2019年全国高考数学真题导数汇编(全)教师版
专题20 函数与导数综合-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见详解;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.专题20函数与导数综合(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.【母题原题2】【2018年高考全国Ⅲ卷理数】已知函数()()()22ln 12f x x ax x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1x f x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 【名师点睛】本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论0a ≥和0a <,当0a <时构造函数()()22f x axh x x =++时关键,讨论函数()h x 的性质,本题难度较大.【母题原题3】【2017年高考全国Ⅲ卷理数】已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L ,求m 的最小值. 【答案】(1)1a =;(2)3【解析】(1)()f x 的定义域为()0∞,+.①若0a ≤,因为11ln 2022f a ⎛⎫<⎪⎝⎭=-+,所以不满足题意; ②若a >0,由()1a x af 'x x x-=-=知,当()0x ,a ∈时,()f 'x <0;当(),+x a ∈∞时,()f 'x >0,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x =a 是()f x 在()0∞,+的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥.故a =1. (2)由(1)知当()1,x ∈+∞时,1ln 0x x -->. 令112n x =+得11ln 122nn ⎛⎫+< ⎪⎝⎭.从而 221111111ln 1ln 1ln 1112222222n n n ⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L .故2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L . 而231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.本专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要有以下几个角度:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.【命题意图】了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数不超过三次).主要考查考生的分类讨论思想、等价转化思想以及数学运算能力和逻辑推理能力.【命题规律】导数的综合应用一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查,一般出现在解答题的压轴位置,难度较大.【答题模板】1.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f'(x);(3)由f'(x)>0(或<0)解出相应的x的取值范围,对应的区间为f(x)的单调递增(减)区间.还可以通过列表,写出函数的单调区间.2.证明或讨论函数的单调性方法一:求出在对应区间上导数的正负即得结论.方法二:(1)确定函数f(x)的定义域;(2)求导数f'(x),并求方程f'(x)=0的根;(3)利用f'(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论f'(x)的正负,由符号确定f(x)在该子区间上的单调性.【知识总结】1.函数的极值设函数y=f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数y=f (x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有f(x)>f(x0),则f(x0)是函数y=f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.一般地,当函数f(x)在x0处连续时,(1)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是极小值.注意:(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f'(x0)=0是x0为f(x)的极值点的必要而非充分条件.例如,f(x)=x3,f'(0)=0,但x=0不是极值点.2.函数的最值在区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.在区间[a,b]上连续的函数f(x)若有唯一的极值点,则这个极值点就是最值点.注意:极值与最值的区别与联系极值只能在定义域内部取得,而最值却可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值.在指定区间上极值可能不止一个,也可能一个也没有,而最值最多有一个.3.利用导数解决函数单调性问题应该注意:(1)单调区间是函数定义域的子区间,所以求解函数的单调区间要先求函数的定义域;(2)求可导函数f(x)的单调区间,可以直接转化为f'(x)>0与f'(x)<0这两个不等式的解集问题来处理;(3)若可导函数f(x)在指定区间D上单调递增(减),则应将其转化为f'(x)≥0(f'(x)≤0)来处理;(4)涉及含参数的函数的单调性或单调区间问题,一定要弄清参数对导数f'(x)在某一区间内的符号是否有影响.若有影响,则必须分类讨论.4.函数的图象与导函数图象的关系理解导函数y=f'(x)的图象与函数f(x)图象的升降关系,导函数大于0对应原函数图象由左至右上升,导函数小于0对应原函数图象由左至右下降,在解题时要注意原函数的定义域,如判断定义域是否具有对称性等.5.由函数的单调性求参数的取值范围的技巧(1)由可导函数f(x)在D上单调递增(或递减)求参数范围问题,可转化为f'(x)≥0(或f'(x)≤0)对x∈D恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f'(x)>0(或f'(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f(x)在D上不单调,则f(x)在D上有极值点,且极值点不是D的端点.6.求函数f(x)在[a,b]上的最值的方法(1)若函数在区间[a,b]上单调递增或递减,f(a)与f(b)一个为最大值,一个为最小值;(2)若函数在区间[a,b]内有极值,要先求出函数在[a,b]上的极值,再与f(a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成;(3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.注意:求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.7.已知函数的极值、最值求参数(1)已知函数的极值求参数时,通常利用函数的导数在极值点处的取值等于零来建立关于参数的方程.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.(2)已知函数的最值求参数,一般先求出最值(含参数),再根据最值列方程或不等式(组)求解.8.利用导数解决不等式问题(1)利用导数证明不等式的方法证明f(x)<(>)g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F'(x)<(>)0,则F(x)在(a,b)上是减(增)函数,同时若F(a)≤(≥)0,由减(增)函数的定义可知,x∈(a,b)时,有F(x)<(>)0,即证明了f(x)<(>)g(x).其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.(2)不等式成立(恒成立)问题①f(x)≥a恒成立⇔f(x)min≥a,f(x)≥a成立⇒f(x)max≥a.②f(x)≤b恒成立⇔f(x)max≤b,f(x)≤b成立⇔f(x)min≤b.③f(x)>g(x)恒成立F(x)min>0.④∀x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)min.∀x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)max.∃x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)min.∃x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)max.注意:不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f(a)≥g(x)(f(a)≤g(x))对存在x∈D能成立等价于f(a)≥g(x)min(f(a)≤g(x)max),f(a)≥g(x)(f(a)≤g(x))对任意x∈D都成立等价于f (a)≥g(x)max(f(a)≤g(x)min),应注意区分,不要搞混.9.导数在研究函数零点中的应用(1)研究函数图象的交点、方程的根、函数的零点,归根到底是研究函数的性质,如单调性、极值等. (2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.1.【四川省百校2019年高三模拟冲刺卷数学】已知函数()()()1ln 0,f x a x a g x x x=≠=-. (1)当2a =时,比较()f x 与()g x 的大小,并证明;(2)令函数()22F x fg ⎡⎤⎡⎤=-⎣⎦⎣⎦,若1x =是函数()F x 的极大值点,求a 的取值范围. 【答案】(1)见解析;(2)[)(]2,00,2a ∈-U . 【解析】(1)当2a =时,()()12ln f x g x x x x -=-+,令()12ln h x x x x=-+, 则()()222221212110x x x h x x x x x--+-=--=-'=≤, 所以函数()12ln h x x x x=-+在()0,∞+上单调递减,且()10h =, 所以当01x <<时,()0h x <,即()()f x g x >; 当1x >时,()0h x <,即()()f x g x <, 当1x =时,()0h x =,即()()f x g x =.(2)()22F x fg⎡⎤⎡⎤=-⎣⎦⎣⎦221ln 2,04a x x x x ⎛⎫=-+-> ⎪⎝⎭, 令202a m =>,则()2ln 1111ln x F x m m x x x x x x ⎛⎫=⋅-+=-+ ⎝'⎪⎭, 令()1ln G x m x x x =-+,则()222111m x mx G x x x x -+=--=-', ①当02m <≤时,()2210x mx G x x-+=-≤'恒成立, 所以()1ln G x m x x x=-+在()0,+∞上递减,且()10G = 所以01x <<时,()()0,F x F x '>在()0,1上递增,1x >时,()()0,F x F x '<在()1,+∞上递减,此时1x =是函数()F x 的极大值点,满足题意.②当2m >时,()()120,1,1,x x ∃∈∈+∞,使得当()12,x x x ∈时,()0G x '≥, 所以()1ln G x m x x x=-+在()12,x x 上递增,且()10G =, 所以11x x <<时,()()0,F x F x '<在()1,1x 上递减;21x x <<时,()()0,F x F x '>在()21,x 上递增,此时1x =是函数()F x 的极小值点,不合题意.综合得(]20,22a m =∈,解得[)(]2,00,2a ∈-U .【名师点睛】本题考查函数与导数的综合,函数极值与最值,转化化归思想,分类讨论,准确推理计算是关键,是中档题.2.【四川省乐山市高中2019届高三第三次调查研究考试数学】已知函数()()21ln 1f x a x x a =+--+(1)讨论函数()f x 的单调性;(2)若1a <,求证:当0x >时,函数()y xf x =的图像恒在函数()32ln 1y x a x x =++-的图像上方.【答案】(1)见解析;(2)见证明 【解析】(1)函数的定义域为()0,+∞,且()()121f x a x x =+-'()2211a x x+-=,当1a ≤-时,()0f x '<,函数()f x 在()0,+∞上为增函数; 当1a >-时,令()0f x '=,解得x =此时函数()f x 在⎛ ⎝⎭上递减,在⎫⎪+∞⎪⎝⎭上递增, (2)证明:若1a <,则当0x >时,问题转化为不等式()()32ln 1xf x x a x x >++-在()0,+∞上恒成立,只需要证明()()321ln 1ln 1x a x x a x a x x ⎡⎤+--+>++-⎣⎦在()0,+∞上恒成立,即证ln ln 1xx x a x-<-+在()0,+∞上恒成立, 令()()ln ln ,1xF x x x g x a x=-=--+, 因为()111xF x x x-=-=',易得()F x 在()0,1单调递增,在()1,+∞上单调递减,所以()()11F x F ≤=-, 又()221ln ln 1x x g x x x='--=-, 当0e x <<时,()0g x '<,当e x >时,()0g x '>, 所以()g x 在()0,e 上递减,在()e,+∞上递增,所以()()1e 1e g x g a ≥=--+, 又1a <,所以1111e ea --+>->-,即()()max min F x g x <,所以ln ln 1xx x a x-<-+在()0,+∞上恒成立, 所以当1a <时,函数()xf x 的图像恒在函数()32ln 1y x a x x =++-的图像上方.【名师点睛】本题考查函数的单调性质的讨论,考查不等式恒成立问题,是中档题,解题时要认真审题,注意导数性质和构造法的合理运用.3.【四川省内江市2019届高三第三次模拟考试数学】已知函数()21f x x ax =-+,()()ln g x x a a =+∈R . (1)若1a =,求函数()()()h x f x g x =-在区间1,e t ⎡⎤⎢⎥⎣⎦(其中1e et <<,e 是自然对数的底数)上的最小值;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围. 【答案】(1)见解析;(2)(],1-∞.【解析】(1)由题意,可得()221ln 1ln (0)h x x x x x x x x =-+--=-->,()2121'21x x h x x x x --=--=()()211x x x+-=, 令()'0h x =,得1x =.①当11e t <≤时,()h x 在1,e t ⎡⎤⎢⎥⎣⎦上单调递减, ∴()222min111e e 11e e ee h x h -+⎛⎫==-+= ⎪⎝⎭. ②当1t >时,()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,在[]1,t 上单调递增, ∴()()min 10h x h ==.综上,当11e t <≤时,()22min e e 1eh x -+=,当1t >时,()min 0h x =. (2)设函数()f x 在点()()11,x f x 处与函数()g x 在点()()22,x g x 处有相同的切线, 则()()()()121212''f x g x f x g x x x -==-,∴211212121ln 12x ax x ax a x x x -+---==-, ∴12122ax x =+,代入21211221ln x x x ax x a x -=-+--,得222221ln 20424a a x a x x ++++-=. ∴问题转化为:关于x 的方程221ln 20424a ax a x x ++++-=有解,设()221ln 2(0)424a a F x x a x x x =++++->,则函数()F x 有零点, ∵()211ln 24F x a x a x ⎛⎫=+++- ⎪⎝⎭,当2e a x -=时,ln 20x a +-=,∴()2e 0a F ->. ∴问题转化为:()F x 的最小值小于或等于0.()23231121'222a x ax F x x x x x--=--+=, 设()20002100x ax x --=>,则当00x x <<时,()'0F x <,当0x x >时,()'0F x >.∴()F x 在()00,x 上单调递减,在()0,x +∞上单调递增,∴()F x 的最小值为()2002001ln 2424a a F x x a x x =++++-. 由200210x ax --=知0012a x x =-,故()20000012ln 2F x x x x x =+-+-. 设()212ln 2(0)x x x x x x ϕ=+-+->, 则()211'220x x x xϕ=+++>,故()x ϕ在()0,+∞上单调递增,∵()10ϕ=,∴当(]0,1x ∈时,()0x ϕ≤, ∴()F x 的最小值()00F x ≤等价于001x <≤.又∵函数12y x x=-在(]0,1上单调递增,∴(]0012,1a x x =-∈-∞. 【名师点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.【广西桂林市、崇左市2019届高三下学期二模联考数学】设函数()()2e 1xf x a x x =---.(1)当1a =时,讨论()f x 的单调性;(2)已知函数()f x 在()0,+∞上有极值,求实数a 的取值范围.【答案】(1)()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减;(2)3,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)()()e 211xf x a x '=---.当1a =时()e 1xf x '=-.由()0f x '≥有e 10x -≥,解得0x ≥;()00f x x ≤'⇒≤. 所以函数()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减. (2)设()()()e 211xg x f x a x '==---,()()e 21xg x a ='--,因为函数()f x 在()0,+∞上有极值点,所以函数()g x 在()0,+∞上有零点.①当32a ≤时,0x >,∴e 1x >,∴()()e 210xg x a =-->', ∴()g x 在()0,+∞上单调递增,∵()00g =,所以当0x >时()()00g x g >=恒成立, 即函数()g x 在()0,+∞上没有零点. ②当32a >时,()211a ->,()ln210a ->, ()()e 210x g x a =-->'时,()ln21x a >-,()()e 210x g x a =--<'时,()ln21x a <-,∴()g x 在()(0,ln21a ⎤-⎦上单调递减,在())ln21,a ⎡-+∞⎣上单调递增, ∵()00g =,且()g x 在()(0,ln21a ⎤-⎦上单调递减,∴()()ln210g a -<. 对于0a >,当x →+∞时,()g x →+∞, 所以存在())0ln21,x a ⎡∈-+∞⎣使()00g x >. 所以函数()g x 在()()ln21,a -+∞上有零点.所以函数()f x 在()0,+∞上有极值点时,实数a 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.【名师点睛】本题主要考查利用导数研究函数的单调性,利用导数研究函数的极值,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知函数1()ln f x x mx x=--在区间(0,1)上为增函数,m ∈R .(1)求实数m 的取值范围;(2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求a b +的最小值.【答案】(1)2m ≤;(2)a b +的最小值为–1. 【解析】(1)∵()1ln f x x mx x=--, ∴()211f x m x x =+-'.又函数()f x 在区间()0,1上为增函数, ∴()2110f x m x x=-'+≥在()0,1上恒成立, ∴()221111124m t x x x x ⎛⎫≤+=+-= ⎪⎝⎭在()0,1上恒成立.令()()2211111,0,124t x x x x x ⎛⎫=+=+-∈ ⎪⎝⎭,则当1x =时,()t x 取得最小值,且()min 2t x =, ∴2m ≤,∴实数m 的取值范围为(],2-∞. (2)由题意的()11ln 22ln F x x x x x x x ⎛⎫=--+=- ⎪⎝⎭,则()211F x x x +'=, 设切点坐标为0001,ln x x x ⎛⎫- ⎪⎝⎭,则切线的斜率()020011a f x x x ==+', 又0001ln x ax b x -=+, ∴002ln 1b x x =--, ∴020011ln 1a b x x x +=+--. 令()211ln 1(0)h x x x x x=+-->, 则()()()23233211212x x x x h x x x x x x'+-+-=-+==, 故当()0,1x ∈时,()()0,h x h x '<单调递减;当()1,x ∈+∞时,()()0,h x h x '>单调递增. ∴当1x =时,()h x 有最小值,且()()min 11h x h ==-, ∴a b +的最小值为1-.【名师点睛】本题考查导数的几何意义和导数在研究函数性质中的作用,其中在研究函数的性质中,单调性是解题的工具和基础,而正确求导并判断导函数的符号是解题的关键,考查计算能力和转化意识的运用,属于基础题.6.【贵州省2019届高三高考教学质量测评卷(八)数学】已知函数()()ln xf x ax a x=-+∈R ,'()f x 为()f x 的导函数.(1)当0a =时,求函数()f x 的极值;(2)若212,e,e x x ⎡⎤∃∈⎣⎦,使()()123'4f x f x a ≤++成立,求实数a 的最小值. 【答案】(1)见解析;(2)211e 2-+. 【解析】(1)()f x 的定义域为(0,1)(1,)+∞U ,当0a =时,2ln 1()(ln )x f 'x x -=,令()0f 'x =,得e x =, 列表得所以当e x =时,()f x 取得极小值,且极小值为e ;无极大值.(2)若212,e,e x x ⎡⎤∃∈⎣⎦,使()()123'4f x f x a ≤++成立()()12min max 3'4f x f x a ⇔++≤. 由(1)知,2ln 1'()(ln )x f x a x -=-+,所以()()2222ln 133'44ln x f x a x -++=+, 令21ln t x =,则原式231,142t t t ⎛⎫⎡⎤=-++∈ ⎪⎢⎥⎣⎦⎝⎭的最大值为1,故存在21[e,e ]x ∈,1()1f x ≤,即1111ln x ax x -+≤,化为1111ln a x x ≥-+, 令11()ln h x x x=-+,2e,e x ⎡⎤∈⎣⎦, 则2222211(ln )'()(ln )(ln )x xh x x x x x x -=-=.对于函数()ln x x ϕ=,(0x >),1'()x x ϕ==, 当4x =时,()x ϕ取最大值为ln 420-<,所以ln x <2(ln )x x <,故()0h'x <恒成立,()h x 在2e,e ⎡⎤⎣⎦为减函数,最小值为211e 2-+, 所以211e 2a ≥-+,a 的最小值为211e 2-+.【名师点睛】本题主要考查了利用导数求函数的极值,利用导数研究不等式成立的问题,涉及存在性问题,构造函数利用导数求其最大最小值问题,换元法,属于难题.此类问题要注意理解存在性和恒成立的差别,结合具体问题实现正确转换为最大值和最小值是关键.7.【贵州省贵阳市2019年高三5月适应性考试(二)数学】已知函数()e xf x bx =+.(1)讨论()f x 的单调性;(2)若曲线()y f x =的一条切线方程为210x y -+=, (i )求b 的值;(ii )若210x x >>时,()()12f x f x -()()12121x x mx mx <-++恒成立,求实数m 的取值范围. 【答案】(1)见解析;(2)(i )1,(ii )e ,2⎛⎤-∞ ⎥⎝⎦.【解析】由()e xf x bx =+得()e xf x b '=+,若0b ≥,则()0f x '>,即()e xf x bx =+在(),-∞+∞上是增函数;若0b <,令()0f x '>得()ln x b >-,令()0f x '<得()ln x b <-,即()e xf x bx =+在()(),ln b -∞-上是单调减函数,在()()ln ,b -+∞上是单调增函数.(2)(i )设切点为()00,x y ,()e xf x bx =+得()e xf x b '=+由题意得000000e 2e 210x xb y bx x y ⎧+=⎪=+⎨⎪-+=⎩,消去b 与0y , 得000e e 10xxx -+=,令()e e 1x x g x x =-+,()e xg x x '=,0x <时,()0g x '<;0x >时,()0g x '>;0x =时,()0g x '=; ()g x ∴在(),0-∞上是减函数,在()0,+∞上是增函数,()()min 00g x g ∴==,即()e e +1x x g x x =-仅有一个零点0x =,即方程000e e 10xxx -+=仅有一个根0x =,02e 1b ∴=-=,(ii )由(i )知()e xf x x =+,()()12f x f x -<()()12121x x mx mx -++即为()2111f x mx x --<()2222f x mx x --, 由210x x >>知,上式等价于函数()()22e x xf x mx x mx φ=--=-在()0,+∞为增函数, ()e 20xx mx φ∴=-≥',即e2x m x≤,令()e xh x x =,()0x >,()()2e 1x x h x x='-, ()0h x '<时,01x <<;()0h x '>时,1x >;()0h x '=时,1x =, ()h x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 1e h x h ∴==,则2e m ≤,即e 2m ≤,所以实数m 的范围为e ,2⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题主要考查导数研究函数的单调性及切线方程,利用导数研究恒成立问题等知识,考查了转化能力和计算求解能力,属于较难题.8.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】已知221()ln ,02f x x a x a =->. (1)若()0f x ≥,求a 的取值范围;(2)若()()12f x f x =,且12x x ≠,证明:122x x a +>.【答案】(1)a 的取值范围是;(2)见解析.【解析】(1)()()()2x a x a a f x x x x+='-=-, 当()0,x a ∈时,()()0,f x f x '<单调递减; 当(),x a ∈+∞时,()0f x '>单调递增; 当x a =时,()f x 取最小值()221ln 2f a a a a =-.令221ln 02a a a -≥,解得0a <≤a 的取值范围是(. (2)由(1)知,()f x 在(0,)a 上单调递减,在(),a +∞上单调递增, 不失一般性,设120.x a x <<<,则22a x a -<,要证122x x a +>,即122x a x >-,则只需证()()122f x f a x <-, 因为()()12f x f x =,则只需证()()222f x f a x <-, 设()()()2,2g x f x f a x a x a =--≤<.则()()()22222022a a x a a g x x a x x a x x a x -=-+--'=-≤--, 所以()g x 在[),2a a 上单调递减,从而()()0.g x g a ≤= 又由题意得22a x a <<,于是()()()22220g x f x f a x =--<,即()()222f x f a x <-, 因此122x x a +>.【名师点睛】本题考查了利用导数求出函数单调性,解决不等式恒成立问题、同时也考查了通过函数值的大小来判断两个的变量的大小的问题.9.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知函数21()ln (1)()2f x x ax a x a =+-+∈R .(1)当1a ≥时,函数()f x 在区间[1,]e 上的最小值为–5,求a 的值;(2)设3211()()(1)22g x xf x ax a x x =-++-,且()g x 有两个极值点1x ,2x . (i )求实数a 的取值范围;(ii )证明:212e x x >.【答案】(1)8;(2)(i )1(1,1)e--;(ii )详见解析.【解析】(1)()()111()1a x x a f 'x ax a x x⎛⎫-- ⎪⎝⎭=+-+=, ∵1a ≥,[]1,e x ∈,∴()0f 'x ≥, 所以()f x 在区间[]1,e 上为单调递增.所以()()()min 111582f x f a a a ⎡⎤==-+=-⇒=⎣⎦, 又因为81a =≥, 所以a 的值为8.(2)(i )∵()()()232111ln 11222g x x x ax a x ax a x x ⎡⎤=+-+-++-⎢⎥⎣⎦()21ln 12x x a x x =-+-,且()g x 的定义域为()0,+∞,∴()()()ln 111ln 1g'x x a x x a x =+-+-=-+. 由()g x 有两个极值点1x ,2x ,等价于方程()ln 10x a x -+=有两个不同实根1x ,2x . 由()ln 10x a x -+=得ln 1xa x+=. 令()ln (0)xh x x x =>, 则21ln ()xh'x x-=,由()0e h'x x =⇒=. 当()0,e x ∈时,()0h'x >,则()h x 在()0,e 上单调递增; 当()e,x ∈+∞时,()0h'x <,则()h x 在()e,+∞上单调递减. 所以,当e x =时,()ln x h x x =取得最大值()max 1e eh =,∵()10h =,∴当()0,1x ∈时,()0h x <,当()1,x ∈+∞时,()0h x >,所以101e a <+<,解得111e a -<<-,所以实数a 的取值范围为11,1e ⎛⎫-- ⎪⎝⎭.(ii )不妨设120x x <<,且()11ln 1x a x =+①,()22ln 1x a x =+②, ①+②得:()()()1212ln 1x x a x x =++③ ②–①得:()()2211ln1x a x x x =+-④ ③÷④得:()12122211ln ln x x x x x x x x +=-,即()12212211ln ln x x x x x x x x +=⋅-, 要证:212e x x >,只需证()12212211ln ln 2x x xx x x x x +=⋅>-.即证:212212121121ln 21x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>⋅=++.令21(1)x t t x =>, 设()()214ln ln 211t F t t t tt -=-=+-++, ()()()221'01t F t t t -=>+.∴()F t 在()1,+∞上单调递增, ∴()()10F t F >=,即()21ln 1t t t->+,∴212e x x >.【名师点睛】本题考查利用导数研究函数的单调性,极值,最值问题,参变分离,数形结合讨论参数范围,构造函数等,比较综合,属于难题.10.【云南省昆明市2019届高三1月复习诊断测试数学】已知函数()ln f x x ax =-,a ∈R .(1)讨论()f x 的单调性;(2)若函数()f x 存在两个零点1x ,2x ,使12ln ln 0x x m +->,求m 的最大值. 【答案】(1)当0a ≤时,()f x 在()0,+∞单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(2)2.【解析】(1)函数()f x 的定义域为()0+∞,,()1=f x a x'-. 当0a ≤时,()0f x '>,()f x 在()0,+∞单调递增; 当0a >时,令()0f x '=,得10x a=>, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<. 所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.综上所述,当0a ≤时,()f x 在()0,+∞单调递增; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减. (2)因为11ln 0x ax -=,22ln 0x ax -=,即11ln x ax =,22ln x ax =.两式相减得()1212ln ln x x a x x -=-,即1212lnx x a x x =-. 由已知12ln ln x x m +>,得()12a x x m +>.因为10x >,20x >,所以12ma x x >+,即121212ln x x m x x x x >-+.不妨设120x x <<,则有()121212lnm x x x x x x -<+. 令12x t x =,则()0,1t ∈,所以()1ln 1m t t t -<+,即()1ln 01m t t t --<+恒成立. 设()()1ln (01)1m t g t t t t -=-<<+.()()()222111t m t g't t t +-+=+.令()()2211h t t m t =+-+,()01h =,()h t 的图象开口向上,对称轴方程为1t m =-, 方程()22110t m t +-+=的判别式()42m m ∆=-.当1m ≤时,()h t 在()0,1单调递增,()()01h t h >=,所以()0,g't >()g t 在()0,1单调递增,所以()()10g t g <=在()0,1恒成立.当12m <≤时,()420m m ∆=-≤,()0h t ≥在()0,1上恒成立,所以()0g't >,()g t 在()0,1单调递增,所以()()10g t g <=在()0,1恒成立.当2m >时,()h t 在()0,1单调递减,因为()01h =,()1420h m =-<, 所以存在()00,1t ∈,使得()00h t =当()00,t t ∈时,()0h t >,()0g't >;当()0,1t t ∈时,()0h t <,()0g't <, 所以()g t 在()00,t 上递增,在()0,1t 上递减. 当()0,1t t ∈时,都有()()10g t g >=, 所以()0g t <在()0,1不恒成立.综上所述,m 的取值范围是(],2-∞,所以m 的最大值为2.【名师点睛】本题考查了函数的单调性的判断和换元构造新函数求其最值的问题,求导后讨论函数的单调性是本题的关键,属于中档题.11.【云南省曲靖市第一中学2019届高三高考复习质量监测三数学】已知函数()1ln 1xf x x+=+.(1)求函数()f x 的单调区间;(2)若()()g x xf x mx =+在区间(0,e ]上的最大值为–3,求m 的值; (3)若x ≥1时,不等式()11kf x x ≥++恒成立,求实数k 的取值范围. 【答案】(1)见解析;(2)3e 1m =--;(3)(],2-∞ 【解析】(1)由题意得函数的()f x 的定义域为()0,+∞.∵()1ln 1xf x x +=+, ∴()2ln xf x x=-',由()0f x '>,得01x <<; 由()0f x '<,得1x >.∴函数()f x 的增区间为()()0,11,+∞,减区间为. (2)由题意得()1ln g x x mx x =+++, ∴()11g x m x=++',(]0,e x ∈, ①当10m +≥,即1m ≥-时,则()0g x '>,()g x 在(]0,e 上是增函数, ∴()()()max e 1e 20g x g m ==++≥,不合题意; ②当10m +<,即1m <-时,则由()0g x '>,得101x m <<-+, 若1e 1m -≥+,则()g x 在(]0,e 上是增函数,由①知不合题意; 若1e 1m -<+,则()g x 在10,1m ⎛⎫- ⎪+⎝⎭上是增函数;在1,e 1m ⎛⎤- ⎥+⎝⎦上为减函数, ∴()max 11ln 311g x g m m ⎛⎫⎛⎫=-=-=- ⎪ ⎪++⎝⎭⎝⎭,∴311e 1em -=<+, 解得3e 1m =--,满足题意. 综上可得3e 1m =--.(3)∵当1x ≥时,()11kf x x ≥++恒成立, ∴()()ln 111ln 1x k x f x x x x ⎡⎤≤+-=+++⎣⎦当1x ≥时恒成立, 令()ln 1ln 1x h x x x x =+++,1x ≥, 则()2ln 0x xh x x'-=>恒成立, ∴()h x 在[)1,+∞上为增函数, ∴()()min 12h x h ==, ∴2k ≤.∴实数k 的取值范围为(],2-∞.【名师点睛】(1)用导数解决函数的问题时,可先根据导函数的符号得到函数的单调性,进而得到函数的极值或最值.对于解析式中含有参数的问题,求解时注意分类讨论的运用.(2)解答恒成立问题时,常用的方法是分离参数法,通过分离参数将问题转化成求具体函数的最值的问题处理,体现了转化思想方法的运用.12.【四川省宜宾市2019届高三第三次诊断性考试数学】已知函数()()e 2,0axf x a x a =-+≠.(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点()1212,x x x x <,求证:12e e 2ax ax +>.【答案】(1)()f x 的增区间是[)0,+∞,减区间是(),0-∞;(2)证明见解析.【解析】(1)对函数求导可得'e e 1ax ax f x a a a =-=-()(),令'0f x =(),得0x = ①当0a >时,若0x >,则e 1ax >,即'0f x >(), 若0x <,则e 1ax <,即'0f x <(). ②当0a <时,若0x >,则e 1ax <,即'0f x >(), 若0x <,则e 1ax >,即'0f x <(). 综上,()f x 的单调递增区间是[0+∞,),单调递减区间是0-∞(,). (2)由(1)知,()f x 有两个零点时,()()01200e 020x x f a <<=-+<,,∴12a >.令11eax t =,22e ax t =,则1122ln ,ln ax t ax t ==∴12t t ,为方程ln 20t t a --=的两个根.令()ln 2g t t t a =--,则12t t ,为()g t 的两个零点,1201t t <<<. ∴()()()()121122g t g t g t g t --=--()()11112ln 22ln 2t t a t t a =------- ()11122ln 2ln t t t =---+,令()()()1111122ln 2ln ,0,1h t t t t t =---+∈,则()()()()()()21111111111112222111'20222t t t t t h t t t t t t t --++--=-++==>---. ∴1h t ()在01(,)上单调递增, ∴110h t h <=()(), ∴1220g t g t --<()(),即122g t g t -<()().∵()11'1t g t t t-=-=, ∴当1t ∈+∞(,)时,g t ()单调递增. ∵12211t t -∈+∞∈+∞()(,),(,),∴122t t -<,∴122t t +>,∴12e e 2ax ax +>.【名师点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了极值点偏移的综合应用,是高考的常考点和难点,属于难题.。
2019年高考数学复习题汇编(真题+答案)

2019年高考数学复习题汇编(名师精讲必考知识点+实战真题演练+答案,建议下载保存) (总计181页,涵盖高中数学所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)目录第一章集合 (1)第一节集合的含义、表示及基本关系 (1)第二节集合的基本运算 (3)第二章函数 (5)第一节对函数的进一步认识 (5)第二节函数的单调性 (9)第三节函数的性质 (13)第三章指数函数和对数函数 (16)第一节指数函数 (16)第二节对数函数 (20)第三节幂函数与二次函数的性质 (24)第四节函数的图象特征 (28)第四章函数的应用 (32)第五章三角函数 (33)第一节角的概念的推广及弧度制 (33)第二节正弦函数和余弦函数的定义及诱导公式 (39)第三节正弦函数与余弦函数的图象及性质 (42)第四节函数()sin()f x A xw j=+的图象 (45)第六章三角恒等变换 (50)第一节同角三角函数的基本关系 (50)第二节两角和与差及二倍角的三角函数 (53)第七章解三角形 (56)第一节正弦定理与余弦定理 (56)第二节正弦定理、余弦定理的应用 (59)第八章数列 (60)第九章平面向量 (62)第十章算法 (65)第一节程序框图 (65)第二节程序语句 (69)第十一章概率 (73)第一节古典概型 (73)第二节概率的应用 (75)第三节几何概型 (79)第十二章导数 (83)第十三章不等式 (85)第十四章立体几何 (88)第一节简单几何体 (88)第二节空间图形的基本关系与公理 (92)第三节平行关系 (96)第四节垂直关系 (100)第五节简单几何体的面积与体积 (104)第十五章解析几何 (108)第一节直线的倾斜角、斜率与方程 (108)第二节点与直线、直线与直线的位置关系 (111)第三节圆的标准方程与一般方程 (114)第四节直线与圆、圆与圆的位置关系 (117)第五节空间直角坐标系 (121)第十六章圆锥曲线 (123)第一章 集合第一节 集合的含义、表示及基本关系A 组1.已知A ={1,2},B ={}|x x A Î,则集合A 与B 的关系为________. 解析:由集合B ={}|x x A Î知,B ={1,2}.答案:A =B2.若{}2,|a a R x x NÆØ,则实数a 的取值范围是________.解析:由题意知,2x a £有解,故0a ³.答案:0a ³3.已知集合A ={}2|21,y y x x x R =--?,集合B ={}|28x x -#,则集合A 与B的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2,∴A ={y|y ≥-2},∴BA .答案:B A 4.(2009年高考广东卷改编)已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={}2|0x x x +=关系的韦恩(Venn)图是________.解析:由N={}2|0x x x +=,得N ={-1,0},则N M .答案:②5.(2010年苏、锡、常、镇四市调查)已知集合A ={}|5x x >,集合B ={}|x x a >,若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________. 解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5.答案:a <56.(原创题)已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合?解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B .B 组1.设a ,b 都是非零实数,y =a |a |+b |b |+ab |ab |可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1. 答案:13.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若N M ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2010年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.(2009年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x ,1,0},B ={0,|x |,1x}. 于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1. 11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围;(2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围;(3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4, ∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B . 12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2},而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2.(2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A =B ,则必有a =2第二节 集合的基本运算A 组1.(2009年高考浙江卷改编)设U =R ,A ={}|0x x >,B ={}|1x x >,则A ∩∁U B =____.解析:∁U B ={x |x ≤1},∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.(2009年高考全国卷Ⅰ改编)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4,7,9},A ∪B ={3,4,5,7,8,9},∁U (A ∩B )={3,5,8}.答案:33.已知集合M ={0,1,2},N ={}|2,x x a a M =?,则集合M ∩N =________.解析:由题意知,N ={0,2,4},故M ∩N ={0,2}.答案:{0,2}4.(原创题)设A ,B 是非空集合,定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={y |y ≥0},则A ⓐB =________.解析:A ∪B =[0,+∞),A ∩B =[0,2],所以A ⓐB =(2,+∞).答案:(2,+∞)5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x ,画出韦恩图得到方程15-x +x +10-x +8=30x =3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A={x|x>1},集合B={x|m≤x≤m+3}.(1)当m=-1时,求A∩B,A∪B;(2)若B⊆A,求m的取值范围.m=-时,B={x|-1≤x≤2},∴A∩B={x|1<x≤2},A∪B={x|x≥-1}.解:(1)当1m>,即m的取值范围为(1,+∞)(2)若B⊆A,则1B组1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=________.解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:{-1,0}2.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则(∁U A)∩B=________.解析:∁U A={0,1},故(∁U A)∩B={0}.答案:{0}3.(2010年济南市高三模拟)若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁U N)=________.解析:根据已知得M∩(∁U N)={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.答案:{x|-2≤x<0}4.集合A={3,log2a},B={a,b},若A∩B={2},则A∪B=________.解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为________.解析:U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:m-n6.(2009年高考重庆卷)设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n 是3的倍数},则∁U(A∪B)=________.解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},得∁U(A∪B)={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +x y,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2. 9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧ 1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧ a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3.11.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B . (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意.12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ;(3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意. 若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98. 综上可知,若A =∅,则a 的取值范围应为a >98. (2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意. 当a ≠0时,则Δ=9-8a =0,即a =98时, 方程有两个相等的实数根x =43,则A ={43}. 综上可知,当a =0时,A ={23};当a =98时,A ={43}. (3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根, 则Δ=9-8a ≥0,即a ≤98. 综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}第二章 函数第一节 对函数的进一步认识A 组1.(2009年高考江西卷改编)函数y =-x 2-3x +4x的定义域为________.解析:⎩⎪⎨⎪⎧-x 2-3x +4≥0,x ≠0,⇒x ∈[-4,0)∪(0,1] .答案:[-4,0)∪(0,1]2.(2010年绍兴第一次质检)如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.解析:由图象知f (3)=1,f (1f (3))=f (1)=2.答案:23.(2009年高考北京卷)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32.答案:log 324.(2010年黄冈市高三质检)函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个.解析:如图.答案:15.(原创题)由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3定义一个映射f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)=________.解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3, 令x =-1得:-1=b 3;再令x =0与x =1得⎩⎪⎨⎪⎧-1=1+b 1+b 2+b 33=8+4b 1+2b 2+b 3,解得b 1=-1,b 2=0. 答案:(-1,0,-1)6.已知函数f (x )=⎩⎪⎨⎪⎧1+1x (x >1),x 2+1 (-1≤x ≤1),2x +3 (x <-1).(1)求f (1-12-1),f {f [f (-2)]}的值;(2)求f (3x -1);(3)若f (a )=32, 求a .解:f (x )为分段函数,应分段求解. (1)∵1-12-1=1-(2+1)=-2<-1,∴f (-2)=-22+3,又∵f (-2)=-1,f [f (-2)]=f (-1)=2,∴f {f [f (-2)]}=1+12=32.(2)若3x -1>1,即x >23,f (3x -1)=1+13x -1=3x3x -1;若-1≤3x -1≤1,即0≤x ≤32,f (3x -1)=(3x -1)2+1=9x 2-6x +2;若3x -1<-1,即x <0,f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎨⎧3x 3x -1(x >23),9x 2-6x +2 (0≤x ≤23),6x +1 (x <0).(3)∵f (a )=32,∴a >1或-1≤a ≤1.当a >1时,有1+1a =32,∴a =2;当-1≤a ≤1时,a 2+1=32,∴a =±22.∴a =2或±22.B 组1.(2010年广东江门质检)函数y =13x -2+lg(2x -1)的定义域是________. 解析:由3x -2>0,2x -1>0,得x >23.答案:{x |x >23}2.(2010年山东枣庄模拟)函数f (x )=⎩⎪⎨⎪⎧-2x +1,(x <-1),-3,(-1≤x ≤2),2x -1,(x >2),则f (f (f (32)+5))=_.解析:∵-1≤32≤2,∴f (32)+5=-3+5=2,∵-1≤2≤2,∴f (2)=-3,∴f (-3)=(-2)×(-3)+1=7.答案:73.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________.解析:∵对任意的x ∈(-1,1),有-x ∈(-1,1), 由2f (x )-f (-x )=lg(x +1),① 由2f (-x )-f (x )=lg(-x +1),②①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1),∴f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1).答案:f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1)4.设函数y =f (x )满足f (x +1)=f (x )+1,则函数y =f (x )与y =x 图象交点的个数可能是________个.解析:由f (x +1)=f (x )+1可得f (1)=f (0)+1,f (2)=f (0)+2,f (3)=f (0)+3,…本题中如果f (0)=0,那么y =f (x )和y =x 有无数个交点;若f (0)≠0,则y =f (x )和y =x 有零个交点.答案:0或无数5.设函数f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=-2,则f (x )的解析式为f (x )=________,关于x 的方程f (x )=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧16-4b +c =c 4-2b +c =-2 ⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0).由数形结合得f (x )=x 的解的个数有3个.答案:⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0) 36.设函数f (x )=log a x (a >0,a ≠1),函数g (x )=-x 2+bx +c ,若f (2+2)-f (2+1)=12,g (x )的图象过点A (4,-5)及B (-2,-5),则a =__________,函数f [g (x )]的定义域为__________.答案:2 (-1,3)7.(2009年高考天津卷改编)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0x +6,x <0,则不等式f (x )>f (1)的解集是________.解析:由已知,函数先增后减再增,当x ≥0,f (x )>f (1)=3时,令f (x )=3, 解得x =1,x =3.故f (x )>f (1)的解集为0≤x <1或x >3.当x <0,x +6=3时,x =-3,故f (x )>f (1)=3,解得-3<x <0或x >3. 综上,f (x )>f (1)的解集为{x |-3<x <1或x >3}.答案:{x |-3<x <1或x >3}8.(2009年高考山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0,f (x -1)-f (x -2), x >0,则f (3)的值为________.解析:∵f (3)=f (2)-f (1),又f (2)=f (1)-f (0),∴f (3)=-f (0),∵f (0)=log 24=2,∴f (3)=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎪⎨⎪⎧5a 1=205a 1+15(a 1-a 2)=35,得⎩⎪⎨⎪⎧a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95, 又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)10.函数()f x =.(1)若()f x 的定义域为R ,求实数a 的取值范围; (2)若()f x 的定义域为[-2,1],求实数a 的值. 解:(1)①若1-a 2=0,即a =±1,(ⅰ)若a =1时,f (x )=6,定义域为R ,符合题意;(ⅱ)当a =-1时,f (x )=6x +6,定义域为[-1,+∞),不合题意. ②若1-a 2≠0,则g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数. 由题意知g (x )≥0对x ∈R 恒成立,∴⎩⎪⎨⎪⎧ 1-a 2>0,Δ≤0,∴⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0,∴-511≤a <1.由①②可得-511≤a ≤1.(2)由题意知,不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1],显然1-a 2≠0且-2,1是方程(1-a 2)x 2+3(1-a )x +6=0的两个根.∴⎩⎪⎨⎪⎧ 1-a 2<0,-2+1=3(1-a )a 2-1,-2=61-a2,Δ=[3(1-a )]2-24(1-a 2)>0∴⎩⎪⎨⎪⎧a <-1或a >1,a =2,a =±2.a <-511或a >1∴a =2.11.已知()()()2f x f x x R +=?,并且当x ∈[-1,1]时,()21f x x =-+,求当[]()21,21x k k k Z ?+?时、()f x 的解析式.解:由f (x +2)=f (x ),可推知f (x )是以2为周期的周期函数.当x ∈[2k -1,2k +1]时,2k -1≤x ≤2k +1,-1≤x -2k ≤1.∴f (x -2k )=-(x -2k )2+1.又f (x )=f (x -2)=f (x -4)=…=f (x -2k ),∴f (x )=-(x -2k )2+1,x ∈[2k -1,2k +1],k ∈Z .12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *).(2)f (x )=⎩⎨⎧20003x (0<x ≤86,x ∈N *).1000216-x (87≤x <216,x ∈N *).(3)分别为86、130或87、129.第二节 函数的单调性A 组1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当12x x <时,都有()()12f x f x >”的是________.①f (x )=1x ②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1)解析:∵对任意的x1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①2.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,12]时,g (x )为减函数.由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))3.函数y =的值域是________.解析:令x =4+sin 2α,α∈[0,π2],y =sin α+3cos α=2sin(α+π3),∴1≤y ≤2.答案:[1,2]4.已知函数f (x )=|e x +aex |(a ∈R )在区间[0,1]上单调递增,则实数a 的取值范围__.解析:当a <0,且e x +a e x ≥0时,只需满足e 0+ae 0≥0即可,则-1≤a <0;当a =0时,f (x )=|e x |=e x 符合题意;当a >0时,f (x )=e x +a e x ,则满足f ′(x )=e x -ae x ≥0在x ∈[0,1]上恒成立.只需满足a ≤(e 2x )min 成立即可,故a ≤1,综上-1≤a ≤1.答案:-1≤a ≤15.(原创题)如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是________.①f (x )=sin x ;②f (x )=lg x ;③f (x )=e x ;④f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)解析:∵sin x ≥-1,∴f (x )=sin x 的下确界为-1,即f (x )=sin x 是有下确界的函数;∵f (x )=lg x 的值域为(-∞,+∞),∴f (x )=lg x 没有下确界;∴f (x )=e x 的值域为(0,+∞),∴f (x )=e x 的下确界为0,即f (x )=e x 是有下确界的函数;∵f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)的下确界为-1.∴f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)是有下确界的函数.答案:①③④6.已知函数()2f x x =,()1g x x =-.(1)若存在x ∈R 使()()f x b g x <?,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--2,且()F x 在[0,1]上单调递增,求实数m 的取值范围.解:(1)x ∈R ,f (x )<b ·g (xx ∈R ,x 2-bx +b=(-b )2-4bb <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需⎩⎨⎧m2≤0-255≤m ≤255-255≤m ≤0.②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m2≥1,则x 1≤0.⎩⎪⎨⎪⎧ m 2≥1F (0)=1-m 2≤0m ≥2.若m2≤0,则x 2≤0, ⎩⎪⎨⎪⎧m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2.B 组1.(2010年山东东营模拟)下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x |解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④2.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0. ∴⎩⎪⎨⎪⎧a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤4 3.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__.解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916.答案:(0,916]4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________.①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3) ③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①5.(2010年陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.解析:由题意知,f (x )为减函数,所以⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0≥(a -3)×0+4a ,解得0<a ≤14.6.(2010年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3),当0≤x <1时,最大值为0;当1≤x ≤3时, 在x =2取得最大值1.答案:17.(2010年安徽合肥模拟)已知定义域在[-1,1]上的函数y =f (x )的值域为[-2,0],则函数y =f (cos x )的值域是________.解析:∵cos x ∈[-1,1],函数y =f (x )的值域为[-2,0],∴y =f (cos x )的值域为[-2,0].答案:[-2,0]8.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1], ∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:139.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1.μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12)10.试讨论函数y =2(log 12x )2-2log 12x +1的单调性.解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y =f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =f [g (x )]的单调性:故函数y =2(log 12x )2-2log 12x +1在区间(0,22)上单调递减,在区间(22,+∞)上单调递增.11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}. 12.已知:f (x )=log 3x 2+ax +bx ,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f (x )的最小值是1.若存在,求出a 、b ;若不存在,说明理由.解:∵f (x )在(0,1]上是减函数,[1,+∞)上是增函数,∴x =1时,f (x )最小,log 31+a +b1=1.即a +b =2.设0<x 1<x 2≤1,则f (x 1)>f (x 2).即x 12+ax 1+b x 1>x 22+ax 2+bx 2恒成立.由此得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立.又∵x 1-x 2<0,x 1x 2>0,∴x 1x 2-b <0恒成立,∴b ≥1.设1≤x 3<x 4,则f (x 3)<f (x 4)恒成立.∴(x 3-x 4)(x 3x 4-b )x 3x 4<0恒成立.∵x 3-x 4<0,x 3x 4>0,∴x 3x 4>b 恒成立.∴b ≤1.由b ≥1且b ≤1可知b =1,∴a =1.∴存在a 、b ,使f (x )同时满足三个条件.第三节 函数的性质A 组1.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系为________.解析:由f (x )为偶函数,知b =0,∴f (x )=log a |x |,又f (x )在(-∞,0)上单调递增,所以0<a <1,1<a +1<2,则f (x )在(0,+∞)上单调递减,所以f (a +1)>f (b +2).答案:f (a +1)>f (b +2)2.(2010年广东三校模拟)定义在R 上的函数f (x )既是奇函数又是以2为周期的周期函数,则f (1)+f (4)+f (7)等于________.解析:f (x )为奇函数,且x ∈R ,所以f (0)=0,由周期为2可知,f (4)=0,f (7)=f (1),又由f (x +2)=f (x ),令x =-1得f (1)=f (-1)=-f (1)⇒f (1)=0,所以f (1)+f (4)+f (7)=0.答案:03.(2009年高考山东卷改编)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25)、f (11)、f (80)的大小关系为________.解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0,得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,所以-f (1)<0,即f (-25)<f (80)<f (11).答案:f (-25)<f (80)<f (11)4.(2009年高考辽宁卷改编)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 取值范围是________.解析:由于f (x )是偶函数,故f (x )=f (|x |),由f (|2x -1|)<f (13),再根据f (x )的单调性得|2x -1|<13,解得13<x <23.答案:(13,23) 5.(原创题)已知定义在R 上的函数f (x )是偶函数,对x ∈R ,f (2+x )=f (2-x ),当f (-3)=-2时,f (2011)的值为________.解析:因为定义在R 上的函数f (x )是偶函数,所以f (2+x )=f (2-x )=f (x -2),故函数f (x )是以4为周期的函数,所以f (2011)=f (3+502×4)=f (3)=f (-3)=-2.答案:-26.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1)证明:f (1)+f (4)=0;(2)求y =f (x ),x ∈[1,4]的解析式;(3)求y =f (x )在[4,9]上的解析式.解:(1)证明:∵f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又∵y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)当x ∈[1,4]时,由题意可设f (x )=a (x -2)2-5(a >0),由f (1)+f (4)=0,得a (1-2)2-5+a (4-2)2-5=0,∴a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=0,又知y =f (x )在[0,1]上是一次函数,∴可设f (x )=kx (0≤x ≤1),而f (1)=2(1-2)2-5=-3,∴k =-3,∴当0≤x ≤1时,f (x )=-3x ,从而当-1≤x <0时,f (x )=-f (-x )=-3x ,故-1≤x ≤1时,f (x )=-3x .∴当4≤x ≤6时,有-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15.当6<x ≤9时,1<x -5≤4,∴f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎪⎨⎪⎧-3x +15, 4≤x ≤62(x -7)2-5, 6<x ≤9.B 组1.(2009年高考全国卷Ⅰ改编)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则下列结论正确的是________.①f (x )是偶函数 ②f (x )是奇函数 ③f (x )=f (x +2)④f (x +3)是奇函数解析:∵f (x +1)与f (x -1)都是奇函数,∴f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),∴函数f (x )关于点(1,0),及点(-1,0)对称,函数f (x )是周期T =2[1-(-1)]=4的周期函数.∴f (-x -1+4)=-f (x -1+4),f (-x +3)=-f (x +3),即f (x +3)是奇函数.答案:④2.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,f (1)+f (2)+…+f (2009)+f (2010)=________.解析:f (x )=-f (x +32)⇒f (x +3)=f (x ),即周期为3,由f (-2)=f (-1)=-1,f (0)=2,所以f (1)=-1,f (2)=-1,f (3)=2,所以f (1)+f (2)+…+f (2009)+f (2010)=f (2008)+f (2009)+f (2010)=f (1)+f (2)+f (3)=0.答案:03.(2010年浙江台州模拟)已知f (x )是定义在R 上的奇函数,且f (1)=1,若将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则f (1)+f (2)+f (3)+…+f (2010)=________.解析:f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则满足f (-2+x )=-f (x ),即f (x +2)=-f (x ),所以周期为4,f (1)=1,f (2)=f (0)=0,f (3)=-f (1)=-1,f (4)=0,所以f (1)+f (2)+f (3)+f (4)=0,则f (1)+f (2)+f (3)+…+f (2010)=f (4)×502+f (2)=0.答案:04.(2010年湖南郴州质检)已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,则在(0,+∞)上f (x )是增函数,在(-∞,0)上是减函数,又f (x )在R 上是偶函数,且f (-1)=0,∴f (1)=0.从而可知x ∈(-∞,-1)时,f (x )>0;x ∈(-1,0)时,f (x )<0;x ∈(0,1)时,f (x )<0;x ∈(1,+∞)时,f (x )>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1).5.(2009年高考江西卷改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2009)+f (2010)的值为________.解析:∵f (x )是偶函数,∴f (-2009)=f (2009).∵f (x )在x ≥0时f (x +2)=f (x ),∴f (x )周期为2.∴f (-2009)+f (2010)=f (2009)+f (2010)=f (1)+f (0)=log 22+log 21=0+1=1.答案:16.(2010年江苏苏州模拟)已知函数f (x )是偶函数,并且对于定义域内任意的x ,满足f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2009.5)=________. 解析:由f (x +2)=-1f (x ),可得f (x +4)=f (x ),f (2009.5)=f (502×4+1.5)=f (1.5)=f (-2.5)∵f (x )是偶函数,∴f (2009.5)=f (2.5)=52.答案:527.(2010年安徽黄山质检)定义在R 上的函数f (x )在(-∞,a ]上是增函数,函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,则f (2a -x 1)与f (x 2)的大小关系为________.解析:∵y =f (x +a )为偶函数,∴y =f (x +a )的图象关于y 轴对称,∴y =f (x )的图象关于x =a 对称.又∵f (x )在(-∞,a ]上是增函数,∴f (x )在[a ,+∞)上是减函数.当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有a -x 1<x 2-a ,即a <2a -x 1<x 2,∴f (2a -x 1)>f (x 2).答案:f (2a -x 1)>f (x 2)8.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1).若f (a )=-2,则实数a =________.解析:当x ≥0时,f (x )=x (x +1)>0,由f (x )为奇函数知x <0时,f (x )<0,∴a <0,f (-a )=2,∴-a (-a +1)=2,∴a =2(舍)或a =-1.答案:-19.(2009年高考山东卷)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (4-x )=f (x ),因此,函数图象关于直线x =2对称且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4.由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8. 答案:-810.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解:∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg(2+x ),即f (x )=-x lg(2+x ) (x >0).∴f (x )=⎩⎪⎨⎪⎧-x lg(2-x ) (x <0),-x lg(2+x ) (x ≥0).即f (x )=-x lg(2+|x |)(x ∈R ). 11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).(1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值. 解:(1)证明:∴函数定义域为R ,其定义域关于原点对称.∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ),∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2010]上的所有x 的个数.解:(1)证明:∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴f (x )是以4为周期的周期函数.(2)当0≤x ≤1时,f (x )=12x , 设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1) 又设1<x <3,则-1<x -2<1,∴f (x -2)=12(x -2), 又∵f (x -2)=-f (2-x )=-f [(-x )+2]=-[-f (-x )]=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎨⎧ 12x (-1≤x ≤1)-12(x -2) (1<x <3)由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数.故f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2010,则14≤n ≤50234,又∵n ∈Z ,∴1≤n ≤502(n ∈Z ),∴在[0,2010]上共有502个x 使f (x )=-12.第三章 指数函数和对数函数第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a-2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-22.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3.答案:33-33.函数y =(12)2x -x 2的值域是________. 解析:∵2x -x 2=-(x -1)2+1≤1,∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎪⎨⎪⎧ 0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧a >1a 0-1=0a 2-1=2⇒a =3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数.(1)求a ,b 的值; (2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1. 从而有f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2. (2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1, 由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13. 法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0 即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎪⎨⎪⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1] 3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________. 解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________. 解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1,。
专题导数及其应用(解答题)(原卷版)(文科专用)-五年(18-22)高考数学真题分项汇编(全国通用)

专题04 导数及其应用(解答题)(文科专用) 1.【2022年全国甲卷】已知函数f(x)=x 3−x,g(x)=x 2+a ,曲线y =f(x)在点(x 1,f (x 1))处的切线也是曲线y =g(x)的切线.(1)若x 1=−1,求a ;(2)求a 的取值范围.2.【2022年全国乙卷】已知函数f(x)=ax −1x −(a +1)lnx . (1)当a =0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a 的取值范围.3.【2021年甲卷文科】设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围. 4.【2021年乙卷文科】已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 5.【2020年新课标1卷文科】已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.6.【2020年新课标2卷文科】已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性. 7.【2020年新课标3卷文科】已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.8.【2019年新课标2卷文科】已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.9.【2019年新课标3卷文科】已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围.10.【2018年新课标1卷文科】【2018年新课标I 卷文】已知函数()e 1x f x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥. 11.【2018年新课标2卷文科】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.12.【2018年新课标3卷文科】已知函数()21x ax x f x e +-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.。
专题06 导数的几何意义-2019年高考数学(理)母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷,理数6】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =-【答案】D【解析】e ln 1,xy a x '=++1|e 12x k y a ='==+=,1e a -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【名师点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系.【母题原题2】【2018年高考全国Ⅲ卷,理数14】曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 【答案】3-【解析】()e 1e x x y a ax =++',则()012f a =+=-',所以3a =-,故答案为:3-. 【名师点睛】本题主要考查导数的计算和导数的几何意义,属于基础题.【命题意图】本类题通常主要考查导数的几何意义,切线方程的不同形式的求解.【命题规律】导数的几何意义最常见的是求切线方程和已知切线方程求参数值,常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等. 【答题模板】1.求曲线y=f (x )的切线方程若已知曲线y=f (x )过点P (x 0,y 0),求曲线过点P 的切线方程. (1)当点P (x 0,y 0)是切点时,切线方程为y–y 0=f'(x 0)(x–x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P'(x 1,f (x 1));第二步:写出过点P'(x 1,f (x 1))的切线方程y–f (x 1)=f'(x 1)(x–x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y–f (x 1)=f'(x 1)(x–x 1)可得过点P (x 0,y 0)的切线方程. 2.根据切线的性质求倾斜角或参数值由已知曲线上一点P (x 0,y 0)处的切线与已知直线的关系(平行或垂直),确定该切线的斜率k ,然后利用导数的几何意义得到k=f'(x 0)=tan θ,其中倾斜角θ∈[0,π),进一步求得倾斜角θ或有关参数的值.3.已知切线的斜率求切点已知斜率k ,求切点(x 1,f (x 1)),应先解方程f'(x 1)=k 得出x 1,然后求出f (x 1)即可.【经验分享】利用导数的几何意义求曲线的切线方程的问题的关键就是抓住切点,首先要分清题目所求的是“在曲线上某点处的切线方程”还是“过某点的切线方程”.(1)求曲线y =f (x )在0x x 处的切线方程可先求0()f 'x ,再利用点斜式写出所求切线方程;(2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再求切线方程.总之,求解切线问题的关键是切点坐标,无论是已知切线斜率还是切线经过某一点,切点坐标都是化解难点的关键所在. 【方法总结】导数的几何意义蕴含着“逼近”和“以直代曲”的思想方法,对后面即将学习的利用导数研究函数的性质有至关重要的作用,同时导数的几何意义的应用即利用导数的几何意义求解曲线的切线方程问题是本课的重点和难点.有关切线方程的问题有以下四类题型: 类型一:已知切点,求曲线的切线方程,此类题较为简单,只须求出曲线的导数()f 'x ,并代入点斜式方程即可. 类型二:已知斜率,求曲线的切线方程,此类题可利用斜率求出切点,再用点斜式方程加以解决. 类型三:已知过曲线上一点,求切线方程,过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.类型四:已知过曲线外一点,求切线方程,此类题可先设切点,再求切点,即用待定切点法来求解.1.【四川省教考联盟2019届高三第三次诊断性考试数学】设曲线(e 1)xy a x =--在点(0,0)处的切线方程为y x =,则a = A .0 B .1 C .2 D .3【答案】C【解析】由题得()e 1,(0)11,2xf x a f 'a a '=⋅-=-=∴=Q .故选C .【名师点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力. 2.【四川省成都市第七中学2019届高三二诊模拟考试数学】函数()e xxf x =在2x =处的切线方程为 A .2234e e y x =- B .2238e e y x =- C .2214e ey x =-+D .21ey x =-【答案】C 【解析】1()e x x f 'x -=,故在2x =处切线斜率为22121e e k -==-,在该点坐标为222,e ⎛⎫⎪⎝⎭,故切线方程为()22212e e y x -=--,得到2214e ey x =-+,故选C . 【名师点睛】考查了利用导函数计算曲线某一点的切线方程,难度中等.3.【四川省绵阳市2019届高三第二次(1月)诊断性考试数学】若函数()2ln 21f x x x bx =+--的图象上任意一点的切线斜率均大于0,则实数b 的取值范围为 A .(-∞,4) B .(-∞,4]C .(4,+∞)D .(0,4)【答案】A【解析】()2ln 21f x x x bx =+--,则有k =()f 'x 140x b x =+->对x >0恒成立,所以b <(14x x+)min , 又144x x +≥,当x =12时,14x x+取得最小值4,所以b <4.故选A . 【名师点睛】本题考查导数的几何意义,考查了函数的最小值的求法,属于基础题.4.【四川省内江市2019届高三第一次模拟考试数学】若函数()3ln f x x x x +-,则曲线()y f x =在点()()1,1f 处的切线的倾斜角是A .π6B .π3 C .2π3D .5π6【答案】B【解析】根据题意,设切线的斜率为k ,其倾斜角是θ,f (x )3x =+ln x –x ,则()f 'x =21x +-1,则有k =(1)f '=tan θ= 又由0≤θ<π,则θπ3=,故选B . 【名师点睛】本题考查利用导数分析切线的方程,关键是掌握导数的几何意义,属于基础题. 5.【四川省华蓥市第一中学2019届高三入学调研考试数学】已知函数()()ln 1cos f x x x ax =+⋅-在()()0,0f 处的切线倾斜角为45o,则a =A .2-B .1-C .0D .3【答案】C【解析】求出导函数()cos ()ln 1sin 1xf 'x x x a x =-+⋅-+, 又函数()()ln 1cos f x x x ax =+⋅-在()()0,0f 处的切线倾斜角为45︒, ∴11a -=,即0a =,故选C .【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点()00,P x y 及斜率,其求法为:设()00,P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:()000()y y f 'x x x -=-.若曲线()y f x =在点()()00,P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.6.【云南省曲靖市第一中学2019届高三高考复习质量监测三数学】曲线ln 2(0)y a x a =->在1x =处的切线与两坐标轴成的三角形的面积为4,则a 的值为A B .2 C .4 D .8【答案】B【解析】由()ln 2y f x a x ==-,得()af x x'=,∴()1f a '=, 又()12f =-,∴曲线ln 2(0)y a x a =->在1x =处的切线方程为()21y a x +=-, 令0x =得2y a =--,令0y =得21x a=+. ∴切线与坐标轴围成的三角形面积为()()12122121422S a a a a ⎛⎫⎛⎫=--+=++= ⎪ ⎪⎝⎭⎝⎭,解得2a =.故选B .【名师点睛】本题考查导数的几何意义及直线与坐标轴的交点坐标,考查计算能力,属于基础题.7.【西藏拉萨市2019届高三第三次模拟考试数学】若曲线3222y x x =-+在点A 处的切线方程为46y x =-,且点A 在直线10mx ny +-=(其中0m >,0n >)上,则12m n+的最小值为A .B .3+C .6+D .【答案】C【解析】设A (s ,t ),y =x 3–2x 2+2的导数为y ′=3x 2–4x , 可得切线的斜率为3s 2–4s ,切线方程为y =4x –6,可得3s 2–4s =4,t =4s –6, 解得s =2,t =2或s 23=-,t 263=-, 由点A 在直线mx +ny –l =0(其中m >0,n >0),可得2m +2n =1成立,(s 23=-,t 263=-,舍去),则12m n +=(2m +2n )(12m n +)=2×(32n m m n ++)≥2×(,当且仅当n =时,取得最小值,故选C .【名师点睛】本题考查导数的运用:求切线斜率,以及基本不等式的运用:求最值,考查运算能力,属于基础题.8.【四川省百校2019届高三模拟冲刺卷数学】已知函数()2ln f x x a x b =++在点1x =处的切线方程为42y x =-,则a b +=__________.【答案】3【解析】因为函数f (x )=x 2+a ln x +b ,所以f ′(x )=2x ax+(x >0), 又f (x )在x =1处的切线方程为y =4x –2,所以2+a =4,解得a =2, 所以f (1)=4–2=2,可得2=1+2ln1+b ,b =1,所以a +b =3.故答案为:3.【名师点睛】本题主要考查了利用导数研究曲线上某点切线方程,注意切点既在曲线上又在切线上,计算能力,属于中档题.利用导数求函数在某一点处的切线方程;步骤一般为:一,对函数求导,代入已知点得到在这一点处的斜率;二,求出这个点的横纵坐标;三,利用点斜式写出直线方程. 9.【四川省攀枝花市2019届高三第一次统一考试数学】曲线()2af x x x=+在点()()1,1f 处的切线与直线20x y +-=垂直,则实数a =__________.【答案】1【解析】Q 曲线()2af x x x=+在点()()1,1f 处的切线与直线20x y +-=垂直, 所以切线斜率为1,()'11f ∴=,()2'2af x x x=-Q ,()'121f a ∴=-=,解得1a =,故答案为:1. 【名师点睛】本题主要考查利用导数求切线斜率,属于难题.应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x ='; (2)己知斜率k 求切点()()11,,A x f x 即解方程()1f x k '=;(3)巳知切线过某点()()11,M x f x (不是切点)求切点,设出切点()()00,,A x f x 利用()()()10010f x f x k f x x x ='-=-求解.10.【四川省绵阳市高中2019届高三第一次诊断性考试数学】若函数()()311f x x t x =+--的图象在点()()1,1f --处的切线平行于x 轴,则t =__________.【答案】–2【解析】因为函数()()311f x x t x =+--,所以()2()31f 'x x t =+-,因为函数()f x 在点()()1,1f --处的切线平行于x 轴, 所以()()20311(12)'t f t ==⨯-+-=+-,所以2t =-.【名师点睛】曲线在曲线上的某一点的切线方程的斜率就是曲线在这一点处的导数.11.【四川省宜宾市第四中学2019届高三12月月考数学】已知函数()31f x x ax =++的图象在点()()1,1f 处的切线过点()1,1-,则a =__________. 【答案】–5【解析】函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a , 所以f ′(1)=3+a ,而f (1)=a +2,所以曲线f (x )在点()()1,1f 处的切线方程为:y –a –2=(3+a )(x –1),因为切线方程经过(–1,1),所以1–a –2=(3+a )(–1–1),解得a =–5.故答案为:–5. 【名师点睛】这个题目考查了利用导数求函数在某一点处的切线方程;步骤一般为:①对函数求导,代入已知点得到在这一点处的斜率;②求出这个点的横纵坐标;③利用点斜式写出直线方程.12.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】曲线2e 24x y x x =+-在1x =处的切线方程是__________. 【答案】e 20x y --=【解析】求导函数可得e 44xy'x =+-,当1x =时,e y'=,∴曲线2e 24xy x x =+-在点1e 2-(,)处的切线方程为()()e 2e 1,y x --=-e 20x y ∴--=.故答案为:e 20x y --=.【名师点睛】本题考查导数的几何意义,考查切线方程,属于基础题. 13.【贵州省2019届高三普通高等学校招生适应性考试数学】曲线3113y x x =++在点()01,处切线的方程为__________. 【答案】1y x =+ 【解析】3113y x x =++的导数为y ′=x 2+1, ∴曲线3113y x x =++在点(0,1)处的切线斜率为k =1, 即有曲线3113y x x =++在点(0,1)处的切线方程为y =x +1,故答案为:1y x =+.【名师点睛】本题考查导数的运用:求切线方程,主要考查导数的几何意义,直线方程的求法,属于基础题.14.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】曲线2ln(1)y x =+在点(1,0)处的切线方程为__________. 【答案】2y x = 【解析】21y x '=+Q ,2201k ∴==+,2y x ∴=. 【名师点睛】求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.。
导数19 大题(切线)1-2022年全国一卷新高考数学题型细分汇编

导数——大题——切线:1.(2022年江苏徐州J53)已知0a >,函数()x f x ax xe =-.(I )求曲线()y f x =在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(①)(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.(切线,易;第二问,未;)2.(2022年江苏常州J59)已知函数()()ln xxe f x a x x =+-,a R ∈.(1)当1a =时,求曲线()y f x =在1x =处的切线方程;(②)(2)讨论函数()f x 的零点个数.(切线,易;第二问,未;)3.(2022年福建福州联考J01)已知函数()ln(1)ln x f x ae x b =-+-(1)若()f x 在0x =处的切线方程为1y =,(i )求a ,b 的值;(ii )讨论()f x 的单调性.(③)(2)若b a =,证明:()f x 有唯一的极小值点.(切线,中下;单调性,中下;第二问,未;)4.(2022年福建福州J05)设函数()1ex f x x a -=+,曲线()y f x =在1x =-处的切线与y 轴交于点210,e e ⎛⎫- ⎪⎝⎭;(1)求a ;(④)(2)若当[)2,x ∈-+∞时,()()1f x b x ≥-,记符合条件的b 的最大整数值、最小整数值分别为M ,m ,求M m +.注:e 2.71828=⋅⋅⋅为自然对数的底数.(切线,中下;第二问,未;)1.(2022年福建三明一中J39)已知函数()()ln()x f x e x a x a x =-+++,a R ∈.(1)当1a =时,求函数()f x 的图象在0x =处的切线方程;(⑤)(2)若函数()f x 在定义域上为单调增函数.①求a 最大整数值;②证明:23341ln 2(ln (ln )(ln231n n en e +++++<-L .(切线,易;第二问,未;)2.(2022年湖南长沙一中J02)已知函数()()()e xf x x b a =+-.(0b >)在()()1,1f --处的切线l方程为()e 1e e l 0x y -++-=.(1)求a ,b ,并证明函数()y f x =的图象总在切线l 的上方(除切点外);(⑥)(2)若方程()f x m =有两个实数根1x ,2x .且12x x <.证明:()2112e 11em x x --≤+-.(切线,中下;第二问,未;)1.(2022年高考乙卷J04)已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(⑦)(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.(切线,易;第二问,未;)1.(2022年湖北华师附中J61)已知函数()e ln ()x f x x a x a R =-∈在1x =处的切线方程为2e 1)+y x b =-(.(1)求实数,a b 的值;(⑧)(2)(i )证明:函数()y f x =有且仅有一个极小值点0x x =,且01(,1)2x ∈;(ii )证明:03141()1515f x <<.(切线,中下;第二问,未;)参考数据:ln 20.693≈e 1.648≈,0.55e 1.734≈,11303e 0.69-≈.2.(2022年河北演练一J39)已知函数()ln f x x bx a =++,其中,a b ∈R .(⑨)(1)若1a =,曲线()y f x =在2x =处的切线与直线210x y ++=平行,求()f x 的极值;(2)当1,1b a =≤-时,证明:2()ex f x x-≥.(切线,中下,单调性,极值,中下;第二问,未;)3.(2022年河北联考J42)设函数2()e mx f x x mx t =+-+在(0,(0))f 处的切线经过点(1,1).(1)求t 的值,并且讨论函数()f x 的单调区间;(⑩)(2)当1m =时,,()0x ∈+∞时,不等式(2)(2)4[()()]f x f x b f x f x -->--恒成立,求b 的取值范围.(切线,中下,单调性,中下;第二问,未;)1.(2022年湖北襄阳五中J24)已知函数()e 2xf x ax b =-+在0x =处的切线经过点()1,2.(1)若函数()f x 至多有一个零点,求实数a 的取值范围;(⑪)(2)若函数()f x 有两个不同的零点()1212,x x x x <,且25x >,求证:12211x x a ax >-.(23e 2.7,e 7.4,e 20.1≈≈≈)(切线,中下;零点分析,中档,未;第二问,未;)1.(2022年湖南三湘名校J45)已知函数()x f x e =(其中e 是自然对数的底数).过点(,1)(0)P m m >作曲线()y f x =的两条切线,切点坐标分别为()()()121212,e ,,e x x x x x x <.(1)若21x =,求m 的值;(⑫)(2)证明:12x x +随着m 的增大而增大.(切线,易;第二问,未;)2.(2022年湖北武汉J01)定义在π,2⎛⎫-+∞ ⎪⎝⎭上的函数()()sin f x x k x =-.(⑬)(1)当π6k =时,求曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线与两坐标轴所围成的三角形的面积;(2)将()f x 的所有极值点按照从小到大的顺序排列构成数列{}n x ,若()()120f x f x +=,求k 的值.(切线,中下;第二问,未;)3.(2022年湖北四校联考J17)已知函数()()e ln (0),ln x f x a x b x g x x x x=+->=+.(⑭)(1)若曲线()y f x =在1x =处的切线方程为2e 3y x =+-,求,a b ;(2)在(1)的条件下,若()()f m g n =,比较m 与n 的大小并证明.(切线,中下;第二问,未;)①【答案】(I )(1),(0)y a x a =->;(II )证明见解析;(III )[),e -+∞【解析】【分析】(I )求出()f x 在0x =处的导数,即切线斜率,求出()0f ,即可求出切线方程;(II )令()0f x '=,可得(1)x a x e =+,则可化为证明y a =与()y g x =仅有一个交点,利用导数求出()g x 的变化情况,数形结合即可求解;(III )令()2()1,(1)xh x x x e x =-->-,题目等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,利用导数即可求出()h x 的最小值.【详解】(I )()(1)x f x a x e =-+',则(0)1f a '=-,又(0)0f =,则切线方程为(1),(0)y a x a =->;(II )令()(1)0x f x a x e =-+=',则(1)x a x e =+,令()(1)x g x x e =+,则()(2)x g x x e '=+,当(,2)x ∈-∞-时,()0g x '<,()g x 单调递减;当(2,)x ∈-+∞时,()0g x '>,()g x 单调递增,当x →-∞时,()0g x <,()10g -=,当x →+∞时,()0g x >,画出()g x 大致图像如下:所以当0a >时,y a =与()y g x =仅有一个交点,令()g m a =,则1m >-,且()()0f m a g m '=-=,当(,)x m ∈-∞时,()a g x >,则()0f x '>,()f x 单调递增,当(),x m ∈+∞时,()a g x <,则()0f x '<,()f x 单调递减,x m =为()f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m =,此时)1(1,m a m e m +>-=,所以()2max {()}()1(1),mf x a f m a m m e m -=-=-->-,令()2()1,(1)xh x x x e x =-->-,若存在a ,使得()f x a b ≤+对任意x ∈R 成立,等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,()2()2(1)(2)x x h x x x e x x e =+-=+'-,1x >-,当(1,1)x ∈-时,()0h x '<,()h x 单调递减,当(1,)x ∈+∞时,()0h x '>,()h x 单调递增,所以min ()(1)h x h e ==-,故b e ≥-,所以实数b 的取值范围[),e -+∞.【点睛】关键点睛:第二问解题的关键是转化为证明y a =与()y g x =仅有一个交点;第三问解题的关键是转化为存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥.②【答案】(1)11y e=-;(2)答案不唯一,见解析.【解析】【分析】(1)求出导函数()'f x ,得切线斜率(1)f ',从而可得切线方程;(2)定义域是(0,)+∞,在0a ≤时直接由函数()f x 的解析式确定无零点(需用导数证明ln 0x x -<),在1a >时,由导函数()'f x ,得单调性,确定函数的最大值为(1)f ,根据(1)f 的正负分类讨论.在(1)0f >时,通过证明()0f a <和1(0f a<,得零点个数.【详解】(1)当1a =时,()ln x x e f x x x =+-,()111f e=-,()111xe xf x x -'=+-,()10f '=,所以曲线()y f x =在1x =处的切线方程为11y e=-.(2)函数()f x 的定义域为()0,∞+,()()1111111e e e x x x x x x a f x a a x x x x ---⎛⎫⎛⎫'=+-=+⋅=-+ ⎪ ⎪⎝⎭⎝⎭.①当0a =时,()0e xxf x =>,()f x 无零点.②当0a >时,10e x ax+>,令()0f x '>,得01x <<,令()0f x '<,得1x >,所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 有最大值()11ef a =-.当10ea -<,即1e >a 时,()f x 无零点.当10e a -=,即1a e=时,()f x 只有一个零点.当10a e ->,即10a e<<时,()10f >,()()ln a a e f a a a a =+-,令()ln 1g x x x =-+,则()111xg x x x-'=-=,则()g x 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 10g x g ==,所以()ln 10g x x x =-+≤,因此当10a e <<时,ln 1a a -<-,()()1ln 1a a a a a f a a a a a a e e e ⎛⎫=+-<-=- ⎪⎝⎭.因为0a >,所以1ae >,于是()110af a a e ⎛⎫<-< ⎪⎝⎭.又()f x 在()0,1上单调递增,()10f >,且1a <,所以()f x 在()0,1上有唯一零点.1111111ln ln 1a aa a f a a a a a e a e ⎛⎫⎛⎫=+-=-- ⎪ ⎪⎝⎭⎝⎭,当10a e<<时,1e a >,令()2e x h x x =-,其中x e >,则()2xh x e x '=-,令()2xx e x ϕ=-,x e >,则()20xx e ϕ'=->,所以()h x '在(),e +∞上单调递增,()20eh x e e '>->,所以()h x 在(),e +∞上单调递增,()20eh x e e >->,故当x e >时,2x e x >.因为1e a >,所以211ae a ⎛⎫> ⎪⎝⎭,即11aa e a <,所以111ln 1ln 1aa f a a a a a a e ⎛⎫=--<-- ⎪⎝⎭.由ln 10x x -+≤,得11ln10a a -+<,即1ln 10a a--+<,得ln 10a a a --<,于是10f a ⎛⎫< ⎪⎝⎭.又()10f >,11a>,()f x 在()1,+∞上单调递减,所以()f x 在()1,+∞上有唯一零点.故10ea <<时,()f x 有两个零点.③当0a <时,由ln 10x x -+≤,得ln 10x x -≤-<,则()ln 0a x x ->,又当0x >时,0e xx>,所以()0f x >,()f x 无零点.综上可知,0a ≤或1a e >时,()f x 无零点;1a e =时,()f x 只有一个零点;10a e<<时,()f x 有两个零点.【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点个数.解题关键是求出函数的导数()'f x ,由()'f x 确定单调性和最值,本题在最大值(1)f 0>的情况下,通过证明()f a 0<和10f a ⎛⎫< ⎪⎝⎭,结合零点存在定理得出零点个数.难度较大,对学生的要求较高,属于困难题.③【答案】(1)(i )11a b =⎧⎨=⎩,(ii )答案见解析(2)证明见解析【分析】(1)(i )求出导数,由题可得(0)0(0)1f f =⎧⎨='⎩即可求出;(ii )根据导数的正负即可求出.(2)求出导数,构造函数()(1)1x g x ae x =+-,利用零点存在定理可判断函数的变化情况,得出单调性即可判断.(1)(i )()11xf x ae x =-+',由已知得,(0)0(0)1f f =⎧⎨='⎩,故10ln 1a a b -=⎧⎨-=⎩,解得11a b =⎧⎨=⎩;(ii )1()(1)1xf x e x x '=->-+,显然()'f x 在(1,)-+∞上单调递增,又(0)0f '=,所以10x -<<时,()0f x '<;0x >时,()0f x '>,因此()f x 在(1,0)-上单调递减,在(0,)+∞上单调递增.(2)()ln(1)ln xf x ae x a =-+-,则1(1)1()11x xae x f x ae x x '+-=-=++,令()(1)1x g x ae x =+-,0a >,1x ≥-,显然()g x 在[1,)-+∞上单调递增,又(1)0g -<,10g a ⎛⎫> ⎪⎝⎭,所以存在11,t a ⎛⎫∈- ⎪⎝⎭,使得()0g t =,当1x t -<<时,()0<g x ;x t >时,()0>g x ,所以1x t -<<时,()0f x '<;x t >时,()0f x '>,即()f x 在(1,)t -上单调递减;在(,)t ∞+上单调递增,因此f (x )有唯一极小值点t .④【答案】(1)e(2)8【解析】【分析】(1)求出函数的导数,根据导数的几何意义求出()f x 在1x =-处的切线方程,根据切线与y 轴交于点210,e e ⎛⎫-⎪⎝⎭,即可求得a ;(2)法一:由(1)知()1e e xf x x -=+,则不等式可化为()1e 1e 0x x b x ---+≥,构造函数()()1e1e x g x x b x -=--+,利用导数并讨论导数的正负,从而求得存在()02,x ∈-+∞,()()()01000min e 1e 0x g x g x x b x -==--+≥,分离参数,表示出()0101e x b x -=+,构造新函数,结合导数求得32e e3e 3b --≤≤,进而求得答案;法二:讨论x 的取值范围,从而分离出参数b ,在1x >,21x -£<的情况下,分别构造函数,利用导数判断单调性求的最值,最后确定32e e3e 3b --≤≤,由此可得答案;法三:令2x =-,由()()1f x b x ≥-可解得32e e13b --≥>-,从而取0m =,证明证当0b =时,不等式1e e 0x x -+≥在2x ≥-时恒成立,令2x =,由()()1f x b x ≥-,解得3e b ≤,故取8M =,再证当8b =时,不等式()1e 81e 0x x x ---+≥在2x ≥-时恒成立,由此求得答案.【小问1详解】依题意得:()()11e x f x x -'=+,所以()10f '-=.又因为()211e f a -=-+,所以()f x 在1x =-处的切线方程为21ey a =-+,因为曲线()y f x =在1x =-处的切线与y 轴交于点210,e e ⎛⎫- ⎪⎝⎭,所以2211e e e a -+=-,解得e a =.【小问2详解】解法一:由(1)知()1e e xf x x -=+,则不等式可化为()1e 1e 0x x b x ---+≥,设()()1e1e x g x x b x -=--+,则()()11e x g x x b -='+-,设()()x g x ϕ'=,则()()12e x x x ϕ-=+',因为[)2,x ∈-+∞,所以()0x ϕ'≥,所以()x ϕ在[)2,-+∞单调递增,即()g x '在[)2,-+∞单调递增,所以()()3min 2e g x g b -=-=-'-',①若3e b -≤-,则()()20g x g '-'≥≥,所以()g x 在[)2,-+∞单调递增,所以()()3min 22e3e 0g x g b -=-=-++≥,解得32e e 3b --≥,所以332e e e 3b ---≤≤-;②若3e b ->-,则()()min 20g x g =-'<',因为()g x '在[)2,-+∞单调递增,当3e 0b --<≤时,()100eg b ='->,则存在()2,0x ∈-使得()0g x '=,当0b >时,取{}max 0,ln 1n b =+,则()0g n >,所以存在()12,x n ∈-,使得()10g x '=,综上,当3e b ->-时,存在()02,x ∈-+∞,使得()00g x '=,即()0101e 0x x b -+-=,故当02x x -<<时,()0g x '<,则()g x 在()02,x -单调递减,当0x x >时,()0g x '>,则()g x 在()0,x +∞单调递增,所以()()()01000min e1e 0x g x g x x b x -==--+≥,(*)由()0101e 0x x b -+-=,得()0101e x b x -=+,代入(*)得()()()000111200000e 1e 1e 1e e 0x x x x x x x x ----+-+=-+++≥,设()()211e e x F x x x -=---+,则()()()()2112e 21e x x F x x x x x --=-+---'=+,因为2x ≥-,所以由()0F x '=得1x =,当21x -<<时,()0F x '>,所以()F x 在()2,1-上单调递增,当1x >时,()0F x '<,所以()F x 在()1,+∞单调递减,又因为()32e e 0F -=-+<,()11e 0F =+>,()20F =,所以当2x >时,()0F x <,所以满足()012001ee 0x x x --+++≥的0x 的取值范围是022x -<≤,又因为()0101ex b x -=+,设()()11e x H x x -=+,则()()12e 0x H x x -+'=≥,所以()H x 在()2,-+∞单调递增,所以3e 3e b --<≤,综上所述32e e 3e 3b --≤≤,又因为32e e 103---<<,83e 9<<所以0m =,8M =,所以8M m +=.解法二:由(1)知:()1e e x f x x -=+,则()1e 1e 0x x b x ---+≥,①当1x =时,左边等于1e 0+≥恒成立,此时b ∈R ;②当1x >时,原不等式可化为1e e 1x x b x -+≤-对任意()1,x ∈+∞恒成立.设()1e e 1x x h x x -+=-,则()()()2121e e1x x x h x x --'--=设()()211e e x k x x x -=---,则()()()()2112e 21e x x k x x x x x --=+-'=+-.因为1x >,所以()0k x '>,所以()k x 在()1,+∞上单调递增.又因为()()220h k '==,所以2x =是()h x '在()1,+∞上的唯一零点,所以当12x <<时,()0h x '<,()h x 在()1,2上单调递减,当2x >时,()0h x '>,()h x 在()2,+∞上单调递增,所以()()min 23e h x h ==,所以3e b ≤.③当21x -£<时,原不等式可化为1e e 1x x b x -+≥-,此时对于②中函数()k x 的导函数,()()()()2112e 21e x x k x x x x x --=+-'=+-,可知当21x -£<时,()0k x '<,所以()k x 在21x -£<单调递减,且()325ee 0k --=-<,所以当21x -£<时,()()20k x k <-<,所以当21x -£<时,()0h x '<,所以()h x 在[)2,1-上单调递减,所以()3max 2e e (2)3h x h --=-=,所以32e e 3b --≥,综上所述32e e 3e 3b --≤≤,又因为32e e 103---<<,83e 9<<所以0m =,8M =,所以8M m +=.解法三:令2x =-,由()()1f x b x ≥-得()32e 3e b --≥--,解得32e e 13b --≥>-,取0m =,下证当0b =时,不等式1e e 0x x -+≥在2x ≥-时恒成立,设()1e e x g x x -=+,则()()11e x g x x -=+',由()0g x '=可得1x =-,当21x -<<-时,()0g x '<,所以()g x 单调递减,当1x >-时,()0g x '>,所以()g x 单调递增,所以()()2min 11e 0e g x g =-=-+≥,所以0m =符合题意;令2x =,由()()1f x b x ≥-得2e 20b -+≥,解得3e b ≤,取8M =,下证当8b =时,不等式()1e81e 0x x x ---+≥在2x ≥-时恒成立,设()1e e x h x x -=+,则()()11e x h x x -=+',令()0h x '=,则1x =-,所以当21x -<<-时,()0h x '<,则()h x 在()2,1-上单调递减,当1x >-时,()0h x '>,则()h x 在()1,+∞上单调递增,所以()()211e 0e h x h ≥-=->,所以当21x -≤≤时,()1e81e 0x x x ---+≥恒成立.当1x >时,10x ->,所以()()813e 1x x -<-,所以()()11e 81e e 3e 1e x x x x x x ----+>--+,设()()1e 3e 1e x k x x x -=--+,则()()11e 3e x k x x -'=+-,设()()x k x ϕ'=,则()()12e 0x x x ϕ-+'=≥,所以()k x '在()1,+∞单调递增,且()20k '=,所以当12x <<时,()0k x '<,则()k x 在()1,2单调递减,当2x >时,()0k x '>,则()k x 在()2,+∞单调递增,所以()()min 20k x k ==,所以()0k x ≥,所以()1e 81e 0x x x ---+≥,综上当8M =时,不等式()1e81e 0x x x ---+≥在2x ≥-时恒成立,所以8M m +=.【点睛】本小题主要考查函数的单调性、导数、导数的几何意义及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查分类与整合思想、数形结合思想、一般与特殊思想,涉及的核心素养有直观想象、数学抽象、数学运算、逻辑推理等,体现综合性与创新性.⑤【答案】(1)10x y -+=(2)①2②见解析【解析】【详解】试题分析:(1)将1a =代入到函数()f x ,再对()f x 求导,分别求出()0f 和()'0f ,即可求出切线方程;(2)①若函数()f x 在定义域上为单调增函数,则()'0f x ≥恒成立,则先证明1x e x ≥+,构造新函数,求出单调性,再同理可证ln 1x x ≤-,即可求出a 的最大整数值;②由①得()ln 2x e x ≥+,令1t x t -+=,可得11ln tt t e t -++⎛⎫≥ ⎪⎝⎭,累加后利用等比数列求和公式及放缩法即可得证.试题解析:(1)当1a =时,()()()1ln 1xf x e x x x =-+++∴()01f =,又()()'ln 1xf x e x =-+,∴()'01f =,则所求切线方程为1y x -=,即10x y -+=.(2)由题意知,()()'ln xf x e x a =-+,若函数()f x 在定义域上为单调增函数,则()'0f x ≥恒成立.①先证明1x e x ≥+.设()1x g x e x =--,则()'1xg x e =-,则函数()g x 在(),0-∞上单调递减,在()0,+∞上单调递增,∴()()00g x g ≥=,即1x e x ≥+.同理可证ln 1x x ≤-∴()ln 21x x +≤+,∴()1ln 2xe x x ≥+≥+.当2a ≤时,()'0f x >恒成立.当3a ≥时,()'01ln 0f a =-<,即()()'ln 0xf x e x a =-+≥不恒成立.综上所述,a 的最大整数值为2.②由①知,()ln 2x e x ≥+,令1t x t-+=,∴111ln 2ln t t t t e t t -+-++⎛⎫⎛⎫≥+= ⎪ ⎪⎝⎭⎝⎭∴11ln t t t e t -++⎛⎫≥ ⎪⎝⎭.由此可知,当1t =时,0ln2e >.当2t =时,213ln 2e -⎛⎫> ⎪⎝⎭,当3t =时,324ln 3e -⎛⎫> ⎪⎝⎭, ,当t n =时,11ln nn n e n -++⎛⎫≥ ⎪⎝⎭.累加得0121n e e e e ---+++++> 23341ln2ln ln ln 23n n n +⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .又0121n e e e e ---+++++= 11111111n e e e e e⎛⎫- ⎪⎝⎭<=---,∴2334ln2ln ln 23⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭1ln 1nn e n e +⎛⎫++< ⎪-⎝⎭ .点睛:(1)导数综合题中对于含有字母参数的问题,一般用到分类讨论的方法,解题时要注意分类要不重不漏;(2)对于恒成立的问题,直接转化为求函数的最值即可;(3)对于导数中,数列不等式的证明,解题时常常用到前面的结论,需要根据题目的特点构造合适的不等式,然后转化成数列的问题解决,解题时往往用到数列的求和及放缩法.⑥【答案】(1)1,1a b ==;证明见解析(2)证明见解析【解析】【分析】(1)求出函数的导函数,依题意可得()10f -=,()111ef -=-+',即可解得a 、b ,从而得到()()()1e 1x f x x =+-,设()f x 在()1,0-处的切线l 方程为()y h x =,令()()()F x f x h x =-,利用导数说明函数的单调性,即可得证;(2)由(1)知()()11f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-,即可得到11x x '≤,在设()y f x =在()0,0处的切线方程为()y t x =,令()()()T x f x t x =-,利用导数说明函数的单调性,即可得到()()22f x t x ≥.设()t x m =的根为2x ',则2x m '=,再说明22x x '≥,即可得证;【小问1详解】解:将1x =-代入切线方程()e 1e e l 0x y -++-=,有0y =,所以()10f -=,所以()()1110e f b a ⎛⎫-=-+-= ⎪⎝⎭,又()()1e x f x x b a +'=+-,所以()111e e b f a -=-=-+',若1ea =,则2e 0b =-<,与0b >予盾,故1a =,1b =.∴()()()1e 1x f x x =+-,()00f =,()10f -=,设()f x 在()1,0-处的切线l 方程为()()111e y h x x ⎛⎫==-+⎪⎝⎭,令()()()F x f x h x =-,即()()()()11e 111e x F x x x ⎛⎫=+---+ ⎪⎝⎭,所以()()12e e x F x x =+-',当2x -≤时,()()112e 0e ex F x x =+-≤-<',当2x >-时,设()()()12e ex G x F x x =+-'=,()()3e 0x G x x =+>',故函数()F x '在()2,-+∞上单调递增,又()10F '-=,所以当()2,1x ∈--时,()0F x '<,当()1,x ∈-+∞时,()0F x '>,综合得函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增,故()()10F x F ≥-=,即函数()y f x =的图象总在切线l 的上方(除切点外).【小问2详解】解:由(1)知()()11f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-,又函数()h x 单调递减,故()()()111f x h h x x =≥',故11x x '≤,设()y f x =在()0,0处的切线方程为()y t x =,因为()00f =,()()2e 1xf x x '=+-,所以()01f '=,所以()t x x =.令()()()()()1e 1x T x f x t x x x =-=+--,()()2e 2xT x x =+-',当2x -≤时,()()2e 220xT x x =+-≤-<',当2x >-时,设()()()2e 2x H x T x x ==+-',则()()3e 0xH x x =+>',故函数()T x '在()2,-+∞上单调递增,又()00T '=,所以当()2,0x ∈-时,()0T x '<,当()0,x ∈+∞时,()0T x '>,综合得函数()T x 在区间(),0∞-上单调递减,在区间()0,∞+上单调递增,所以()()00T x T ≥=,即()()22f x t x ≥.设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故()()()222f x t t x x =≥',故22x x '≥,又11x x '≤,所以()221112e e 111e 1em m x x x x m -⎛⎫''-≤-=--+=+ ⎪--⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.⑦【答案】(1)2y x=(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0ex x f x x f =++=,所以切点为(0,0)11(),(0)21ex x f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a - ,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+ ,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.⑧【答案】(1)2,2ea b ==-(2)(i )证明见解析;(ii )证明见解析【解析】【分析】(1)直接利用导数的意义列方程组()()()'1211f e f e ⎧=-⎪⎨=⎪⎩,即可解得;(2)(i )求出导函数2()(1)e x f x x x '=+-.利用导数和零点存在对立即可证明;(ii )求出0000001()e 2ln 2(ln )1x f x x x x x =-=-+,令11()2(ln )(1)12x x x x ϕ=-<<+,利用导数判断出()y x ϕ=在(,1)2上单调递减,即可证明122741()(2(ln 2)2(2331015x ϕϕ<=+<+=;要证031()15f x >,即证0320312ln 15x x x x+>.令()x F x x =1(1)2x <<,利用导数证明出1()( 2.332F x F >≈;令32312ln 115()(1)2x G x x x+=<<,利用导数证明出1130max()(e ) 2.312G x G -=≈,得到()()G x F x <,即可证明.【小问1详解】定义域为(0,)+∞,'((e )1)xa f x x x=+-由题意知()()()()'1221121f e a e f e b e ⎧=-=-⎪⎨=-+=⎪⎩,解得2,2e a b ==-.【小问2详解】(i )由(1)知()e 2ln x f x x x =-,2()(1)e xf x x x'=+-令()()h x f x '=,则22()(2)e 0xh x x x'=++>,从而()y h x =即()y f x '=单调递增又13e 8(1)2e 20,()022f f -''=->=<,故存在唯一的01(,1)2x ∈使得0()0f x '=x 0(0,)x 0x 0(,)x +∞()'f x -0+()f x极小值从而()y f x =有且仅有一个极小值点0x x =,且01(,1)2x ∈(ii )00002()(1)e 0x f x x x '=+-=,()y f x =的极小值000000()e 2ln 2(ln )1x f x x x x x =-=-+令11()2(ln )(1)12x x x x ϕ=-<<+,则222'()0(1)x x x ϕ=--<+,从而()y x ϕ=在1(,1)2上单调递减,122741()(2(ln 2)2(2331015x ϕϕ<=+<+=,故041()15f x <下证031()15f x >0320312ln e15x x x x+>一方面令e ()xF x x =1(1)2x <<,则32e (21)()02x x F x x -'=>,则()F x 在1(,1)2上单调递增,从而1()()2e 2.332F x F >=≈另一方面,令32312ln 115()(1)2x G x x x +=<<,52113ln 10'()x G x x --=令()0'=G x 有1130e x -=x 11301(,e )2-1130e-1130(e,1)-()G x '+0-()G x极大值从而110.5530max 44()(e)e 1.734 2.31233G x G -==≈⨯≈从而()()G x F x <32312ln e15xx xx+>成立,故031()15f x >.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围;(4)利用导数证明不等式.⑨【答案】(1)极大值为(1)0f =,无极小值.(2)证明见解析.【解析】【分析】(1)根据导数的几何意义得1b =-,进而得'11()10xf x x x-=-==,再列表求解即可;(2)根据题意,只需证明2e ln e e xx x x a ≥+,由于函数e ,0x y x x >=在()0,∞+上单调递增,e 0x y x =>,故转化为证明2ln e t t a ≥+,再令()2ln ,0et t g t a t -->=,再求函数最值即可证明.【小问1详解】解:1a =,()ln 1f x x bx =++,'1()f x b x=+,因为曲线()y f x =在2x =处的切线与直线210x y ++=平行,所以,'11(2)22f b =+=-,解得1b =-,所以,()ln 1f x x x =-+,'11()10xf x x x-=-==,解得1x =,所以,x ,'()f x ,()f x 的变化情况如下表,x ()0,11()1,+∞'()f x ++()f x 单调递增极大值单调递减所以,当1x =时,()f x 有极大值(1)0f =,无极小值.【小问2详解】解:当1,1b a =≤-,()ln f x x x a =++,因为222()e ee ln ln e ex x x x f x x x x x a x a x --≥⇔≥++⇔≥+,所以只需证明2e ln e exx x x a ≥+成立即可.令e ,0x y x x >=,则()'1e 0,0xy x x =+>>,所以,函数e ,0x y x x >=在()0,∞+上单调递增,即e 0x y x =>.令e ,0xx t t =>,则22e ln e ln e ex x x tx a t a ≥+⇔≥+,令()2ln ,0e t t g t a t -->=,则()2'2211e e e t t t t g --==,所以,当()20,et ∈时,()'0g t <,()g t 单调递减,当()2e ,t ∈+∞时,()'0g t >,()g t 单调递增,所以,()()22e1ln e1a a g g t ≥=--=--,因为1a ≤-,所以10a --≥,即()0g t ≥,所以2ln ett a ≥+成立,所以2()ex f x x-≥成立,证毕.⑩【答案】(1)0=t ;()f x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞.(2)b 的取值范围为(,2]-∞.【分析】(1)、先求出切线方程,根据切线经过点(1,1)即可求出t 的值;求出()f x ',分0m ≥,0m <两种情况讨论函数的单调区间即可;(2)、将原不等式转化为函数值在,()0x ∈+∞时恒大于零问题,分类讨论即可得到b 的取值范围.(1)2()e mx f x x mx t =+-+ ,()e 2mxf x m x m '∴=+-,(0)0f '∴=,又()01f t =+ ,∴切线方程为1y t =+,又 切线经过点(1,1),11t ∴+=,0t ∴=,故2()e mx f x x mx =+-,()()1e 2e 2mx mx f x m x m m x '=-=+-+.①、若0m ≥,则当(,0)x ∈-∞时,e 10mx -≤,()0f x '<;当,()0x ∈+∞时,e 10mx -≥,()0f x '>.所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.②、若0m <,则当(,0)x ∈-∞时,e 10mx ->,()0f x '<;当,()0x ∈+∞时,e 10mx -<,()0f x '>.所以()f x 在(,0)-∞上单调区间递减,在(0,)+∞上单调区间递增.综上所述:()f x 的单调递减为(,0)-∞,单调递增(0,)+∞.(2)当1m =时,2()e x f x x x =+-,22(2)(2)e 4e x x x f x f x -∴----=,()()e e 2x x x f x f x -----=,(2)(2)4[()()]f x f x b f x f x -->-- ,()22e e 4e e 42x x x x x b x --∴----≥,()22e e 4e e (84)0x x x x b b x --∴---+-≥在,()0x ∈+∞上恒成立.设()22()e e 4e e (84)x x x xg x b b x --=---+-,,()0x ∈+∞()()()()22()2e e 2e e 422e e 2e e 22x x x xx x x x g x b b b ----⎡⎤'∴=+-++-=+-+-+⎣⎦,且e e2xx-+>.①、当2b ≤时,e e 20,e e 220x x x x b --+->+-+>,()0g x '∴≥,当且仅当0x =时等号成立,所以()g x 在,()0x ∈+∞上单调递增,而()00g =,所以对0x >时,()0>g x .符合题意②、当2b >时,若x 满足2e e 22x x b -<+<-,即(20ln 12x b b b <<--时,()0g x '<,而(0)0g =,因此(20ln 12x b b b <<-+-时,()0<g x ,不符合题意.综上:b 的取值范围为(,2]-∞.⑪【答案】(1)2e 2a ≤(2)证明见解析【解析】【分析】(1)根据切线过点()1,2可得2b a =,参变分离后研究()e 1xg x x =-的单调性,得到极值,数形结合得到答案;(2)在第一问基础上,得到22e a >,对不等式变形,结合放缩,转化为只需证22212e 20(4)t t t +->>,二次求导后得到证明.【小问1详解】()e 2x f x a =-',∴()012f a '=-,∴0x =处的切线方程为()121y a x b =-++,切线过点()1,2,所以2b a =,∴()e 22x f x ax a =-+.∵()()1e 0,f f x =≠∴的零点不为1,∴e 21xa x =-在()(),11,-∞+∞ 上至多一个解.设1t x =-,则1e 2()t a g t t+==在()(),00,∞-+∞U 上至多一个解.1122111()()e e t t t g t t t t++-'=-=,令()0g t '>得:1t >,令()0g t '<得:01t <<或0t <,∴()g t 在(),0∞-和(]0,1上单调递减,[)1,+∞上单调递增,当0t <时,()0g t <恒成立,当0t >时,()g t 在1t =处取得极小值,且2(1)e g =,画出函数图象如图所示:所以22(1)e a g ≤=时,()f x 至多有一个零点,∴2e 2a ≤【小问2详解】由(1)知,要想有两个不同零点,则22e a >且12(0,1),(1,)t t ∈+∈∞,即()()121,2,2,x x ∈∈+∞,故要证12211x x a ax >-,只需证121ax x >-,由(1)知()()11110,1,1,2t x x =-∈∴∈,故只需证221x t a -=<,∵21222e (14)2t t x t a +==->.只需证:21222e (4)2t t t t +><,即22212e 20(4)t t t +->>,令()()()121e 24,e 4t t h t t t h t t ++=->'=-,15()e 4e 40t h t +''=->->,∴()h t '在()4,+∞上递增,∴()5416)e 0(h t h '>'=->,∴()h t 在()4,+∞上递增,∴()()54e 320h t h >=->,∴2122e 2t t +>,∴12211x x a ax >-【点睛】导函数研究函数零点问题,参变分离是一种重要方法,把零点问题转化为函数交点问题,通过构造函数,研究构造函数的单调性,极值和最值,数形结合得到答案.⑫【答案】(1)1em =(2)证明见解析【分析】(1)由导数的几何意义求切线方程,由点P 在切线上列方程求m 的值;(2)由导数的几何意义可得1x ,2x 是方程11e x m x =+-的两根,设21(0)x x t t -=>由此可得()1222e 1e e tx x tt +-=,证明t 随着m 的增大而增大,12e x x +随着t 的增大而增大,由此证明12x x +随着m 的增大而增大.(1)因为21x =,所以切点为(1,)e ,又()e x f x '=,则(1)e f '=,所以切线方程为e(1)e e y x x =-+=,因为切线过点(,1)P m ,所以1e m =,解得1em =;(2)设切点为()00,e x x ,因为()()000 e x f x f x '==,则切线方程为()000e e x x y x x =-+,因为切线过点(,1)P m ,所以()0001e e xxm x =-+,整理得0011(0)e x m x m =+->,所以1x ,2x 是方程11e xm x =+-的两根,设1()1e xg x x =+-,则1()1e x g x '=-,令()0g x '=,解得0x =,当0x <时,()0g x '<,()g x 在(,0)-∞上单调递减,当0x >时,()0g x '>,()g x 在(0,)+∞上单调递增,所以120x x <<,设1()g x m =的两根为()1212,0x x x x ''''<<,其中10m m >>,则由()g x 单调性可知,11220x x x x ''<<<<,所以2121x x x x ''->-,设21(0)x x t t -=>,即t 随着m 的增大而增大,因为12121111e e x x m x x =+-=+-,所以111111e e x x t x x t ++=++,整理得1e 1e e t x tt -=,所以21e 1e et x x tt +-==,所以()1222e 1e (0)e t x x t t t +-=>,设()22e 1()(0)et t h t t t -=>,则()()()()()2222322e e 1e 2e e 1e 1(2)e 2()e e t t t t t tttt t t t t t h t t t '⎡⎤-⋅-+⋅---++⎣⎦==,设()(2)e 2t t t t ϕ=-++,则()(1)e 1t t t ϕ'=-+,()(1)e 1t m t t =-+,则'()e 0t m t t =>所以()t ϕ'单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ单调递增,所以()(0)0t ϕϕ>=,即()0,()h t h t '>单调递增,所以12e x x +随着t 的增大而增大,又t 随着m 的增大而增大,所以12x x +随着m 的增大而增大.【点睛】本题解决的关键在于根据函数方程的思想确定1x ,2x 是方程11e xm x =+-的两根和构造函数证明12e x x +随着21x x -的增大而增大.⑬【答案】(1)2π144(2)π2【解析】【分析】(1)根据导数的几何意义及点斜式,再结合三角形的面积公式即可求解;(2)根据已知条件及正切函数的性质,利用导数法求函数的极值及函数存在性定理,再根据零点范围及三角函数相等的角的关系即可求解.【小问1详解】当π6k =时,()()ππsin ,sin cos 66f x x x f x x x x ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎝⎭'⎭,故ππ1sin 662f ⎛⎫== ⎪'⎝⎭.曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线的斜率为π162k f ⎛⎫== ⎪⎝⎭',曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线方程为1π26y x ⎛⎫=- ⎪⎝⎭,令π0,12x y ==-.所以切线与y 轴的交点π0,12⎛⎫- ⎪⎝⎭.此时所求三角形的面积为21πππ2126144⨯-⨯=.【小问2详解】()()sin cos f x x x k x=+-'当ππ22x -<<时,()()cos tan f x x x x k =⋅+-'.由函数tan y x x =+在区间ππ,22⎛⎫- ⎪⎝⎭上递增,且值域为R ,故存在唯一0ππ,22x ⎛⎫∈- ⎪⎝⎭,使得00tan x x k +=.此时当0π2x x -<<时,()()0,f x f x '<单调递减;当0π2x x <<时,()()0,f x f x '>单调递增,因此10x x =.同理,存在唯一'0π3π,22x ⎛⎫∈ ⎪⎝⎭,使得''00tan x x k +=.此时当'0π2x x <<时,()()0,f x f x '>单调递增;当'03π2x x <<时,()()0,f x f x '<单调递减,因此'20x x =.由()()211111111sin 10,tan ,cos cos cos x f x x k x f x x x x =-=-=-=-'.同理:()222222sin 1cos cos cos x f x x x x =-=-.由()()120f x f x +=,整理得:()12121cos cos 10cos cos x x x x ⎛⎫+-=⎪⎝⎭.又12ππ3π222x x -<<<<,故12cos cos 1x x ≠,则有()122cos cos cos πx x x =-=-由2πππ22x -<-<,故12πx x =-或()12πx x =--.又1122tan tan k x x x x =+=+,当12πx x =-时,不满足,舍去.所以()12πx x =--,即12πx x +=,则1122tan tan π22x x x x k +++==.综上所述,π2k =.【点睛】解决此题的关键,第一问根据导数的几何意义及三角形的面积公式即可;第二问利用导数法求函数的极值的步骤,但此时无法解决导数函数的零点,只能通过函数零点存在性定理得出,再结合已知条件及零点范围及三角函数相等角的关系即可.⑭【答案】(1)2,1a b ==(2)m n ≤,证明见解析【解析】【分析】(1)求导得()'f x ,再求(1)f '的值即得切线的斜率,求出切点,利用点斜式求出切线方程,对比系数即可得答案;(2)先证明e 1x x ≥+,再令()()()h x f x g x =-,利用前面的结论说明()0h x ≥,最后根据()g x 的单调性证明即可.【小问1详解】解:()()()()2e 1(0),1e ,1x x af x x f b f a x x-=+>'=-=',所以()y f x =在1x =处的切线方程为e y ax b a =+--,比较系数可得2,1a b ==.【小问2详解】m n ≤.证明:设()=e 1xx x ϕ--,则()=e -1xx ϕ',令()>0x ϕ',则0x >;令()0ϕ'<x ,则0x <则0x =是()ϕx 的极小值点同时也是最小值点,故()()00x ϕϕ≥=即e 1x x ≥+(当且仅当0x =时等号成立).令()()()h x f x g x =-,则()()ln e ln 1e ln 10xx x h x x x x x x-=+--=---≥,当且仅当ln 0=x x -=“”取“”,所以()(),f x g x ≥则有()(),f m g m ≥而()(),()()f m g n g m g n =∴≤,又()11,()g x g x x'=+∴ 单调递增,所以m n ≤.。
(完整版)2019-2020年高考数学压轴题集锦——导数及其应用(五)

2019-2020年高考数学压轴题集锦——导数及其应用(五)46.已知函数4)(2--=ax x x f (a ∈R)的两个零点为12,,x x 设12x x < .(Ⅰ)当0a >时,证明:120x -<<.(Ⅱ)若函数|)(|)(2x f x x g -=在区间)2,(--∞和),2(+∞上均单调递增,求a 的取值范围.47.设函数2()ln f x x ax x =-++(R ∈a ). (Ⅰ)若1a =时,求函数()f x 的单调区间;(Ⅱ)设函数()f x 在],1[e e 有两个零点,求实数a 的取值范围.48.已知函数()ln()f x ax b x =+-,2()ln g x x ax x =-- .(Ⅰ)若1b =, ()()()F x f x g x =+,问:是否存在这样的负实数,使得()F x 在1x =处存在切线且该切线与直线1123y x =-+平行,若存在,求a 的值;若不存在,请说明理由 .(Ⅱ)已知0a ≠,若在定义域内恒有()ln()0f x ax b x =+-≤,求()a a b +的最大值 .49.设函数2)21(ln )(-+=x b x x x f )(R b ∈,曲线()y f x =在()1,0处的切线与直线3y x =平行.证明:(Ⅰ)函数)(x f 在),1[+∞上单调递增; (Ⅱ)当01x <<时,()1f x <.50.已知f (x )=a (x -ln x )+212xx -,a ∈R . (I )讨论f (x )的单调性;(II )当a =1时,证明f (x )>f ’(x )+23对于任意的x ∈[1,2]恒成立。
51.已知函数f (x )=x 2+ax ﹣ln x ,a ∈R .(1)若函数f (x )在[1,2]上是减函数,求实数a 的取值范围;(2)令g (x )=f (x )﹣x 2,是否存在实数a ,当x ∈(0,e ](e 是自然常数)时,函数g (x )的最小值是3,若存在,求出a 的值;若不存在,说明理由; (3)当x ∈(0,e ]时,证明:e 2x 2-25x >(x +1)ln x .52.已知函数f (x )=31x 3-ax +1.(1)若x =1时,f (x )取得极值,求a 的值; (2)求f (x )在[0,1]上的最小值;(3)若对任意m ∈R ,直线y =﹣x +m 都不是曲线y =f (x )的切线,求a 的取值范围.53.已知函数()xf x axe =(0a ≠) (1)讨论()f x 的单调性;(2)若关于x 的不等式()ln 4f x x x <+-的解集中有且只有两个整数,求实数a 的取值范围.54.已知函数()()11,1n x n m x f x g x m mx x +-==--(其中,,m e n me ≥为正整数,e 为自然对数的底)(1)证明:当1x >时,()0m g x >恒成立;(2)当3n m >≥时,试比较()n f m 与()m f n 的大小,并证明.55.已知函数f (x )=e x 和函数g (x )=kx +m (k 、m 为实数,e 为自然对数的底数,e ≈2.71828).(1)求函数h (x )=f (x )﹣g (x )的单调区间;(2)当k =2,m =1时,判断方程f (x )=g (x )的实数根的个数并证明;(3)已知m ≠1,不等式(m ﹣1)[f (x )﹣g (x )]≤0对任意实数x 恒成立,求km 的最大值.56.已知函数(1)()ln ()a x f x x a R x-=-∈. (Ⅰ)若1a =,求()y f x =在点()1,(1)f 处的切线方程; (Ⅱ)求()f x 的单调区间; (Ⅲ)求证:不等式111ln 12x x -<-对一切的(1,2)x ∈恒成立.57.已知函数2()(1)ln f x x a x =-+(a R ∈).(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 存在两个极值点()1212x x x x <、,求21()f x x 的取值范围.58.设函数R m xmx x f ∈+=,ln )(. (Ⅰ)当e m =(e 为自然对数的底数)时,求)(x f 的极小值; (Ⅱ)若对任意正实数a 、b (a b ≠),不等式()()2f a f b a b-≤-恒成立,求m 的取值范围.59.已知函数()b x a ax x x f +-+-=2233231, ),(R b a ∈ (1)当3=a 时, 若()x f 有3个零点, 求b 的取值范围;(2)对任意]1,54[∈a , 当[]m a a x ++∈,1时恒有()a x f a ≤'≤-, 求m 的最大值, 并求此时()x f 的最大值。
《高考真题》专题13 导数的几何意义-2019年高考文数母题题源系列(全国Ⅰ专版)(原卷版)

专题13 导数的几何意义【母题来源一】【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,xxx y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.【母题来源二】【2018年高考全国Ⅰ卷文数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =【答案】D【解析】因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以()3f x x x =+,()231f x x '=+,所以()()01,00f f '==,所以曲线()y f x =在点()0,0处的切线方程为()()00y f f x '-=,化简可得y x =. 故选D.【名师点睛】该题考查的是有关曲线()y f x =在某个点()()00,x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得()f x ',借助于导数的几何意义,结合直线方程的点斜式求得结果.【母题来源三】【2017年高考全国Ⅰ卷文数】曲线21y x x=+在点(1,2)处的切线方程为______________.【答案】1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设),(00y x P 是曲线)(x f y =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线)(x f y =在点))(,(00x f x P 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.【命题意图】(1)能根据导数定义求函数的导数.(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. (3)理解导数的几何意义. 【命题规律】从近三年高考情况来看,导数的概念及其运算法则、导数的几何意义等内容一直是高考中的热点,常以选择题或填空题的形式呈现,有时也会作为解答题中的一问.解题时要掌握函数在某一点处的导数定义、几何意义以及基本初等函数的求导法则,会求简单的复合函数的导数. 【答题模板】解答已知切点P (x 0, y 0),求y =f (x )过点P 的切线方程,一般考虑如下三步: 第一步:利用导数公式求导数; 第二步:求斜率f ′(x 0);第三步:写出切线方程y −y 0=f ′(x 0)(x −x 0). 【方法总结】(一)导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. (2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;③对数形式:先化为和、差的形式,再求导;④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导.(二)求复合函数的导数的关键环节和方法步骤(1)关键环节:①中间变量的选择应是基本函数结构;②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导;④善于把一部分表达式作为一个整体;⑤最后结果要把中间变量换成自变量的函数.(2)方法步骤:①分解复合函数为基本初等函数,适当选择中间变量;②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.(三)求曲线y=f (x)的切线方程的类型及方法(1)已知切点P(x0, y0),求y=f (x)过点P的切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0, y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0, y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f′(x0)求出切点坐标(x0, y0),最后写出切线方程.(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.②过点P的切线即切线过点P,P不一定是切点.因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上.1.【山东省聊城市2019届高三三模数学试题】函数()2ln f x x x =-+的图象在1x =处的切线方程为 A .10x y ++= B .10x y -+= C .210x y -+=D .210x y +-=2.【江西省鹰潭市2019届高三第一次模拟考试数学】曲线344y x x =-+在点(1,1)处的切线的倾斜角为A .30B .45C .60D .1353.【湖南省师范大学附属中学2019届高三考前演练(五)数学试题】已知定义在R 上的奇函数f (x ),当0x ≤时,3()2f x x x m =--,则曲线()y f x =在点P (2,f (2))处的切线斜率为A .10B .−10C .4D .与m 的取值有关4.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)数学试题】若曲线e x y =在0x =处的切线与ln y x b =+的切线相同,则b = A .2 B .1 C .1-D .e5.【江西省新八校2019届高三第二次联考数学试题】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为 A .5250x y +-= B .10450x y +-= C .540x y +=D .204150x y --=6.【江西省临川一中2019届高三年级考前模拟考试数学试题】已知曲线ln y x x =+在点()1,1处的切线与抛物线()221y ax a x =+++相切,则a 的值为A .0B .0或8C .8D .17.【安徽省蚌埠市2019届高三年级第三次教学质量检查考试数学】已知函数()2af x x x=+.若曲线()y f x =存在两条过()1,0点的切线,则a 的取值范围是A .()(),12,-∞+∞B .()(),12,-∞-+∞C .()(),02,-∞+∞D .()(),20,-∞-+∞8.【湖北省武汉市2019届高三4月调研测试数学试题】设曲线432:3294C y x x x =--+,在曲线C 上一点()14,M -处的切线记为l ,则切线l 与曲线C 的公共点个数为 A .1 B .2 C .3D .49.【广东省2019届高三适应性考试数学试题】已知函数()e (,)x f x a b a b =+∈R 在点(0,(0))f 处的切线方程为21y x =+,则a b -=_______.10.【河南省名校−鹤壁高中2019届高三压轴第二次考试数学试题】若曲线22ln y x x =-的一条切线的斜率是3,则切点的横坐标为________.11.【福建省2019年三明市高三毕业班质量检查测试文科数学试题】曲线ln y x ax =-在2x =处的切线与直线10ax y --=平行,则实数a =_______.12.【湖南省师范大学附属中学2019届高三下学期模拟(三)数学试题】已知函数()ln f x x =的图象在点()()1,1f 处的切线过点()0,a ,则a =_____.13.【河南省洛阳市2019届高三第三次统一考试数学试题】若1ex =是函数()ln f x x kx =-的极值点,则函数()ln f x x kx =-在点(1,(1))f 处的切线方程是______.14.【山东省青岛市2019届高考模拟检测(二模)数学试题】设函数()e xf x x =--的图象上任意一点处的切线为1l ,若函数()cos g x ax x =+的图象上总存在一点,使得在该点处的切线2l 满足12l l ⊥,则a 的取值范围是__________.。
2019年高考数学真题合集(含解析)

解析设某人身高为 *34!脖子下端至肚脐的长度为+34!
则由腿长为!#534!可 得*!&#!5#5%槡5"&!&#!'!6!解 得 *
%!'$!6$#! 由 头 顶 至 脖 子 下 端 的 长 度 为 "'34!
$#!$本小题满分 !$ 分 %已 知 函 数 *$#%'9/:#(1:$!0#%# *7$#%为 *$#%的导数!证明,
$ % $!%*7$#%在区间 (!#$ 存在唯一极大值点-
$$%*$#%有 且 仅 有 $ 个 零 点 !
第 !4 题 图
$!!$本小题满分!$分%为治疗 某 种 疾 病#研 制 了 甲/乙 两 种 新 药#希望知道哪种新药更有效#为 此 进 行 动 物 试 验!试 验 方 案如下,每一轮 选 取 两 只 白 鼠 对 药 效 进 行 对 比 试 验!对 于 两只白鼠#随机选一只施以甲 药#另 一 只 施 以 乙 药!一 轮 的 治疗结果得出后#再 安 排 下 一 轮 试 验!当 其 中 一 种 药 治 愈 的白鼠比另一 种 药 治 愈 的 白 鼠 多 ) 只 时#就 停 止 试 验#并 认为治愈只数多的药更有效!为 了 方 便 描 述 问 题#约 定,对 于每轮试验#若施以甲药的白 鼠 治 愈 且 施 以 乙 药 的 白 鼠 未
解析由 ""&"&'"#!得 ""&(#"")"#"#!解 得 &""" "(! 即 #* $"#&""""(%!+ $ $# * $"#&"""""%!故 选 %!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2019年高考导数北京(理19)题:
已知函数xxxxf2341。
(Ⅰ)求曲线xfy的斜率为1的切线方程;
(Ⅱ)当4,2x时,求证:xxfx6;
(Ⅲ)设)()(RaaxxfxF,xF在区间4,2上的最大值为aM。当
aM
最小时,求a的值。
2
2019年高考导数北京(文20)题:
已知函数f(x)=x3 - x2 + x
(I)求曲线y= f(x)的斜率为1的切线方程
(II)当x∈[-2,4]时, 求证: x-6≤f(x)≤x
(III)设F(x)=|f(x)-(x+a)| (a∈R),记F(x)在区间[-2,4]上的最大值为M(a).当M(a)
最小时,求a的值.
3
2019年全国卷1高考理科数学20题:
已知函数()sinln(1)fxxx,()fx为()fx的导数.证明:
(1)()fx在区间(1,)2存在唯一极大值点;
(2)()fx有且仅有2个零点.
4
2019年全国卷1高考文科数学20题:
已知函数f(x)=2sinx-xcosx-x,f ′(x)为f(x)的导数.
(1)证明:f ′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
5
2019年全国卷2高考理科数学20题:
已知函数11lnxfxxx.
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线
exy
的切线.
6
2019年全国卷2高考文科数学21题:
已知函数()(1)ln1fxxxx.证明:
(1)()fx存在唯一的极值点;
(2)()=0fx有且仅有两个实根,且两个实根互为倒数.
7
2019年全国卷3高考理科数学20题:
已知函数32()2fxxaxb.
(1)讨论()fx的单调性;
(2)是否存在 ,ab,使得()fx在区间[0,1]的最小值为1且最大值为1?若存在,求出
,ab
的所有值;若不存在,说明理由.
8
2019年全国卷3高考文科数学20题:
已知函数32()22fxxax.
(1)讨论()fx的单调性;
(2)当0围.
9
2019年天津卷高考(理)科数学20题:
设函数()ecos,()xfxxgx为fx的导函数.
(Ⅰ)求fx的单调区间;
(Ⅱ)当,42x时,证明
()()02fxgxx
…
;
(Ⅲ)设nx为函数()()1uxfx在区间2,242mm内的零点,其中nN,
证明20022sincosnnnxxex.
10
2019年天津卷高考(文)科数学20题:
设函数()ln(1)xfxxaxe,其中aR.
(Ⅰ)若0a≤,讨论fx的单调性;
(Ⅱ)若10ae,
(i)证明fx恰有两个零点
(ii)设x为fx的极值点,1x为fx的零点,且10xx,证明0132xx.
11
2019年浙江卷高考科数学22题:
已知实数0a,设函数()=ln1,0.fxaxxx
(1)当34a时,求函数()fx的单调区间;
(2)对任意21[,)ex均有(),2xfxa 求a的取值范围.
注:e=2.71828…为自然对数的底数.