2011希望杯初二试题
历届希望杯初二试题及答案

历届希望杯初二试题及答案一、选择题(每题5分,共20分)1. 下列哪个数不是质数?- A. 2- B. 3- C. 4- D. 5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?- A. 5- B. 6- C. 7- D. 8答案:A3. 一个数的平方根是4,这个数是多少?- A. 16- B. 8- C. 4- D. 2答案:A4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?- A. 25π- B. 50π- C. 100π- D. 200π答案:B二、填空题(每题3分,共15分)1. 一个数的立方根是2,这个数是______。
答案:82. 如果一个数的绝对值是5,那么这个数可能是______或______。
答案:5,-53. 一个数的倒数是1/4,这个数是______。
答案:44. 一个圆的直径是10厘米,那么它的半径是______厘米。
答案:55. 一个直角三角形的两个锐角的度数之和是______度。
答案:90三、解答题(每题10分,共30分)1. 一个长方形的长是宽的两倍,如果长是10厘米,求这个长方形的面积。
答案:首先,我们知道长方形的宽是长的一半,即5厘米。
长方形的面积是长乘以宽,所以面积是10厘米乘以5厘米,等于50平方厘米。
2. 一个数列的前三项是2,4,8。
如果这个数列是一个等比数列,求第四项。
答案:等比数列的每一项都是前一项的固定倍数。
这里,每一项都是前一项的2倍。
所以,第四项是8乘以2,等于16。
3. 一个水池的容积是100立方米,如果每小时流入水池的水是5立方米,求需要多少小时才能填满水池。
答案:要填满100立方米的水池,每小时流入5立方米,需要的时间是100除以5,等于20小时。
结束语希望杯数学竞赛不仅考查学生的数学知识,更注重考查学生的逻辑思维和解决问题的能力。
通过这样的竞赛,学生能够更好地理解数学知识,提高自己的数学素养。
数学初二希望杯试题及答案

数学初二希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333…D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,这个三角形是什么类型的三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形3. 一个数的平方根是4,这个数是多少?A. 16B. 8C. -16D. 44. 以下哪个表达式的结果不是正数?A. -1 + 2B. √4C. -√4D. (-2)^25. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 97. 如果一个角的余角是30°,那么这个角是多少度?A. 60°B. 45°C. 30°D. 15°8. 一个正方体的棱长是3,那么它的体积是多少?A. 27B. 9C. 3D. 19. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 010. 以下哪个是二次根式?A. √3B. √(-1)C. √(2x)D. √(2x+1)二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。
12. 如果一个数的相反数是-5,那么这个数是______。
13. 一个数的绝对值是10,这个数可能是______或______。
14. 如果一个角的补角是120°,那么这个角是______。
15. 一个数的平方是25,这个数是______或______。
16. 一个直角三角形的两条直角边分别是3和4,斜边的长度是______。
17. 一个数的平方根是±3,这个数是______。
18. 一个数的倒数是1/4,这个数是______。
19. 一个圆的直径是10,那么它的半径是______。
初二希望杯初赛试题

第二十六届“希望杯”全国数学邀请赛初二 第1试试题20XX 年3月15日 上午8:30至10:00一、选择题(每小题4分,共40分.)1.若a + b = l0,ab = 24,则22b a +的值是( )(A) 48. (B) 76. (C) 58. (D) 52.2.若一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则ad +bc-ac-bd 的值是( )(A) 9. (B) 16. (C) 25. (D)一25.3.已知一(1一2x)2为2421x x -+的平方根,则满足此关系的x 的值的个数是( )(A) 4. (B) 3. (C) 2. (D) 1.4. Suppose a is an integer, solutions to the equation ax+5=4x+1 are positive integers. Then the number of a is( )(A) 2. (B) 3. (C) 4. (D) 55.在菱形ABCD 中,若∠DAB = 60°,AC = 12,则菱形对角线交点到各边的距离之和是( ) (A) 3. (B) 4. (C) 43 (D) 12.6.如图1所示,点M ,N ,P ,Q 分别是边长为1的正方形ABCD 各边的中点,则阴影部分的面积是( ) (A)21 (B)31 (C)41 (D)51 图1 图17.如图2所示,字母A 到G 分别代表1到7中的一个自然数,若A+G+D,B+G+E, C+G+F 分别被3除,都余1,则G 是( )(A) 1或4. (B) 1或7. (C) 4或7. (D) 1或4或7. 图28.下列说法:①平行四边形包含矩形、菱形和正方形;②平行四边形是中心对称图形;③平行四边形的任一条角平分线可把平行四边形分成两个全等的三角形;④平行四边形两条对角线把平行四边形分成四个面积相等的三角形.其中正确说法的序号是( )(A)①②④. (B)①③④. (C)①②③. (D)①②③④.9.有一列数:10,2,5,2,4,2,x,(x 是正整数),若将这列数的平均数、中位数及众数依照大小次序排列, 恰好中间的数是左、右两个数的平均数,则x 可能取的值的和是( )(A) 3. (B) 9. C) 17. (D) 20.10.对于自然数m ,如果m 能整除1×2×…×(m-1),那么称m 为“公除数”,则4到20(包括 4和20)的自然数中,“公除数”的个数是( ).(A)9. (B)10 (C)11 (D)12二、A 组填空题(每小题4分,共40分.)11.若01.102≈10.1,201.10≈3.1939,则0201.1≈ .12.已知a,b 都是有理数,且a+ab 3+1=a b 323-,则a+b= .13.已知a+b+c=1,c b a + +a c b + + b a c +=3,则c b +1+ ac +1 + b a +1= . 14.已知m,n 是实数,且当X ﹥2015时,2-x m + 2+x n = 4252-+x x 恒成立,则22n m -= . 15.设a,b,c 都是正整数,且1﹤a ﹤b ﹤c,abc=2015,那么ba c ab bc ----= . 16.若关于x,y 的方程组的解相同,则a+b= .17.As shown in the Fig. 3,B and C are points on AD in △AED.AB=CD,EB=EC=10,BC=12,The perimeter of △AED is twice the perimeter of △EBC.Then EBCS ∆∆AED S = .(S △AED respresents the area of △AED ,S △EBC respresents the area △EBC )(英汉小词典:perimeter 周长;area 面积)Fig.318.若35-的小树部分是a,35+的小数部分是b ,则(a-1)(b+2)的值是 .19.如图4所示,四边形ABCD 中,对角线AC 平分∠BAD,且AB=21,AD=9,BC=DC=10,则AC= .20.已知...,1111213423121,,,,a a a a a a a ===-=则=2015a . 图4 三、B 组填空题(每小题8分,共40分.)21.若xy ﹥0,则点(x,y )在直角坐标系中位于第 象限或第 象限.22.已知012=-+-y x ,且x y y x -=-,则x+y 的值等于 或 .23.如图5所示,C 在线段AB 上,在AB 的同侧作等边△ACM 和△BCN ,连接AN,BM.若∠MBN=38°,则∠AMB= 度,∠ANC= 度.图524.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第5行从左向右第5个数为,第n(n≥3,且n是整数)行从左向右第5个数是 .(用含n的代数式表示).25.长为)2nnn的三条线段可以构成三角形,则自然数+nn+(+,21,+n= 或 .。
历年1-16届希望杯初二年级竞赛试卷(共34份)[下学期]
![历年1-16届希望杯初二年级竞赛试卷(共34份)[下学期]](https://img.taocdn.com/s3/m/3a83bcbf770bf78a652954e9.png)
希望杯第一届(1990年)初中二年级第一试试题 (2)希望杯第一届(1990年)初中二年级第二试试题 (6)希望杯第二届(1991年)初中二年级第一试试题 (10)希望杯第二届(1991年)初中二年级第二试试题 (17)希望杯第三届(1992年)初中二年级第一试试题 (23)希望杯第三届(1992年)初中二年级第二试试题 (28)希望杯第四届(1993年)初中二年级第一试试题 (37)希望杯第四届(1993年)初中二年级第二试试题 (45)希望杯第五届(1994年)初中二年级第一试试题 (53)希望杯第五届(1994年)初中二年级第二试试题 (60)希望杯第六届(1995年)初中二年级第一试试题 (69)希望杯第六届(1995年)初中二年级第二试试题 (71)希望杯第七届(1996年)初中二年级第一试试题 (78)希望杯第七届(1996年)初中二年级第二试试题 (86)希望杯第八届(1997年)初中二年级第一试试题 (97)希望杯第八届(1997年)初中二年级第二试试题 (105)希望杯第九届(1998年)初中二年级第一试试题 (115)希望杯第九届(1998年)初中二年级第二试试题 (118)希望杯第十届(1999年)初中二年级第一试试题 (129)希望杯第十届(1999年)初中二年级第二试试题 (133)希望杯第十一届(2000年)初中二年级第一试试题 (137)希望杯第十一届(2000年)初中二年级第二试试题 (140)希望杯第十二届(2001年)初中二年级第一试试题 (145)希望杯第十二届(2001年)初中二年级第二试试题 (150)希望杯第十三届(2002年)初中二年级第一试试题 (156)希望杯第十三届(2002年)初中二年级第二试试题 (158)希望杯第十四届(2003年)初中二年级第一试试题 (167)希望杯第十四届(2003年)初中二年级第二试试题 (169)希望杯第十五届(2004年)初中二年级第一试试题 (174)希望杯第十五届(2004年)初中二年级第二试试题 (177)第十六届“希望杯”全国数学邀请赛初一第1试 (180)第十六届“希望杯”全国数学邀请赛初一第2试 (184)第十六届“希望杯”全国数学邀请赛初二第1试 (188)第十六届“希望杯”全国数学邀请赛初二第2试 (192)希望杯第一届(1990年)初中二年级第一试试题一、选择题(每题1分,共10分)以下每个题目里列出的A ,B ,C ,D ,四个结论中,有且仅有一个是正确的,请你在括号内填上你认为是正确的那个结论的英文字母代号.1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°B .75°C .55°D .65°2.2的平方的平方根是 ( )A .2B . 2C .±2D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( )A .0B .a 0.C .a 1D .a 0-a 1 4. ΔABC,若AB=π27,则下列式子成立的是( )A .∠A >∠C >∠B B .∠C >∠B >∠AC .∠B >∠A >∠CD .∠C >∠A >∠B5.平面上有4条直线,它们的交点最多有( )A .4个B .5个C .6个D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式aa 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组C .4组D .5组9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值,则这个值是( )A .0.B .1.C .2D .4.把f 1990化简后,等于 ( )A .1-x x . B.1-x. C.x 1. D.x. 二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度.6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______.8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个.9.x ,y ,z 适合方程组 826532113533451x y z x z x y x y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC的度数是120度.5.∠COD度数的一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得: x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届(1990年)初中二年级第二试试题一、选择题(每题1分,共5分)以下每个题目里给出的A ,B ,C ,D 四个结论中,有且仅有一个是正确的.请你将正确结论的英文字母代号填到括号内.1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是( )A .7.5B .12C .4D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则有( )A .M >P >N 且M >Q >NB .N >P >M 且N >Q >MC .P >M >Q 且P >N >QD .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ]A .30°B .45°C .60°D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割( )A .是不存在的B .恰有一种C .有有限多种,但不只是一种D .有无穷多种二、填空题(每题1分,共5分)1.△ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2.21(2)0a ab --=,那么111(1)(1)(1990)(1990)ab a b a b ++++++L L 的值是_____.3.已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4.ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5.设a,b,c 是非零整数,那么a bcabacbc abca b c ab ac bc abc ++++++的值等于_________.三、解答题(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD和A'B'C'D',且正方形A'B'C'D'的顶点A'在正方形ABCD的中心.当正方形A'B'C'D'绕A'转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7). 而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n . 又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n .即 n 1=4,n 2=7∴ n 1×n 2=4×7=28.希望杯第二届(1991年)初中二年级第一试试题一、选择题(每题1分,共15分)以下每个题目的A ,B ,C ,D 四个结论中,仅有一个是正确的.请在括号内填上正确的那个结论的英文字母代号.1.如图24,已知AB=8,AP=5,OB=6,则OP 的长是( )A .2B .3C .4D .52.方程x 25x+6=0的两个根是( )A .1,6B .2,3C .2, 3D .1, 63.已知△ABC 是等腰三角形,则( )A .AB=ACB .AB=BCC .AB=AC 或AB=BCD .AB=AC 或AB=BC 或AC=BC 22345(13)41(5)34b c ---==-+,则a,b,c 的大小关系是( ) A .a >b >c B .a=b=c C .a=c >b D .a=b >c(1)BO5.若a ≠b,则(b-a)a b -等于[ ]A.33()a b -;B.33()a b ---;C.33()a b --;D.33()b a --6.已知x ,y 都是正整数,那么三边是x ,y 和10的三角形有( ) A .3个 B .4个 C .5个 D .无数多个 7.两条直线相交所成的各角中, ( )A .必有一个钝角B .必有一个锐角C .必有一个不是钝角D .必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角( )A .一个是锐角另一个是钝角B .都是钝角C .都是直角D .必有一个角是直角 9.方程x 2+|x|+1=0有( )个实数根.( )A .4B .2C .1D .010.一个两位数,用它的个位、十位上的两个数之和的3倍减去2,仍得原数,这个两位数是( )A .26B .28C .36D .3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是 ( )A .179B .181C .183D .185 12.如果231,x x >+那么323(2)(3)x x +-+等于[ ]A .2x+5B .2x5 C .1D .113.方程2x 5+x 4-20x 3-10x 2+2x+1=0有一个实数根是 ( ) A.53+; B.52+; C.32+; D.53-14.当a <1时,方程(a 3+1)x 2+(a 2+1)x (a+1)=0的根的情况是 ( ) A .两负根 B .一正根、一负根且负根的绝对值大 C .一正根、一负根且负根的绝对值小 D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则( )到达N 地.( )A . 二人同时B .甲先C .乙先D .若a >b 时,甲先到达,若a <b 时,乙先二、填空题(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度.2.有理化分母:5757-+=______________.3.方程10x x ++=的解是x=________.4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 29)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2y 2=1991有______个整数解.8.当m______时,方程(m 1)x 2+2mx+m 3=0有两个实数根.9.如图25,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.DCBAGEDCFEDCBA10.如图26,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出______条.11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于______度.12.如图27,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______. 14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q 为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2. ∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题(每题1分,共10分)以下每个题目里给出的A ,B ,C ,D 四个结论中,有且仅有一个是正确的.请你在括号内填上你认为是正确的那个结论的英文字母代号.1.如图29,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 为线段AC 的中点,P 为NA 的中点,Q 为MA 的中点,则MN ∶PQ 等于( ) A .1 B .2 C .3 D .42.两个正数m ,n 的比是t(t >1).若m+n=s ,则m ,n 中较小的数可以表示为 ( ) A.ts; Bs-ts; C.1ts s +; D.1s t+. 3.y>0时,3x y -等于( )A.-x xy ;B.x xy ;C.-x xy -;D.x xy -.4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成 ( )A .a <b <cB .(a b)2+(b c)2=0C .c <a <bD .a=b ≠c5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍 B .3倍 C .2倍 D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( )A .AD 2=BD 2+CD 2B .AD 2>BD 2+CD 2C .2AD 2=BD 2+CD 2 D .2AD 2>BD 2+CD 2( ) 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3 C .2 D .18.能使分式33x y y x-的值为1123的x 2、y 2的值是( ) A.x 2=1+3,y 2=2+3; B. x 2=2+3,y 2=2-3; C. x 2=7+43,y 2=7-43; D. x 2=1+23,y 2=2-3.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为( )A .17B .15C .13D .11 10.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×199119911991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________.5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab≠1.且 2a2+1234567890a+3=0,3b2+1234567890b+2=0,则a=______.b三、解答题(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
希望杯初二数学培训题(一)

希望杯培训题(一)一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将你认为是正确答案的英文字母写在下面的表格内。
1、若b a ,和b a +都是有理数,则( )(A )都是有理数 (B )b a ,都是无理数(C )b a ,都是有理数或都是无理数 (D )b a ,中有理数和无理数各有一个2、设a,b,c,d,e 只能从-3,-2,-1中取值,又错误!未找到引用源。
,则( )(A )x 的最大值比y 的最大值小 (B )x 的最小值比y 的最小值小(C )x 的最大值比y 的最小值小 (D )x 的最小值比y 的最大值大3、已知错误!未找到引用源。
的三边的长分别为a,b,c ,且错误!未找到引用源。
,则错误!未找到引用源。
一定是( )(A )等边三角形 (B )腰长为a的等腰三角形(C )底边长为a的等腰三角形 (D )等腰直角三角形4、一个凸多边形恰好有三个内角是钝角,这样的多边形的边数的最大值是( )。
(A )5 (B )6 (C )7 (D )85、不等式450≤+≤ax 的整数解是1,2,3,4,则a 的取值范围是( )(A )45-≤a (B )1-<a (C )145-<≤-a (D )45-≥a 6、设c b a P b c a N a c b M c b a c b a +=+=+==++>>>,,,1,0,则P N M ,,之间的大小关系是( )(A )P N M >> (B )M P N >>(C )N M P >> (D )N P M >>7、等腰三角形的周长为a cm ,一腰的中线将周长分成5:3,则三角形的底边长为( )(A )6a (B )a 53 (C )6a 或a 53 (D )a 54 8、已知方程2219941994=--x x ,那么它的两根是( )。
历届希望杯全国中学生数学竞赛试题

第三届“希望杯”全国数学邀请赛初一第1试
第三届“希望杯”全国数学邀请赛初一第2试
第四届“希望杯”全国数学邀请赛初一第1试
第四届“希望杯”全国数学邀请赛初一第2试
第五届“希望杯”全国数学邀请赛初一第1试
第五届“希望杯”全国数学邀请赛初一第2试
第六届“希望杯”全国数学邀请赛初一第1试
第六届“希望杯”全国数学邀请赛初一第2试
第七届“希望杯”全国数学邀请赛初一第1试
第七届“希望杯”全国数学邀请赛初一第2试
第八届“希望杯”全国数学邀请赛初一第1试
第八届“希望杯”全国数学邀请赛初一第2试
第九届“希望杯”全国数学邀请赛初一第1试
第九届“希望杯”全国数学邀请赛初一第2试
第十届“希望杯”全国数学邀请赛初一第1试
第十届“希望杯”全国数学邀请赛初一第2试
第十一届“希望杯”全国数学邀请赛初一第1试
第十一届“希望杯”全国数学邀请赛初一第2试。
第十一届 希望杯 数学竞赛(初二第一试
第十一届“希望杯”数学竞赛(初二第一试)一.选择题1.与的关系是(B)。
(A)互为倒数(B)互为相反数(C)互为负倒数(D)相等2.已知x≠0,则的值是(C )。
(A)0 (B)-2 (C)0或-2 (D)0或23.适合|2a+7|+|2a-1|=8的整数a的值的个数有( B )。
(A)5个(B)4个(C)3个(D)2个4.如图1,四边形ABCD中,AB//CD,∠D=2∠B,若AD=a,AB=b,则CD的长等于(A )。
(A)b-a (B)b-(C)(b-a) (D)2(b-a)5.有四条线段,a=14,b=13,c=9,d=7,用a、c分别作一个梯形的下、上两底,用b、d 分别作这个梯形的两腰(作出的全等的梯形算一种),那么这样的梯形(D )。
(A)只能作一种(B)可以作两种(C)可以作无数种(D)一种也作不出6.当1≤x≤2时,代数式可以化简为(C )。
(A)0 (B)2 (C)2(D)-27.已知=a, =b,则用a、b表示为()。
(A)(B)(C)(D)8.互不相等的三个正数a、b、c恰为一个三角形的三条边长,则以下列三个数为长度的线段一定能作成三角形的是()。
(A), , (B)a2, b2, c2(C), , (D)|a-b|, |b-c|, |c-a|9.在一个凸八边形中,每三个顶点形成三个角(如又A、B、C三个顶点形成∠ABC、∠BAC、∠ACB),一共可以作出168个角,那么这些角中最小的一个一定()。
(A)小于或等于20°(B)小于或等于22.5°(C)小于或等于25°(D)小于或等于27.5°10.设a、b、c均为正数,若,则a、b、c三个数的大小关系是()。
(A)c<a<b (B)b<c<a (C)a<b<c (D)c<b<a二.A组填空题11.分解因式a3b+ab+30b的结果是。
希望杯八年级数学竞赛试题及答案
全国数学邀请赛初二第一试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1.下列运动属于平移的是()(A)乒乓球比赛中乒乓球的运动.(B)推拉窗的活动窗扇在滑道上的滑行.(C)空中放飞的风筝的运动.(D)篮球运动员投出的篮球的运动.2.若x=1满足2m x2-m2x-m=0,则m的值是()(A)0.(B)1.(C)0或1.(D)任意实数.3.如图1,将△APB绕点B按逆时针方向旋转90 后得到△A P B''',若BP=2,那么PP'的长为( )(A)(B(C)2 .(D)3.4.已知a是正整数,方程组48326ax yx y+=⎧⎨+=⎩的解满足x>0,y<0,则a的值是()(A)4 .(B)5 .(C)6.(D)4,5,6以外的其它正整数.5.让k依次取1,2,3,…等自然数,当取到某一个数之后,以下四个代数式:①k+2;②k2;③2 k;④2 k 就排成一个不变的大小顺序,这个顺序是()(A)①<②<③<④.(B)②<①<③<④.(C) ①<③<②<④.(D) ③<②<①<④.6.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10 , 那么顺次连接这个四边形的四边中点所得的四边形的面积是()(A)40 .(B)(C)20.(D).7.Let a be the length of a diagonal of a square, b and c be the length of two diagonals of a rhombus respectively. If b:a=a:c,then the ratio of area of the square and rhombus is ( )(A)1:1.(B)2(C)1(D)1:2.(英汉词典:length长度;diagonal对角线;square正方形;rhombus菱形;respectively分别地;ratio比;area面积)8.直角三角形有一条边长为11,另外两边的长是自然数,那么它的周长等于().(A)132.(B)121.(C)120.(D)111.9.若三角形三边的长均能使代数式是x2-9x+18的值为零,则此三角形的周长是().(A)9或18.(B)12或15 .(C)9或15或18.(D)9或12或15或18.10.如图2,A、B、C、D是四面互相垂直摆放的镜子,镜面向内,在镜面D上放了写有字母“G”的纸片,某人站在M处可以看到镜面D上的字母G在镜面A、B、C中的影像,则下列判断中正确的是()(A)镜面A与B中的影像一致.(B)镜面B与C中的影像一致.(C)镜面A与C中的影像一致.(D)在镜面B中的影像是“G”.二、A组填空题(每小题4分,共40分)11.如图3,在△BMN中,BM=6,点A、C、D分别在MB、BN、MN上,且四边形ABCD是平行四边形,∠NDC=∠MDA,则 ABCD的周长是.12.如果实数a ≠b,且101101a b ab a b++=++,那么a b+的值等于.13.已知x=a M的立方根,y =x 的相反数,且M =3a -7,那么x 的平方根是 . 14.如图4,圆柱体饮料瓶的高是12厘米,上、下底面的直径是6厘米.上底面开有一个小孔供插吸管用,小孔距离上底面圆心2厘米,那么吸管在饮料瓶中的长度最多是= 厘米.15.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件7元,乙种商品每件19元,那么a b +的最大值是 .16.ABC是边长为D 在三角形内,到边AB 的距离是1,到A 点的距离是2,点E 和点D 关于边AB 对称,点F 和点E 关于边AC 对称,则点F 到BC 的距离是 .17.如图5,小华从M 点出发,沿直线前进10米后,向左转20,再沿直线前进10米后,又向左转20,……,这样下去,他第一次回到出发地M 时,行走了 米.18.关于x 的不等式123x x -+-≤的所有整数解的和是 . 19.已知点(1,2)在反比例函数ay x=所确定的曲线上,并且该反比例函数和一次函数1y x =+ 在x b =时的值相等,则b 等于 .20.如图6,大五边形由若干个白色和灰色的多边形拼接而成,这些多边形(不包括大五边形)的所有内角和等于 .三、B 组填空题(每小题8分,共40分,每一题两个空,每空4分) 21.解分式方程225111mx x x +=+--会产生增根,则m = 或 . 22.Let A abcd = be a four-digit number. If 400abcd is a square of an integer, then A= 或 .(英汉词典:four-digit number 四位数;square 平方、平方数;integer 整数)23.国家规定的个人稿酬纳税办法是:①不超过800元的不纳税;②超过800元而不超过4000元的,超过800元的部分按14%纳税;③超过4000元的按全部稿酬的11%纳税.某人编写了两本书,其中一本书的稿酬不超过4000元,第二本书的稿酬比第一本书多700元,两本书共纳税915元,则两本书的稿酬分别是= 元和 元.24.直线l交反比例函数y =的图象于点A ,交x 轴于点B ,点A 、B 与坐标原点o 构成等边三角形,则直线l 的函数解析式为 或 . 25.若n 是质数,且分数417n n -+不约分或经过约分后是一个最简分数的平方,则n 或 .第十八届“希望杯”全国数学邀请赛答案(初二)提示:1、略2、原式可化为:m(1-m)=0,m=0或m=13、由题意得△BPP ´是等腰直角三角形,由勾股定理得PP ´4、解方程组得:461236x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩∵x>0,y<0 ∴601230a a ->⎧⎨-<⎩解得4<a<6, ∴a=5.5、当k>4时,2k>k 2>2k>k+2,所以选C6、顺次连接该四边形的四边中点所得的四边形是矩形,面积是:(12×10)×(12×8)=20 7、S 正=12a 2 , S 菱形=12bc ,∵b:a=a:c ,即a 2=bc ,∴S 正 :S 菱形 =1:18、设另两边为a ,b ,则a 2+b 2=112(不合题意舍去)或112= a 2- b 2=(a+b)(a-b)=121 =121×1; ∵a,b 是自然数 ∴a+b=121, ∴周长是121+11=1329、∵x2-9x+18=0,即(x-6)(x-3)=0 ,∴x=6或x=3,∴三角形三边分别是:3,3,3或6,6,6或6,6,3。
第十届“新希望杯”全国数学大赛八年级试题(B卷)简版答案
第十届“新希望杯”全国数学大赛八年级试题(B 卷)简版答案一、选择题(每题4分,共32分)1.A 2.A 3.D 4.C 5.C 6.A 7.C 8.B二、填空题(每题5分,共40分)9.(22)(22)x x -+-- 10.13 11.12 12.180 13.222m S m ++ 14.12 15.8 16.4028π三、解答题(每题12分,共48分)17.解:(1)h =22()2b a -=22(63)(323)+-+=(933)(33)+⨯-=3(93)-=32. (2)a =22()2b h +=22(261)(261)++-=52. 18.解:设第一次进货时这种笔的进价为x 元,则第二次进货时这种笔的进价为1.2x 元.根据题意得:1200150010 1.2x x+=, 4分 解得:5x =,经检验:5x =是原方程的解, 6分第一次购进这种笔12002405=(支), 第二次购进这种笔24010250+=(支),第一次赚钱240(155)2400⨯-=(元),第二次赚钱200(155 1.2)50(150.45 1.2)1800⨯-⨯+⨯⨯-⨯=(元),所以两次共赚钱240018004200+=(元). 11分答:王老板两次售笔总体上是赚钱了,共赚了4200元. 12分19.解:如图,∵四边形ACGH 和四边形BCFE 都是正方形,∴将CFG ∆绕点C 顺时针方向旋转90后则得到CBG'∆,且点A 、C 、G '三点共线,AC CG'=,∴CFG CBG'ABC S S S ∆∆∆==,同理AHK BDE ABC S S S ∆∆∆==,∴图中三个阴影部分的面积之和等于ABC ∆面积的3倍,过点C 作CP ⊥AB 于点P ,则CP ≤AC ,∴当且仅当AC ⊥AB ,即CP 与AC 重合时CP 取得最大值,此时CP =AC ,∴ABC ∆面积的最大值为12AB AC ⋅=6, ∴图中三个阴影部分的面积之和的最大值为3×6=18.答:图中三个阴影部分的面积之和的最大值为18.20.解:设1x ,2x ,3x ,…,2014x 中有a 个1-,b 个1,c 个2,则212842014.a b c a b c -++=⎧⎨++=⎩,解得943=10713.a c b c =-⎧⎨-⎩, 又0a ≥,0b ≥,所以0357c ≤≤,记3333123201486128S x x x x a b c c=+++⋅⋅⋅+=-++=+,则12863571282270S⨯+=≤≤,当943a=,1071b=,0c=时,S取最小值为128;当586a=,0b=,357c=时,S取最大值为2270.。
希望杯试题及答案初二
希望杯试题及答案初二一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于3B. 3的平方等于9C. 4的平方等于16D. 5的平方等于25答案:B2. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 40C. 50D. 60答案:B3. 一个数加上它的相反数等于多少?A. 0B. 1C. 2D. -1答案:A4. 下列哪个选项是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 2x - 3 = 0D. x^3 - 4x^2 + 4x = 0答案:B5. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 3D. 以上都是答案:D6. 下列哪个选项是正确的不等式?A. 2x > 3B. 2x < 3C. 2x = 3D. 2x ≤ 3答案:A7. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C8. 下列哪个选项是正确的分数?A. 3/2B. 2/3C. 1/2D. 4/5答案:D9. 一个等腰三角形的两个底角都是45度,那么它的顶角是多少度?A. 90B. 45C. 135D. 180答案:A10. 下列哪个选项是正确的函数关系?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = x/2D. y = x^3 - 2x^2 + 3x答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方根是2,那么这个数是______。
答案:83. 一个数的倒数是1/2,那么这个数是______。
答案:24. 一个数的绝对值是6,那么这个数可以是______。
答案:6或-65. 一个等腰三角形的顶角是120度,那么它的底角是______。
答案:30度三、解答题(每题10分,共50分)1. 解方程:3x - 5 = 10答案:x = 52. 计算:(2x^2 - 3x + 1) - (x^2 + 2x - 3)答案:x^2 - 5x + 43. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
希望杯3月中旬初赛,4月中旬决赛,成绩快的时候5月初下来。
如何在充满激烈竞争的竞赛中取得好的成绩,家长和同学最为关注的还是学习的方法:
“针对性”地复习和“针对性”地训练是在任何考试中取胜的“法宝”。最为重要的就是针
对性。由于校外数学教育没有统一的教学大纲,以至于全国没有统一的教材,最后形成了
同一个学校的孩子,由于上了不同的数学培训辅导班,水平提高却各自不同。而全国的同
学要参加的是同一个竞赛,考试面对的是同一份试卷,所以,要想取得理想的成绩,有必
要进行针对希望杯的复习。希望杯组委会推荐的是《希望杯数学能力培训教程》系列丛书
(每年级1本),同学的学习和准备就应该按这一套丛书为标准,和自己平时所学的数学比
对,进行查漏补缺。当然,如能专门抽出时间系统学习这套书,效果最好。在数学知识的
广度和深度都掌握的时候,作针对性的练习来巩固知识和训练技能是非常重要的。每年希
望杯组委会都会在考前给大家发“考前100题”,这当然是同学们必须作的;但不要忘记,
必须做的题目还有小学希望杯“历年竞赛题”,这样就会对希望杯题目的特点把握的更准。
在复习的时候,一定要认真对待每种类型的题目,甚至是每一到题目,所有的类型方法都
要掌握;练习,更要“题必亲躬”,亲自动手,把每一道题目都要认真地做出。切不可,感
觉容易或者自己会就不认真对待,到考试的时候眼高手低。 有了针对性的复习和练习
这个法宝,更有平和的竞技心态,笔者相信同学们都会取得自己理想的成绩。
初中二年级数学希望杯考察内容
1.平方根、立方根、实数
2.整式的加减乘除、乘法公式、提取公因式法、因式分解的简单应用
3.二元一次方程组
4.平面直角坐标系、一次函数、反比例函数
5.一元一次不等式(组)
6.勾股定理
7.轴对称,中心对称
8.全等三角形
9.多边形及其内角和、镶嵌
10.统计图的选择、抽样调查、平均数、中位数与众数
11.分式加减乘除、整数指数幂、分式方程
12.平移、旋转
13.逻辑问题、概率问题、数论初步、应用问题
14.平行四边形的性质、判别,菱形、矩形、正方形、梯形的概念、计算
例题:
希望杯”培训题
1.计算:123+456+789+987+654+321。
答案:123+456+789+987+654+321
=﹙123+987﹚+﹙456+654﹚+(789+321﹚
=1110+1110+1110=3330。
2.计算:7+97+997+9997+99997。
答案:7+97+997+9997+99997
=﹙10-3﹚+﹙100-3﹚+﹙1000-3﹚+ ﹙10000-3﹚+﹙100000-3﹚ =﹙10+100
+1000+10000+100000﹚-3×5
=111110-15=111095。
3.若两个相同的自然数的和与积相等,求这个自然数。
答案:因为0+0=0×0,2+2=2×2,故所求自然数是0或2。
4.计算:﹙1×2×3„×11﹚÷﹙1+2+3+„+11﹚。
答案:(1×2×3ׄ×11)÷(1+2+3+„+11﹚
=1×2×3ׄ×11÷[﹙1+11﹚×11÷2]
=1×2×3×4×5×6×7×8×9×10×11÷(6×11)
=1×2×3×4×5×7×8×9×10=604800。
5.计算:125×70-5×28×2+4×5×9。
答案:125×70-5×28×2+4×5×9
=5×﹙25×70-28×2+4×9﹚
=5×﹙1750-56+36﹚
=5×1730=8650。
6.有一个两位数,它除以3,得余数2,它乘以3,乘积的个位数字是4,百位数字是2,
求这个两位数。
答案:因为两位数乘以3所得乘积的个位数字是4,百位数字是2,所以这个两位数的个
位数字是8,十位数字可能是6,7,8,9,中的一个。
因为 68÷3=2„„2,78÷3=26,
88÷3=29„„1,98÷3=32„„2,
经验证, 68×3=204,98×3=294,
都符合条件,
所以 这两位数是68或98。
7.乘积是160的两个数的和比这两位数的差大4,求这两位数的和。 答案:因为
两个数的和比这两个数的差大4,
所以 其中较小的数的2倍是4,即较小数是2。
因为这两个数的积是160,所以较大数是160÷2=80。
于是 这两个数的和是2+80=82。
8.算式88„8×99„9的结果中有多少个1?
︸ ︸ 2010个 2010个
答案: 88„8×99„9=88„8×(1 00„0-1)
︸ ︸ ︸ ︸ 2010个 2010个 2010个 2010个
=88„8 00„0-88„8=88„87 11„12,
︸ ︸ ︸ ︸ ︸
2010个2010个2010个2009个 2009个
所以 算式88„8×99„9的结果中有2009个1。
︸ ︸ 2010个 2010个
9.一个六位数,从左到右的第三个数字开始,每个数字恰好都是前两个数字的积,求符
合此条件的六位数的个数。
答案:因为任何数乘以0得0,所以满足条件的数除了100000,200000,300000,40000
0,500000,600000,700000,800000,900000外,还有111111,212248。 故符合条件
的六位数的个位数是11。
10.甲、乙、丙三人拿出同样多的钱共买回一筐苹果。甲和丙都比乙多拿了15千克苹果,
并且分别给了乙30元,问:每千克苹果多少元?
答案:由题设条件可知,甲和丙各还给乙15÷3=5(千克)苹果则三人的苹果重量就相
等了。 题设甲和乙各给乙30元,说明这30元钱,就是那5千克苹果的价钱。所以每千克
苹果的价格是30÷5=6(元)。
2010-2011希望杯试题
2011年初赛试题:
2011年第22届希望杯初二年级组初赛试题
答案:
2011年复赛试题:
2011年第22届希望杯初二年级组复赛试题及答案
2011年第22届希望杯初二年级组复赛试题及答案(2)