新人教版九年级数学上册:《二次函数》整合与提升习题课件
合集下载
人教版九年级上册同步教学习题课件.. 二次函数y=ax+bx+c的图象和性质()1

a b c 5,
b 3 ,
(2)S△ABD=
1 2
×3×4=6.
4.(2015·静安区一模)已知在直角坐标平面内,抛物线y=x2+bx+6经 过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C. (1)求抛物线的解析式; (2)求△ABC的面积. 解:(1)把点B的坐标(3,0)代入y=x2+bx+6, 得0=9+3b+6,解得b=-5,
∴Q点坐标为(1,0)或(1,6);
当AQ=BQ时, 4m2 13m2 ,解得m=1,
∴Q点坐标为(1,1). ∴抛物线的对称轴上存在着点Q1(1, 6 ),Q2(1,- 6 ), Q3(1,0),Q4(1,6),Q5(1,1),使△ABQ是等腰三角形.
6.(连云港中考)如图所示,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于 点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形 OCEF为矩形,且OF=2,EF=3. (1)求抛物线所对应的函数解析式; (2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A的对应点为点G,则 点G是否在该抛物线上?请说明理由.
〔解析〕先求出E,F两点的坐标,然后根据三角形面积公
式求解.
解:(2)当y =0时, 1
2
x2-x- 3
2
=0,解得x1= -1,x2=3,
所以E点坐标为(-1,0),F点坐标为(3,0),
所以△EFB的面积=
1 2
×(3+1)×
3 2
=3.
1.(2015·巴中模拟)二次函数的图象经过点A(0,-3), B(2,-3),C(-1,0).
最新人教版初中九年级上册数学《二次函数》精品课件

别是函数解析式的二次项系数、一次项系数和常数项.
二次项
常数项
分别指出下列二次函数解析式的自变量、各项 及各项系数。
①y=6x2 ,
②m 1 n2 1 n ,
22
③ y=20x2+40x+20 .
ቤተ መጻሕፍቲ ባይዱ
出题角度一 二次函数的识别
下列函数中是二次函数的有 ①⑤⑥ 。
①√ y= 2x2 2
×③y x2(1 x2 ) 1 最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c (a,b,c为常数,a≠0)
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
产品原产量是20t,一年后的产量是原产量的 (1+x) 倍; 两年后的产量是一年后的产量的 (1+x) 倍.于是两年后的产 量y与增加的倍数x的关系式为 y=20(1+x)2 .
y=20(1+x)2
y=20x2+40x+20 y是x的函数吗?
y=20x2+40x+20表示两年后的产量y与计划增产的倍数x的关
6. 一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s) 的函数关系式为s=9t+0.5t2,则经过12s汽车行驶了 180 m,行 驶380m 需 20 s.
人教版九年级上册数学 22.1.2 二次函数 y=ax2的图象和性质课件

a<0
1 -5-4-3-2-1 -1o1 2 3 4 5 x -2 -3 -4 -5 -6 -7 -8 -9 1 -10 y x2
y
2
y 2 x 2
y x2
总结性质
1.形如二次函数 y=ax2 的图象都是顶点为
( 0 , 0) ______ 的抛物线,反之,顶点在(0,0)
2 y = ax 的抛物线的形式是_________.
体验画图
抛物线的定义:
实际上,二次函数的图象是抛物线,
它们开口向上或向下,一般地,二次
函数 y ax bx c 的图象叫做抛
2 2
物线 y ax bx c .
体验画图
3. 拓展与延伸: 3 个点, (1)画二次函数的图象一般需要___
哪些点比较关键? 抛物线
yx
2
轴 对称图形,对称 是__
y 10 9 8 7 6 5 4 3 2 1 -5-4-3-2-1 O1 2 3 4 5 x
a>0
体验画图
(3)以上都是当a >0时,二次函数 y ax 的图象,
2
那么当 a<0时,试在同一直角坐标系画出二次函数:
1 2 y x ,y x ,y 2 x 2 的图象. 2
2
关于 y 轴对称 原点(0,0)
对称性
顶点
总结提高
2. 二次项系数 a 对形如 y=ax2 的函数值 y 又有
何影响?对图象又有何影响?
y=ax2
开口
a>0 开口向上
a<0 开口向下
增减性 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
LOGO
数学人教版九年级上册二次函数的图像与性质 PPT课件

(D)四
☆考点聚焦
4、已知二次函数y=ax2+bx+c (a≠0)的
图象如图所示, 则下列判断不正确的是
( B ).
y
(A)abc>0 (B) 4a-2b+c<0
(C)2a+b>0 (D) b2-4ac>0
x
-1
o1
☆考点聚焦
5、已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,
有下列结论:
2、二次函数y=ax2+bx+c (a≠0)中, 若ac<0, 则它的图象与x轴的交点个数为( ). C
(A)无交点
(B)有一个交点
(C)有两个交点 (D)不确定
☆考点聚焦
3、若二次函数y=ax2+bx+c中, a>0,b<0,c=0,
则此二次函数的图象不经过第( C )象限.
(A)一
(B)二
(C)三
当增x大而﹤增 大2ba;时当,xy﹥随 xb的 时y随x的增大而减小2a
当x=
2ba时,y最小值=
4ac b2 4a
当x=
b 2a
时,y最大值=
4ac 4a
b2
图象 抛物线
y
o
x
y
x o
二、结合图象确定a、b、c及相关代数式的符号
1.如何确定a、b、c的符号
(1)a的符号: 由抛物线的开口方向确定
二次函数y=ax²+bx+c的图象如图所示, 下列 结论正确的是( B ).
y
x=1
1 -1 0
(A)2a+b>0 (B)3a+c>0 (C)b+2c>0 (D)4a+2b+c>0
人教版初中数学九年级上册 二次函数 课件PPT

数、一次项系数和常数项、
注意
(1)等号左边是变量,右边是关于自变量的整式;
(2), , 为常数,且 ≠ ;
(3)等式的右边最高次数为 2,可以没有一次项( = ², =
² + )和常数项( = ² + , = ² ),但不能没有二次项、
知识讲解
2、二次函数的应用
1、 函数的定义
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定
的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数、
2、 一次函数与正比例函数
一般地,形如 = + (, 是常数, ≠ )的函数叫做一次函数、
当 = 时,一次函数 = 就叫做正比例函数、
第 二十二章 二次函数
第二十二章 二次函数
22、1 二次函数的图象和性
质 22、1、1 二次函
数
学习目标
1 理解二次函数的概念,掌握其一般形式、(重
2 点)
会解决跟二次函数的概念有关的问题、
3 从实际问题出发列二次函数解析式,体验用函数思想去
描述、研究变量之间变化规律的意义、(重、难点)
2
温故知新
队数n有什么关系?
填空:
− 个球队各比赛一场,甲队对乙队的比赛与乙队
( − )
对甲队的比赛时同一场比赛,所以比赛的场次数
、
每个球队n要与其他
解: = ( − )
= −
此式表示了比赛的场次数与球队数n之间的关系,对于n的每一个值,y都有
唯一确定的一个对应值,即y是n的函数、
30(1+x)2
是_________t,即两年后的产量
注意
(1)等号左边是变量,右边是关于自变量的整式;
(2), , 为常数,且 ≠ ;
(3)等式的右边最高次数为 2,可以没有一次项( = ², =
² + )和常数项( = ² + , = ² ),但不能没有二次项、
知识讲解
2、二次函数的应用
1、 函数的定义
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定
的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数、
2、 一次函数与正比例函数
一般地,形如 = + (, 是常数, ≠ )的函数叫做一次函数、
当 = 时,一次函数 = 就叫做正比例函数、
第 二十二章 二次函数
第二十二章 二次函数
22、1 二次函数的图象和性
质 22、1、1 二次函
数
学习目标
1 理解二次函数的概念,掌握其一般形式、(重
2 点)
会解决跟二次函数的概念有关的问题、
3 从实际问题出发列二次函数解析式,体验用函数思想去
描述、研究变量之间变化规律的意义、(重、难点)
2
温故知新
队数n有什么关系?
填空:
− 个球队各比赛一场,甲队对乙队的比赛与乙队
( − )
对甲队的比赛时同一场比赛,所以比赛的场次数
、
每个球队n要与其他
解: = ( − )
= −
此式表示了比赛的场次数与球队数n之间的关系,对于n的每一个值,y都有
唯一确定的一个对应值,即y是n的函数、
30(1+x)2
是_________t,即两年后的产量
人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT课件

第二十二章 二次函数
∴正方形的边长为
cm,
∴S与C之间的关系式为S =
;
(2)作图如右:
(3)当S = 1cm2时,C2 =16,即C =4cm.
(4)若S ≥ 4cm2,即 因此C ≥ 8cm.
≥4,解得C,≥或8c≤-8(舍去).
巩固练习
第二十二章 二次函数
变式题2 已知二次函数y=2x2.
(1)若点(-2,y1)与(3,y2)在此二次函数的图象上, 则
巩固练习
第二十二章 二次函数
变式题1
已知 0时,y随ห้องสมุดไป่ตู้增大而增大2,则k=
是二次函数,且当x> .
分析
是二次函数,即二次项的系数不
为0,x的指数等于2.又因当x>0时,y随x增大而增大,即
说明二次项的系数大于0. 因此,
,解得k=2 .
巩固练习
对应训练
第二十二章 二次函数
《超越训练》 P33:例1+达标训练
问题1 画出二次函数y=x2的图象.
1. 列表:在y = x2 中自变量x可以是任意实数,列表 表示几组对应值:
x … -3 -2 -1 0 1 2 3 …
y=x2 … 9
41
0
1
4
9…
知识探究
第二十二章 二次函数
2.描点:根据表中x,y的数值在坐标平面中描点(x,y) 3.连线:如图,再用平滑曲线顺次连接各点,就得 到y = x2 的图象.
系是什么?
y y=ax2
二次项系数互为 相反数,开口相反 ,大小相同,它们 关于x轴对称.
O
x
y=-ax2
知识探究
第二十二章 二次函数
知识点 3 二次函数y=ax2的性质
《二次函数》PPT教学课件-2021-2022学年人教版数学九年级上册精选全文
提炼方法 明确路径
一次函数研究路径:
认识函数
图像与性质
与方程、不等式的联系
数学思想:归纳思想、建模思想、 解决实际问题 数形结合思想
请用适当的函数解析式表示下列问题情境中 的两个变量 y 与 x 之间的关系:
(1)正方体的表面积 为y 与棱长为x y =6x2
(2)n个球队参加比赛,每两队之间进行一场 比赛。比赛的场次数m与球队n之间有什么
人教版《义务教育教科书》
22.1.1二次函数
什么叫函数?
在某变化过程中的两个变量x、y,当变量x在某 个范围内取一个确定的值,另一个变量y总有唯一 的值与它对应。
这样的两个变量之间的关系我们把它叫做函数关 系。(刻画变化规律的数学工具)
对于上述两个变量, x叫自变量, 我们把y叫x 的函数。(运动变化与联系对应的思想)
2、下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2+x
(6)y=x2-x(1+x)
例1.写出下列各函数关系,并判断它们是什么类型的函数 (1)写出圆的面积y(cm²)与它的周长x(cm)之间 的函 数关系; (2)菱形的两条对角线的和为26cm,求它的面积S(cm²) 与一对角线长x(cm)之间的函数关系.
当a,b,c满足 什么 条件时
(1)它是二次函数
(1)a 0
(2)它是一次函数
(2)a 0,b 0
(3)它是正比例函数 (3)a 0,b 0,c 0
分类讨论思想
3、m取何值时,函数是 y= (m+1)xm2 2m 1
+(m-3)x+m 是二次函数? 4、若函数 y (m2 1)xm2m 为二次函数,
九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)
九年级数学第22章二次函数
问题3: 某工厂一种产品现在的年产量是20件,计划今后两
年增加产量.如果每年都比上一年的产量增加x倍,那么两
年后这种产品的产量y将随计划所定的x的值而确定,y与x
之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是_2_0_(_1_+_x_)件,
再经过一年后的产量是_____2_0_(_1_+_x_)_(_1件+x,) 即两年后的
2
是二次函数关系.
九年级数学第22章二次函数
4.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长 和宽相等,高比长多0.5m. (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积 S(m2)如何表示? (2)如果涂漆每平米所需要的费用是5元,涂漆每个长方体所需 要费用用y(元)表示,那么y的表达式是什么? 解析:(1)S=2x2+x(x+0.5)×4=6x2+2x (2)y=5S=5×(6x2+2x)
2.如果函数y=(k-3)xk2 3k 2 +kx+1是二次函数,则k的值
一定是__0____.
九年级数学第22章二次函数
3.用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?是函数关系吗?是哪一 种函数? 解析:S=a( 60 -a)=a(30-a)=30a-a²=-a²+30a.
函 数
关系Leabharlann 一次函数y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
九年级数学第22章二次函数
问题1:
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.
新人教版九年级数学上册《二次函数》精品课件
18.一块矩形的草坪,长为8 m,宽为6 m,若将长和宽都增加x m, 设增加的面积为y m2. (1)求y与x的函数关系式; (2)若使草坪的面积增加32 m2,求长和宽都增加多少米? 解:(1)y=x2+14x(x≥0) (2)当y=32时,x2+14x=32,x1=2,x2=-16(舍去), 即长和宽都增加2 m
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
(1)求y与x之间函数关系式;
(2)求自变量x的取值范围;
(3)四边形APQC的面积能否等于172 mm2?若能,求出运动的时间;
若不能,说明理由.
解:(1)由运动可知,AP=2x,BQ=4x,则y=
1 2
BC·AB-
1 2
BQ·BP
=12×24×12-12×4x(12-2x),即y=4x2-24x+144 (2)0<x<6 (3)当x=172时,4x2-24x+144=172,解得x1=7,x2 =-1.又∵0<x<6,∴四边形APQC的面积不能等于172 mm2
19.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,
动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),
人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)
例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。
方法归纳
② c=0 <=>图象过原点;
③ c<0 <=>图象与y轴交点在x轴下方。
⑷顶点坐标是( b , 4ac b2 )。
2a
4a
(5)二次函数有最大或最小值由a决定。
当x=- —2ba 时,y有最大(最小)
值 y= 4ac-b2
______________________
4a
例2、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
的平方
整理:前三项化为平方形 式,后两项合并同类项
a x
b
2
4ac
b2
.
化简:去掉中括号
2a 4a
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
y ax2 bx c的对称轴是:x b 2a
顶点坐标是:( b , 4ac b2 ) 2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
D. 4ac-b2 >0-1 o 1 x 4a
5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向
下平移3个单位,得抛物线y=x2+bx+c,则( B )
A.b=2 c= 6
B.b=-6 , c=6
C.b=-8 c= 6
D.b=-8 , c=18