4π17.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△A ′0′B ′≌△AOB 的依据是( ) A .SSSB .SASC .ASAD .AAS二、填空题18.请你写出一个有一根为0的一元二次方程:.19.在第二点 P到x轴的距离是3,到y轴的距离是4,则点 P的坐标是.20.如图,是由四棱锥和直四棱柱所组成的几何体,它的主视图是选项中的,左视图是,俯视图.21.如图,点C是∠AOB的OA 边上一点,0、E是OB边上的两点,则图中共有条线段,条射线,个角.22.王叔叔买了四盒同样的长方体的礼品(如图),长、宽、高分别为4cm、3 cm、2cm,王叔叔想把它们包装成一个大长方体,并使包装表面积最小,则表面积的最小值为.三、解答题23.两棵小树在同一时刻的影子如图所示,请在图中画出形成树影的光线,并判断它们是太阳的光线还是灯光光线?并在图中画出小明的影子.24.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:n=1n=2n=3(1)第n个图形铺设地面所用瓷砖的总块数为 (用含n的代数式表示);(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.25.写出下列命题的逆命题,并判断真假:(1)如果一个三角形是直角三角形,那么它的两个锐角互余;(2)在角的内部到一个角的两边距离相等的点在这个角的平分线上;(3)等腰三角形的两个底角相等;(4)正多边形的各边相等.26.如图,EF过□ABCD的对角线交点0,交AD于点E,交BC于点F,若AB=4,BC=5,OE=1.5,求四边形EFCD的周长.27.三块牧场的草一样密一样多,面积分别为133公顷,10 公顷和24 公顷,第一块 12 头牛可吃4个星期,第二块 21 头牛可吃 9个星期,第三块可供多少头牛吃18个星期?28.已知553a=,444b=,335c=,试比较a,b,c的大小.29.如图所示,已知△ABC中,D是AB的中点,过D点作DE∥BC交AC于E.(1)从△ABC到△ADE是什么变换?(2)经过这一变换,△ABC的角分别变为哪些角?它们的大小改变吗?(3)经过这一变换,△ABC的边分别变为哪些边?它们的大小改变吗?30.如图,已知线段AB=10cm,在线段AB上取一点 C,使AC=3cm,D是BC的中点,求AD的长.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.B5.A6.A7.B8.B9.D10.C11.B12.B13.B14.D15.C16.B17.A二、填空题 18.02=x (答案不惟一)19.(-4,3)20.C,C,B21.6,5,1022.136cm 2三、解答题 23.如图虚线所示,它们是灯光的光线. 线段AB 是小明的影子.24.解:(1)652++n n ;(2)256506n n ++=,解得1220,25n n ==-(舍)(3)不存在.由2(1)(56)(1)n n n n n n +=++-+,解得n = 因为n 不为正整数,所以不存在黑白瓷砖数相等的情形.25.(1)若一个三角形的两锐角互余,则这个三角形是直角三角形.是真命题;(2)角平分线上的点到角两边的距离相等.是真命题;(3)有两个角相等的三角形是等腰三角形.是真命题;(4)各边都相等的多边形是正多边形.是假命题26.证△AOE ≌△COF(ASA),再得四边形EFCD 的周长=10.527.36 头28.511(3)a =,411(4)b =,311(5)c =,∵453435>>,∴b a c >>29.(1)相似变换;(2)∠A ,∠B ,∠C 分别变为∠A ,∠ADE ,∠AED ,它们的大小没有改变; (3)AB ,BC ,CA 分别变为AD ,DE ,AE 它们的大小改变,AB=2AD ,BC=2DE ,AC=2AE30.∴ AB=10cm ,AC =3cm ,∴BC=AB-AC=10-3=7(cm).∵D 是BC 的中点,∴CD=12BC =12×7 =3.5(cm).∴AD=AC+CD=3+3.5=6.5(cm)。
浙江省舟山市中考数学试卷及答案.doc

浙江省舟山市中考数学试卷一、选择题(本题有12小题,每小题4分,共48分,其中只有一个选项是正确的,不选、多选、错选均不给分)1.下列各数中是正整数的是().A.1 B.-2 C.0.3 D .22.如图,长方体的面有().A.4个 B.5个 C.6个 D.7个3.要使根式3x-有意义,则字母x的取值范围是()A.x≠3 B.x≤3 C.x>3 D.x≥34.下列计算正确的是().A.(ab)2=ab2B.a2·a3=a4C.a5+a5=2a5D.(a2)3=a65.已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为().A.15πcm2B.cm2C.12πcm2D.30πcm26.如图,已知A、B、C是⊙O上的三点,若∠ACB=44°,则∠AOB的度数为().A.44° B.46° C.68° D.88°7.已知反比例函数的图象经过点(-2,1),则反比例函数的表达式为()A.y=-2xB.y=2xC.y=-12xD.y=12x8.用换元法解方程21xx--21xx-+2=0,如果设y=21xx-,那么原方程可化为().A.y2-y+2=0 B.y2+y-2=0C.y2-2y+1=0 D.y2+2y-1=09.二次函数y=x2+10x-5的最小值为().A.-35 B.-30 C.-5 D.0.我们知道,“两点之间线段最短”,“直线外一点与直线上各点连结的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O于A、B两点,PC切⊙O于点C,则点P到⊙O 的距离是().A.线段PO的长度 B.线段PA的长度C.线段PB的长度 D.线段PC的长度11.数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为().A.S△ABC>S△DEF B.S△ABC<S△DEF C.S△ABC=S△DEF D.不能确定12.假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,•从一间蜂房爬到右边相邻的蜂房中去.例如.蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法().A.7 B.8 C.9 D.10二、填空题(本大题为选做题,在8小题中做对6小题即得满分30分,•多做答错不扣分)13.分解因式:x2-4=_______.14.已知2,则代数式a2-1的值为________.15.如图,一扇窗户打开后,用窗钩BC可将其固定,•这里所运用的几何原理是________.16.小宁想知道校园内一棵大树的高度(如图),他测得CB的长度为10米,∠ACB=•50°,请你帮他算出树高AB约为________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50•°≈1.2)17.请写出一个图象不经过...第二象限的一次函数解析式_______.18.已知正六边形的外接圆的半径是a,则正六边形的周长是________.19.日常生活中,“老人”是一个模糊概念,•有人想用“老人系数”来表示一个人的老年人的年龄x(岁)x≤60 60<x<80 x≥80x- 1该人的“老人系数” 0 6020按照这样的规定,一个年龄为70岁的人,他的“老人系数”为________.刚中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;•②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟,以上各道工序,除④外,一次只能进行一道工序,小刚要将面条煮好,最少用________分钟.三、解答题(共7题,第21题~23题每题8分,第24题10分,第25、26题每题12分,•第27题14分,共72分)π)021.(本题8分)计算:8+|-2|-(3-22.(本题8分)学习了统计知识后,•班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,•请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数.(2)求该班共有多少名学生.(3)在图1中,将表示“乘车”的部分补充完整.23.(本题8分)设x 1、x 2是关于x 的方程x 2-(m-1)x-m=0(m ≠0)的两个根,且满足11x+21x =-23,求m 的值. 24.(本题10分)如果正方形网格中的每一个小正方形边长都是1,则每个小格的顶点叫做格点. (1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为35、22. (2)在图2中,线段AB 的端点在格点上,请画出以AB 为一边的三角形,•使这个三角形的面积为6(要求至少画出3个).(3)在图3中,△MNP 的顶点M 、N 在格点上,P 在小正方形的边上,•问这个三角形的面积相当于多少个小方格的面积?在你解出答案后,说说你的解题方法.25.(本题12分)近阶段国际石油价格猛涨,中国也受其影响,为了降低运行成本,•部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.假设一辆出租车日平均行程为300千米.(1)使用汽油的出租车,假设每升汽油能行驶12千米.当前的汽油价格为4.6•元/升,当行驶时间为t天时,所耗的汽油费用为p元,试写出p关于t的函数关系式.(2)使用液化气的出租车,假设每千克液化气能行驶15~16千米,•当前的液化气价格为4.95元/千克,当行驶时间为t天时,所耗的液化气费用为w元,试求w•的取值范围(用t表示).(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)、(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益(用字谈谈感想).26.(本题12分)如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).(1)求抛物线的对称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP•是什么四边形?并证明你的结论;(3)连结CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.27.(本题14分)如图1,在直角坐标系中,点A的坐标为(1,0),•以OA•为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连结BC,•以BC•为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论.(2)随着点C位置的变化,点E的位置是否会发生变化,若没有变化,求出点E•的坐标;若有变化,请说明理由.(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.参考答案一、选择题(本题有12小题,每小题4分,共48分)1.A 2.C 3.D 4.C 5.A 6.D 7.A 8.D 9.B 10.B 11.C 12.B 二、填空题(本大题为选做题,在8小题中做对6小题即得满分30分,•多做答错不扣分) 13.(X+2)(x-2) 14.1 15.三角形具有稳定性 16.12 17.k>0,b≤0即可•18.6a 19.0.5(填12不扣分)2三、解答题(共7题,第21~23题每题8分,第24题10分,第25、26题每题12分,•第27题14分,共72分)21.解:8+|-2|-(3-π)0=22+2-1=22+122.解:(1)(1-50%)×360°=108°(2)0%=40(人)(3)画图正确23.解:∵△=(m+1)2≥0.∴对于任意实数m,方程恒有两个实数根x1、x2.又∵x1+x2=m-1,x1x2=-m,且m≠0,∴11x+21x=-23,∴1212x xx x+=-23,∴1mm--=-23,3m-3=2m∴m=324.25.解:(1)p=300×4.612t,即p=115t(2)300×4.9516t≤w≤300×4.9516t,即148516t≤w≤99t(3)115t-99t≤8000t≤500答:最多500天能收回改装设备的成本.26.解:(1)x=-42aa=-2,∴抛物线的对称轴是直线x=-2设点A的坐标为(x,0),12x-+=-2,∴x=-3,A的坐标(-3,0)(2)四边形ABCP是平行四边形∵CP=2,AB=2,∴CP=AB又∵CP∥AB∴四边形ABCP是平行四边形(3)通过△ADE ∽△CDP 得出DE :PD=1:2 或通过△ADE ∽△ACO 得出AD :AC=1:3通过△ADE ∽△PAE 得出方程12=3t·t或通过△APD ∽△ACP 得出方程t 2+1=13解得将B (-1,0)代入抛物线y=a x 2+4ax+t ,得t=3a ,a=3抛物线的解析式为y=3x 2+327.解:(1)两个三角形全等∵△AOB 、△CBD 都是等边三角形 ∴OBA=∠CBD=60°∴∠OBA+∠ABC=∠CBD+∠ABC 即∠OBC=∠ABD ∵OB=AB ,BC=BD △OBC ≌△ABD(2)点E 位置不变 ∵△OBC ≌△ABD ∴∠BAD=∠BOC=60°∠OAE=180°-60°-60°=60°在Rt △EOA 中,EO=OA ·tan60°或∠AEO=30°,得AE=2,∴∴点E 的坐标为(0)(3)∵AC=m,AF=n,由相交弦定理知1·m=n·AG,即AG=m n又∵OC是直径,∴OE是圆的切线,O E2=EG·EF 在Rt△EOA中,31+3)2=(2-mn)(2+n)即2n2+n-2m-mn=0解得m=222n nn++.。
【附20套中考模拟试题】舟山市重点中学2019-2020学年中考数学模拟试卷含解析

舟山市重点中学2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.13B.22C.24D.2232.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC3.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.4.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.关于x的不等式组312(1)x mx x-<⎧⎨->-⎩无解,那么m的取值范围为( )A.m≤-1 B.m<-1 C.-1<m≤0D.-1≤m<06.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A .①②③B .①②④C .②③④D .③④⑤7.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则BD AD 的值为( )A .1B .22C .2-1D .2+18.抛物线223y x +=(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)9.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >10.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .11.下列各数中最小的是( )A .0B .1C .﹣3D .﹣π12.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( )A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数y=2+1-1x x 中自变量x 的取值范围是___________. 14.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).15.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)k y k x =≠的图象经过点C ,则k 的值为_________________.16.分解因式:m 2n ﹣2mn+n= .17.将一副三角板如图放置,若20AOD ∠=o ,则BOC ∠的大小为______.18.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 20.(6分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x =70时,y =80;x =60时,y =1.在销售过程中,每天还要支付其他费用350元.求y 与x 的函数关系式,并写出自变量x 的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?21.(6分)如图,已知点D 在△ABC 的外部,AD ∥BC ,点E 在边AB 上,AB•AD =BC•AE .求证:∠BAC =∠AED ;在边AC 取一点F ,如果∠AFE =∠D ,求证:AD AF BC AC=.22.(8分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m =162﹣3x .请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.23.(8分)手机下载一个APP 、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a 的值. 24.(10分)观察猜想:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在边BC 上,连接AD ,把△ABD 绕点A 逆时针旋转90°,点D 落在点E 处,如图①所示,则线段CE 和线段BD 的数量关系是 ,位置关系是 .探究证明:在(1)的条件下,若点D 在线段BC 的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC ,∠ACB=45°,AC=2,其他条件不变,过点D 作DF ⊥AD 交CE 于点F ,请直接写出线段CF 长度的最大值.25.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m=,n=;扇形统计图中机器人项目所对应扇形的圆心角度数为°;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.26.(12分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.27.(12分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.2.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C .【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.A【解析】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离;图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A .4.B【解析】由(1)得x >-1,由(2)得x≤1,所以-1<x≤1.故选B .5.A【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.6.C【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a >0,c <0,∴ac <0,故①错误; ②由于对称轴可知:b 2a-<1, ∴2a+b >0,故②正确;∴△=b 2﹣4ac >0,故③正确;④由图象可知:x =1时,y =a+b+c <0,故④正确;⑤当x >b 2a-时,y 随着x 的增大而增大,故⑤错误; 故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.7.C【解析】【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质结合S △ADE =S 四边形BCED,可得出AD AB =,结合BD=AB ﹣AD 即可求出BD AD 的值. 【详解】∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴△ADE ∽△ABC , ∴2ADE ABC S AD AB S ⎛⎫= ⎪⎝⎭V V , ∵S △ADE =S 四边形BCED ,S △ABC =S △ADE +S 四边形BCED ,∴AD AB =,∴1BD AB AD AD AD -===, 故选C .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.8.A【解析】【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).此题主要考查了二次函数的性质,关键是熟记:顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .9.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.10.D【解析】【分析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A ,B ,C 中铁片顺序为1,1,5,6,选项D 中铁片顺序为1,5,6,1.故选D .【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键. 11.D【解析】【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π0<1.则最小的数是﹣π.本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.12.D【解析】【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≥﹣12且x≠1【解析】试题解析:根据题意得:2+10 {-10 xx≥≠解得:x≥﹣12且x≠1.故答案为:x≥﹣12且x≠1.14.甲.【解析】乙所得环数的平均数为:0159105++++=5,S2=1n[21x x(-)+22x x(-)+23x x(-)+…+2nx x(-)]=15[205(-)+215(-)+255(-)+295(-)+2105(-)]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定. 15.1【解析】【分析】先求出直线y=13x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.【详解】解:令x=0,得y=13x+2=0+2=2,∴B(0,2),∴OB=2,令y=0,得0=13x+2,解得,x=-6,∴A(-6,0),∴OA=OD=6,∵OB∥CD,∴CD=2OB=4,∴C(6,4),把c(6,4)代入y=kx(k≠0)中,得k=1,故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.16.n(m﹣1)1.【解析】【分析】先提取公因式n后,再利用完全平方公式分解即可【详解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.故答案为n(m﹣1)1.17.160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.18.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等来求解.【详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB=12.故选D.【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1【解析】【分析】先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.解:原式=()()()21111111x x x x x x x --+-÷=-⋅=--+--. 解2320x x ++=得,122,?1x x =-=-,∵1x =-时,21x +无意义, ∴取2x =-.当2x =-时,原式=()211---=.20. (1) y =﹣2x+220(40≤x≤70);(2) w =﹣2x 2+300x ﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.【解析】【分析】(1)根据y 与x 成一次函数解析式,设为y =kx+b (k≠0),把x 与y 的两对值代入求出k 与b 的值,即可确定出y 与x 的解析式,并求出x 的范围即可;(2)根据利润=单价×销售量,列出w 关于x 的二次函数解析式即可;(3)利用二次函数的性质求出w 的最大值,以及此时x 的值即可.【详解】(1)设y =kx+b(k≠0), 根据题意得708060100k b k b +=⎧⎨+=⎩, 解得:k =﹣2,b =220,∴y =﹣2x+220(40≤x≤70);(2)w =(x ﹣40)(﹣2x+220)﹣350=﹣2x 2+300x ﹣9150=﹣2(x ﹣75)2+21;(3)w =﹣2(x ﹣75)2+21,∵40≤x≤70,∴x =70时,w 有最大值为w =﹣2×25+21=2050元,∴当销售单价为70元时,该公司日获利最大,为2050元.【点睛】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.21.见解析【解析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得AD DEBC AC=,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴AB BC AE AD=,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,AD DE BC AC=,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴AD AF BC AC=.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解析】【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.23.(1)7000辆;(2)a的值是1.【解析】【分析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣14a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵1%20%4a ,解得a<80,∴a=1,答:a的值是1.【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.24.(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴MD AM CF DC=,设DC=x,∵∠ACB=45°,2,∴AM=CM=1,MD=1-x,∴11xCF x -=,∴CF=-x2+x=-(x-12)2+14,∴当x=12时有最大值,CF最大值为14.点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.25.(1)8,3;(2)144;(3)2 3 .【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.26.(1)详见解析;(2)80°.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解析】【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【详解】证明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE ,在△ABC 和△AED 中,BC ED ACB ADE AC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (SAS );解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点睛】考点:全等三角形的判定与性质.27.(1)50,20;(2)12,23;见图;(3)大约有720人是A 型血.【解析】【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B 型的人数除以抽取的总人数即可求得m 的值;(2)先计算出O 型的人数,再计算出A 型人数,从而可补全上表中的数据;(3)用样本中A 型的人数除以50得到血型是A 型的概率,然后用3000乘以此概率可估计这3000人中是A 型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20, 故答案为50,20;(2)O 型献血的人数为46%×50=23(人),A 型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=1265025=, 3000×625=720, 估计这3000人中大约有720人是A 型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.中考模拟数学试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元B.5.23×107元C.523×108元D.5.23×108元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b) B.(b,a) C.(﹣b,a)D.(b,﹣a)7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.48.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C 作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要。
2020年浙江省舟山市中考数学模拟测试试卷附解析

2020年浙江省舟山市中考数学模拟测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.用长为5cm ,6cm ,7cm 的三条线段围成三角形的事件是( )A .随机事件B .必然事件C .不可能事件D .以上都不是2.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( )A .1条B .2条C .3条D .4条 3.已知y a +与x b +(a 、b 为常数)成正比,则下列判断中,正确的是( )A .y 是x 的正比例函数B .y 是x 的一次函数C .y 不是x 的一次函数D .y 既不是x 的正比例函数,也不是x 的一次函数4.下列事件中,必然事件是( )A .任何数都有倒数B .明年元旦那天天晴C .异号两数相乘积为负D .摸彩票中大奖5.在△ABC 中,若∠A =70°-∠B ,则∠C 等于( )A .35°B .70°C .110°D .140° 6.如图,l0条20 cm 长的线条首尾粘合成一个纸圈,每个粘合部分的长度为1.5 cm ,则纸圈的周长是 ( )A .200 cmB .198.5 cmC .186.5 cmD .185 cm7.若a 、b 互为倒数,a 、c 互为相反数,且||2d =,则式子23()2a c ab d d ++-的值为( ) A .334 B . 334或144 C . 144 D .233 或143二、填空题8.已知I 为△ABC 的内心,∠B=50O ,则∠AIC= .9.如图,点 A .B 、C 把⊙O 三等分,那么△ABC 是 三角形.10.如图,□ABCD 中,BC 边上的高等于h ,点E 是对角线AC 上靠近点C 的三等分点,它到BC 边的距离等于h ', 则:h h '= .11.如图,把△ABC 绕点C 顺时针旋转35°到△A ′B ′C 的位置,交AC 于点D ,若∠A ′DC=90°,则∠A= .12.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是 .13.若点A 的坐标为(3,4),点B 与点A 关于原点对称,则点B 的坐标是 .14.若某数的一个平方根是54,则这个数的另一个平方根是 .15.如果一个角的两边分别与另一个角的两边平行,并且这两个角相差 90°,那么这两个角的度数分别是 .16. 已知△ABC ≌△△DEF ,BC=EF=6cm ,△ABC 的面积为 18 cm 2,则FE 边上的高为 cm.17.方程组⎩⎨⎧=-=+13y x y x 的解为_________. 18.箱子中有6个红球和4个白球,它们除颜色外都相同,摇匀后,若随意摸出一球,摸到红球的概率是________.19.用电子计算器计算 3.5415-+的算式是 . 20.在四边形ABCD 中,给出下列论断:①AB ∥DC ;②AD=BC ;③∠A=∠C .以其中两个作为题设,另外一个作为结论,用“如果……,那么……”的形式,写出一个你认为正确的命题: .三、解答题21.如图,它是实物与其三种视图,在三种视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.22.如图,PA 、PB 切⊙O 于A 、B 两点,若∠APB =60°,⊙O 的半径为3,求阴影部分的面积.23.若两圆的圆心距d 满足等式|4|3d -=,且两圆的半径是方程的27120x x -+=两个根,判断这两个圆的位置关系,并说明理由。
舟山市中考数学四模试卷

舟山市中考数学四模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)数轴上点A到原点的距离为2.5,则点A所表示的数是().A . 2.5B . -2.5C . 2.5或-2.5D . 02. (2分) (2019八下·武侯期末) 下列命题为真命题的是()A . 若ab>0,则a>0,b>0B . 两个锐角分别相等的两个直角三角形全等C . 在一个角的内部,到角的两边距离相等的点在这个角的平分线上D . 一组对边平行,另一组对边相等的四边形是平行四边形3. (2分) (2017八上·上杭期末) 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A . 7.6×108克B . 7.6×10﹣7克C . 7.6×10﹣8克D . 7.6×10﹣9克4. (2分)点(-2,-1)位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元.设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为()A .B .C .D .6. (2分)(2017·新野模拟) 将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A . 145°B . 135°C . 120°D . 115°7. (2分) (2019八下·永康期末) 如图,平行四边形ABCD中,E,F分别是AD,BC的中点,P是边DC上的动点,G,H分别是PE,PF的中点,已知DC=10cm,则GH的长是()A . 7cmB . 6cmC . 5cmD . 4cm8. (2分)(2017·裕华模拟) 如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A . 线段PDB . 线段PCC . 线段PED . 线段DE二、填空题 (共8题;共9分)9. (1分) (2019七上·秀洲期末) 对于三个数a,b,c,我们规定用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}=,min{﹣1,2,3}=﹣1,如果M{3,2x+1,4x﹣1}=min{2,﹣x+3,5x},那么x=________.10. (1分)若﹣2amb4与3a2bn+2是同类项,则m+n=________11. (1分) (2016七下·澧县期末) 下列变形:①(x+1)(x﹣1)=x2﹣1;②9a2﹣12a+4=(3a﹣2)2;③3abc3=3c•abc2;④3a2﹣6a=3a(a﹣2)中,是因式分解的有________(填序号)12. (1分) (2016九上·宾县期中) 二次函数y=﹣(x+1)2+8的开口方向是________.13. (1分)(2016·桂林) 如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=________.14. (1分)(2020·金华模拟) 如图,在矩形纸片ABCD中,AB=4,点G是BC边上一点,且BG=5(BG<CG).将矩形纸片沿过点G的折痕GE折叠,使点B恰好落在AD边上,折痕与矩形纸片ABCD的边相交于点E,则折痕GE 的长为________.15. (2分) (2019八下·北京期末) 如图,在平面直角坐标系xOy中,A是双曲线在第一象限的分支上的一个动点,连接AO并延长与这个双曲线的另一分支交于点B ,以AB为底边作等腰直角三角形ABC ,使得点C位于第四象限。
2020年舟山市中考数学模拟试题与答案
2020年舟山市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1. 张敏同学在“百度”搜索引擎中输入“中国梦,我的梦”能搜索到与之相关的结果的条数约为67 100 000,这个数67 100 000用科学记数法可表示为()A.671×105B.6.71×106C.6.71×107D.0.671×1082. 下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a23. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.4.任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于25.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上一点,DE∥AB,∠ADE=42°,则∠B的大小为()A.42°B.45°C.48°D.58°6.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.7.已知:点A(2016,0)、B(0,2018),以AB为斜边在直线AB下方作等腰直角△ABC,则点C 的坐标为()A.(2,2 )B.(2,﹣2 )C.(﹣1,1 )D.(﹣1,﹣1 )8.已知2是关于x的方程x2﹣(5+m)x+5m=0的一个根,并且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC的周长为()A.9 B.12 C.9或12 D.6或12或159.下列4个点,不在反比例函数y=﹣图象上的是()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.( 3,2)10.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.411.如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于()A.70°B.64°C.62°D.51°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a﹣c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有_______ .A.①②④⑤B.②③⑤⑥C.①②③⑤D.①③④⑥二、填空题(本题共6小题,满分18分。
2023年浙江省舟山市中考数学一模试卷(含解析)
2023年浙江省舟山市中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( )A. 3.2×105B. 3.2×106C. 3.2×104D. 32×1052. 下列运算正确的是( )A. 3a 2−a 2=3B. a ⋅a −1=1(a ≠0)C. (−3ab 2)2=−6a 2b 4D. (a +b )2=a 2+b 23. 已知样本数据:3,2,1,7,2,下列说法不正确的是( )A. 平均数是3B. 中位数是1C. 众数是2D. 方差是4.44.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A. 我B. 害C. 了D. 厉5. 《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x 天相遇,根据题意可列方程为( )A. (17+19)x =1B. (17−19)x =1C. (9−7)x =1D. (9+7)x =16. 数形结合是解决数学问题常用的思想方法.如图,一次函数y =kx +b (k 、b 为常数,且k <0)的图象与直线y =13x 都经过点A (3,1),当kx +b <13x 时,根据图象可知,x 的取值范围是( )A. x>3B. x<3C. x<1D. x>17.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )A. 25°B. 40°C. 50°D. 65°8. 如图1,直线l1//l2,直线l3分别交直线l1,l2于点A,B.小嘉在图1的基础上进行尺规作图,得到如图2,并探究得到下面两个结论:①四边形ABCD是邻边不相等的平行四边形;②四边形ABCD是对角线互相垂直的平行四边形.下列判断正确的是( )A. ①②都正确B. ①错误,②正确C. ①②都错误D. ①正确,②错误9.如图,已知正方形ABCD的边长为4,E,F分别为AB,CD边上的点,且EF//BC,G为EF上一点,且GF=1,M,N分别为GD,EC的中点,则MN的长为( )A. 83B. 94C. 52D. 12510. 已知抛物线y=ax2+bx+c的图象与x轴的正半轴交于点A(p,0),点B(q,0);与y轴的正半轴交于点C(0,r),且p=r,q=3p,那么b的值为( )A. 43B. −43C. 34D. −34第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11. 分解因式:xy−y2=______ .12. 某正多边形的内角是它外角的两倍,则该正多边形的边数为______ .13. 在网络课程学习中,小蕾和小丽分别在《好玩的数学》《美学欣赏》《人文中国》中随机选择一门,两人恰好选中同一门课程的概率为______ .14.如图,在△ABC中,O是BC的中点,以点O为位似中心,作△ABC的位似图形△DEF.若点A的对应点D是△ABC的重心,则△ABC与△DEF的位似比为______.15. 如图,在△ABC中,∠ACB=90°,AC=BC=22,将△ABC绕AC的中点D逆时针旋转90°得到△A′B′C′,其中点B的运动路径为弧BB′,则图中阴影部分的面积为______.16. 如图1,在△ABC中,∠C=90°,AC=8cm,BC=6cm.动点P沿线段AC以5cm/s的速度从点A向点C运动,另有一动点Q与点P同时出发,沿线段BC以相同的速度从点B向点C运动.作P D⊥AB于点D,再将△APD绕PD的中点旋转180°,得到△A′DP;作QE⊥AB于点E,再将△B QE绕QE的中点旋转180°,得到△B′EQ.设点P的运动时间为x s.(1)如图(2)当A′点落在BC边上时x的值为______ ;(2)如图1,在点P,Q运动中,当点A′在△B′EQ内部时x的取值范围为______ .三、解答题(本大题共8小题,共66.0分。
最新浙江省舟山市年中考数学试题(Word版,含解析)
浙江省舟山市2019年中考数学试题(Word版,含解析)一、单选题(共10题;共20分)1、(2019·嘉兴)-2地绝对值为()A、B、C、D、2、(2019·嘉兴)长度分别为,,地三条线段能组成一个三角形,地值可以是()A、B、C、D、3、(2019·嘉兴)已知一组数据,,地平均数为,方差为,那么数据,,地平均数和方差分别是()A、,B、,C、,D、,4、(2019·嘉兴)一个正方体地表面展开图如图所示,将其折叠成立方体后,“你”字对面地字是()A、中B、考C、顺D、利5、(2019·嘉兴)红红和娜娜按如图所示地规则玩一次“锤子、剪刀、布”游戏,下列命题中错误地是()A、红红不是胜就是输,所以红红胜地概率为B、红红胜或娜娜胜地概率相等C、两人出相同手势地概率为D、娜娜胜地概率和两人出相同手势地概率一样6、(2019·嘉兴)若二元一次方程组地解为则()A、B、C、D、7、(2019·嘉兴)如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点地四边形是菱形,则正确地平移方法是()A、向左平移1个单位,再向下平移1个单位B、向左平移个单位,再向上平移1个单位C、向右平移个单位,再向上平移1个单位D、向右平移1个单位,再向上平移1个单位8、(2019·嘉兴)用配方法解方程时,配方结果正确地是()A、B、C、D、9、(2019·嘉兴)一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为()A、B、C、D、10、(2019·嘉兴)下列关于函数地四个命题:①当时,有最小值10;②为任意实数,时地函数值大于时地函数值;③若,且是整数,当时,地整数值有个;④若函数图象过点和,其中,,则.其中真命题地序号是()A、①B、②C、③D、④二、填空题(共6题;共7分)11、(2019·嘉兴)分解因式:________.12、(2019·嘉兴)若分式地值为0,则地值为________.13、(2019·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为地,,弓形(阴影部分)粘贴胶皮,则胶皮面积为________.14、(2019·嘉兴)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数地扇形统计图,则投进球数地众数是________.15、(2019·嘉兴)如图,把个边长为1地正方形拼接成一排,求得,,,计算________,……按此规律,写出________(用含地代数式表示).16、一副含和角地三角板和叠合在一起,边与重合,(如图1),点为边地中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到地变化过程中,点相应移动地路径长为________.(结果保留根号)三、解答题(共8题;共90分)17、(2019·嘉兴)计算题。
舟山市2021年中考数学试卷及答案(word版)
2021年浙江省初中毕业生学业考试〔舟山卷〕数 学 试 题 卷总分值为120分,考试时间为120分钟卷Ⅰ(选择题)一、选择题(此题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选多项选择、错选,均不得分) 1.-3的绝对值为( ▲ )(A)-3 (B)3 (C) 13- (D)132.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的中位数是( ▲ ) (A)6 (B)7 (C)8 (D)93.2013年12月15日,我国“玉兔号〞月球车顺利抵达月球外表.月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为( ▲ )(A)3.844×108 (B)3.844×107 (C)3.844×106 (D)38.44×1064.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( ▲ )(A)各项消费金额占消费总金额的百分比 (B)各项消费的金额 (C)消费的总金额(D)各项消费金额的增减变化情况5.如图,⊙0的直径CD 垂直弦AB 于点E ,且CE=2,DE=8,那么AB 的长为( ▲ )(A)2 (B)4 (C)6 (D)8 6.以下运算正确的选项是( ▲ )(A) 2323a a a += (B) ()2a a a -÷=(C) ()326a a a -=- (D) ()36226a a =7.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,假设△ABC 的周长为16cm ,那么四边形ABFD 的周长为( ▲ )(A)16cm (B)18cm (C)20cm (D)22cm8.一个圆锥的侧面展开图是半径为6的半圆,那么这个圆锥的底面半径为( ▲ )(A)1.5 (B)2 (C)2.5 (D)39.如图,在一张矩形纸片ABCD 中,AD =4cm ,点E ,F 分别是CD 和AB 的中点.现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH .假设HG 的延长线恰好经过点D ,那么CD 的长为( ▲ )(A)2cm (B) 23cm (C)4cm (D) 43cm10.当-2≤x ≤l 时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.... .... 浙江省舟山市中考数学试卷 一、选择题 1.下列几何体中,俯视图为三角形的是( )
A. B.
C. D. 2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为( ) A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105 3.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是( )
A. 1月份销量为2.2万辆 B. 从2月到3月的月销量增长最快 C. 4月份销量比3月份增加了1万辆 D. 1-4月新能源乘用车销量逐月增加 4.不等式1-x≥2的解在数轴上表示正确的是( )
A. B.
C. D. 5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开
铺平后的图形是( ) ....
.... A. B. C. D. 6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A. 点在圆内 B. 点在圆上 C. 点在圆心上 D. 点在圆上或圆内 7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,
再在斜边AB上截取BD= 。则该方程的一个正根是( ) A.AC的长 B.AD的长 C.BC的长 D.CD的长 8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( )
A. B.
C. D. 9.如图,点C在反比例函数 (x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,
△AOB的面积为1,则k的值为( ) A. 1 B. 2 C. 3 D. 4 10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A.甲 B.甲与丁 C.丙 .... .... D.丙与丁 二、填空题 11.分解因式m2-3m=________。 12.如图,直线l1∥l2∥l3 , 直线AC交l1 , l2 , l3 , 于点A,B,C;直线DF交l1 , l2 , l3
于点D,E,F,已知 ,则 =________。 13.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢,”小红赢的概率是________,据此判断该游戏________(填“公平”或“不公平”)。 14.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。
15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列处方程:________。 16.如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________。
三、解答题 17. (1)计算:2( -1)+|-3|-( -1)0; (2)化简并求值 ,其中a=1,b=2。
18.用消元法解方程组 时,两位同学的解法如下:.... .... (1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”。 (2)请选择一种你喜欢的方法,完成解答。
19.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。 求证:矩形ABCD是正方形 20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm-185mm的产品为合格),随机各轴取了20个样品进行测,过程如下:收集数据(单位:mm): 甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180。 乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183。 整理数据:
分析数据: 应用数据: (1)计算甲车间样品的合格率。 (2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息,请判断个车间生产的新产品更好,并说明理由, 21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与动时间t(s)之间的关系如图2所示。....
.... (1)根据函数的定义,请判断变量h是否为关于t的函数? (2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义, ②秋千摆动第一个来回需多少时间? 22.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°。当点P位于初始位置P0时,点D与C重合(图2),
根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳。
(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m) (2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75, ≈1.41, ≈1.73) 23.已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,.... .... B。 (1)判断顶点M是否在直线y=4x+1上,并说明理由。 (2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+4b+1,根据图象,写出x的取值范围。 (3)如图2,点A坐标为(5,0),点M在△AOB内,若点C( ,y1),D( ,y2)都在二次函数图象上,试比较y1与y2的大小。 24.已知,△ABC中,∠B=∠C,P是BC边上一点,作∠CPE=∠BPF,分别交边AC,AB于点E,F。
(1)若∠CPE=∠C(如图1),求证:PE+PF=AB。 (2)若∠CPE≠∠C,过点B作∠CBD=∠CPE,交CA(或CA的延长线)于点D.试猜想:线段PE,PF和BD之间的数量关系,并就∠CPE>∠C情形(如图2)说明理由。
(3)若点F与A重合(如图3),∠C=27°,且PA=AE。 ①求∠CPE的度数; ②设PB=a,PA=b,AB=c,试证明: ....
.... 答案解析部分 一、选择题 1.【答案】C 【考点】简单几何体的三视图 【解析】【解答】A、圆锥的俯视图是一个圆并用圆心,故A不符合题意; B、长方体的俯视图是一个长方形,故B不符合题意; C、直三棱柱的俯视图是三角形,故C符合题意; D、四棱锥的俯视图是一个四边形,故D不符合题意; 故答案为C。 【分析】俯视图指的是在水平投影面上的正投影,通俗的讲是从上面往下面看到的图形. 2.【答案】B 【考点】科学记数法—表示绝对值较大的数 【解析】【解答】解:1500000=1.5×1000000=1.5×106 故答案为B。 【分析】考查用科学记数表示绝对值较大的数,将数表示形a×10n , 其中1≤|a|<10,n是正整数. 3.【答案】D 【考点】折线统计图 【解析】【解答】解:A、显然正确,故A不符合题意; B、2月份到3月份的线段最陡,所以2月到3月的月销量增长最快,说法正确,故B不符合题意; C、4月份销量为4.3万辆,3月份销量为3.3万量,4.3-3.3=1(万辆),说法正确,故不符合题意; D、1月到2月是减少的,说法错误,故D符合题意; 故答案为D 【分析】A、正确读取1月份的数据,即可知;B、根据折线统计图看增长快慢,只需要看各线段的陡的程度,线段越陡,则越快;C、正确读取4月、3月的数据,即可知;D、观察折线的趋势,逐月增加的应该是上升的折线,而图中有下降。 4.【答案】A 【考点】解一元一次不等式 【解析】【解答】解:因为1-x≥2,3≥x, 所以不等式的解为x≤3, 故答案为A。 【分析】解在不等式的解,并在数轴上表示,不等号是“≥”或“≤”的时候,点要打实心 5.【答案】A 【考点】剪纸问题 【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,.... .... 用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。 故答案为A。 【分析】根据对称的性质,用倒推法去展开这个折纸。 6.【答案】D 【考点】点与圆的位置关系,反证法 【解析】【解答】解:点与圆的位置关系只有三种:点在圆内、点在圆上、点在圆外, 如果点不在圆外,那么点就有可能在圆上或圆内 故答案为D 【分析】运用反证法证明,第一步就要假设结论不成立,即结论的反面,要考虑到反面所有的情况。 7.【答案】B 【考点】一元二次方程的根,勾股定理 【解析】【解答】解:在Rt△ABC中,由勾股定理可得AC2+BC2=AB2=(AD+BD)2 , 因为AC=b,BD=BC=, 所以b2+=, 整理可得AD2+aAD=b2 , 与方程x2+ax=b2相同, 因为AD的长度是正数,所以AD是x2+ax=b2的一个正根 故答案为B。 【分析】由勾股定理不难得到AC2+BC2=AB2=(AD+BD)2 , 代入b和a即可得到答案 8.【答案】C 【考点】平行四边形的性质,菱形的判定,作图—尺规作图的定义 【解析】【解答】解:A、作的辅助线AC是BD的垂直平分线,由平行四边形中心对称图形的性质可得AC与BD互相平分且垂直,则四边形ABCD是菱形,故A不符合题意; B、由辅助线可得AD=AB=BC,由平行四边形的性质可得AD//BC,则四边形ABCD是菱形,故B不符合题意; C、辅助线AB、CD分别是原平行四边形一组对角的角平分线,只能说明四边形ABCD是平行四边形,故C符合题意; D、此题的作法是:连接AC,分别作两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD, 由AD//BC,得∠BAD+∠ABC=180°, ∠BAC=∠DAC=∠ACB=∠ACD, 则AB=BC,AD =CD,∠BAD=∠BCD, 则∠BCD+∠ABC=180°, 则AB//CD, 则四边形ABCD是菱形 故D不符合题意; 故答案为C 【分析】首先要理解每个图的作法,作的辅助线所具有的性质,再根据平行四边形的性质和菱形的判定定