土中应力分布及计算课件
合集下载
4土中应力

§4 土中应力
§4.4 地基附加应力 4.4.3 线荷载和条形荷载作用时的地基附加应力
1、线荷载作用时的地基附加应力-弗拉曼解
•由于线荷载沿y坐标无限延伸, 因此与y轴垂直,平行于xoz任 何平面上的应力状态完全相同。 这种情况属于弹性力学平面问 题。 •平面问题只有三个独立的应 力分量
§4 土中应力
Ph
矩形基础:
条形基础:
§4 土中应力 §4.3 基底压力 4.3.3 基底附加压力
基底附加压(应)力是建筑物对基底下地 基产生的应力增量,是引起地基压缩变形 的应力,是计算地基中附加应力的依据。
p 0 p σ ch p γ m h
P——基底压力; σch——基底处土中自重应力,kPa; γm——基底标高以上天然土层的加权平均值;
※b—三角形分布荷载的一边为b。
※p—三角形分布荷载的最大值(基底附加应力)。
§4 土中应力
§4.4 地基附加应力 4.4.2 矩形荷载和圆形荷载作用时的地基附加应力
2. 矩形面积三角形分布荷载角点下的附加应力
对于矩形面积三角形分布荷载不在角点下 的附加应力计算:
(1)仍然要使用 “角点法”。 (2)对基础中心点下的附加应力,可分为相 等的四块,按均布荷载情况一次算出。 (3)对梯形荷载情况,按同样方法解决。
所以在不透水底面的上下可以有两个突变的自 重应力值。
§4 土中应力 §4.2 土中自重应力
4.2.3 地下水位升降时土中自重应力
§4 土中应力 §4.2 土中自重应力
4.2.4 土质堤坝自身的自重应力 (有限构筑物的自重应力)
计算 面
计算 面
精品课件- 土中应力计算

•
γi----第层土的重度,地下水位以下取浮重度。
• 从上面公式可以看出,这里计算的自重应力是指有效自重应力,按上述计算出的四
层土的竖向自重应力分布如上图所示。
三、下埋不透水层时自重应力的计算
• 在地下水位线以下存在不透水层时,由于不透水层不存在浮力,所以,层面及层面 以下自重应力应按上覆土层的水土总重计算,如上图所示。
• 对于路基、坝基及薄板基础等柔性基础,其刚度很小,可近似地看成是理想柔 性基础。此时,基底压力分布与作用的荷载分布规律相同,如由土筑成的路基, 可以近似地认为路堤本身不传递剪力,那么它就相当于一种柔性基础,路堤自重引 起的基底压力分布就与路堤断面形状相同是梯形分布,如上图所示。
2.刚性基础
• 是指基础刚度大大超过地基刚度,理论与实测证明,在中心受压时,刚性基础的接 触压力为马鞍形分布,如下图所示。当上部荷载加大,基础边缘土中产生塑性变形 区,边缘应力不再增大,应力分布变为抛物线形。当荷载继续增加接近地基的破坏 荷载A=bl;
•
M——偏心矩, M=(F+G)e ;
• W ——基底抵抗矩,W=bl2/6。
•则
• 从上式可以看出: (1)当e<l/6 时, pmin > 0 ,基底压力呈梯形分布; (2)当e=l/6时, pmin = 0 ,基底压力呈三角形分布;
• 但基底与土之间是不能承受拉应力的,这时产生拉应力部分的基底将与土脱开,而 不能传递荷载,基底压力将重新分布,如下图所示。
• 采用极坐标时,Flamant解为 • 若采用直角坐标系,可根据弹性力学中的坐标变换公式,即
• 在地基基础工程中,最重要的附加应力分量是竖向附加应力σz。由上图可
见,
,
• 代入上式,可得
土力学完整课件土中应力计算

3dP z 3 3 pxz3 d z 5 dxdy 5 2 R 2bR
积分,得
z t p
Y
t f (m l / b, n z / b)
三角分布矩形荷载角点下的竖向附加应 力系数.可查表. 注意l—荷载不变化边 的长度; b—荷载变化边的长度.
水平均布荷载
q
z
x z
2
2 pz 3
2
2
(二)条形荷载下的附加应力计算 1.均布条形荷载下的附加应力 p O x b/2 b/2 z x M z 2. 三角形荷载的附加应力 pt O x b z x M z
z u p
z x u f u m , n b b
l
pmax pmin
基础底面的抵 抗矩;矩形截 面W=(bl2)/6
讨论:
N 6e pmax 1 bl l min
当e<l/6时,pmax,pmin>0,基底压力呈梯形分布 当e=l/6时,pmax>0,pmin=0,基底压力呈三角形分布 当e>l/6时,pmax>0,pmin<0,基底出现拉应力,基底压力重分布
F=400kN/m 0.1m M=20kN •m/m
3.基底中点下附加压 力计算
1.5m 2m 112.6kPa
0 =18.5kN/m3
292.0kPa
179.4kPa
112.6kPa
分析步骤Ⅳ:
F=400kN/m 0.1m M=20kN •m/m
1.5m
1m 1m 2m 2m 2m
0 =18.5kN/m3
3. r 0 ,随 z 从 0 开始增大, z 先随之增大,后随之减小;
积分,得
z t p
Y
t f (m l / b, n z / b)
三角分布矩形荷载角点下的竖向附加应 力系数.可查表. 注意l—荷载不变化边 的长度; b—荷载变化边的长度.
水平均布荷载
q
z
x z
2
2 pz 3
2
2
(二)条形荷载下的附加应力计算 1.均布条形荷载下的附加应力 p O x b/2 b/2 z x M z 2. 三角形荷载的附加应力 pt O x b z x M z
z u p
z x u f u m , n b b
l
pmax pmin
基础底面的抵 抗矩;矩形截 面W=(bl2)/6
讨论:
N 6e pmax 1 bl l min
当e<l/6时,pmax,pmin>0,基底压力呈梯形分布 当e=l/6时,pmax>0,pmin=0,基底压力呈三角形分布 当e>l/6时,pmax>0,pmin<0,基底出现拉应力,基底压力重分布
F=400kN/m 0.1m M=20kN •m/m
3.基底中点下附加压 力计算
1.5m 2m 112.6kPa
0 =18.5kN/m3
292.0kPa
179.4kPa
112.6kPa
分析步骤Ⅳ:
F=400kN/m 0.1m M=20kN •m/m
1.5m
1m 1m 2m 2m 2m
0 =18.5kN/m3
3. r 0 ,随 z 从 0 开始增大, z 先随之增大,后随之减小;
第三章土和地基中的应力及分布

第三章 土和地基中的 应力及分布
§3.1 土中一点的应力状态和应力平衡方程
一、地基中应力的种类
1、土体自重产生的自重应力(self-weight stress) 2、建筑物荷载引起的附加应力(stress in aground)
二、 应力(stress)—应 变(strain)关系的假定
土体中的应力分布,主要取决 于应力—应变关系特性。真实的应 力—应变关系非常复杂,为简化计 算,假定土体为均质、各向同性的 半无限线弹性体(semi-infinite elastic body),其应力应变关系 如图。
在一般情况下,饱和土体所受总应力由孔隙水和土骨架承担,即总应力等于 孔隙水压力和有效压力。当总压力σ不变,u的减小就意味着σ的增加,反之亦然。 如饱和粘土在地下水面以下,孔隙水压力乃为地下水面以下水柱压力。由外力 引起的附加孔隙水压力,称为超静水压力。还有一种作用在骨架单位体积上的 力,它也能使骨架变形,这是一种体力,一般称为有效力。如地下水面上的容 重,地下水面以下的浮容重 =sat - w。
图A压力作用下孔隙水上,砂层不产生压缩,图B压力作用在土骨架上,应 力通过土骨架传递下去,砂层产生压缩变形。
1 、几个概念
(1)有效应力(effectives stress):凡使骨架产生变形的力, 称为有效应力σ。
(2)孔隙水压力(pore water pressure):孔隙水所承担压力 称为孔隙水压力或孔隙压力,也称为中性压力,用u表示。
地基中的几种应力状态 计算地基应力时,将
地基当作半无限空间弹 性体。 1. 三维应力状态
ij yxxx
xy yy
xz yz
zx zy zz
矩阵表达式
每一点的应力状态都可用9个应力分量(独立的有6个)
§3.1 土中一点的应力状态和应力平衡方程
一、地基中应力的种类
1、土体自重产生的自重应力(self-weight stress) 2、建筑物荷载引起的附加应力(stress in aground)
二、 应力(stress)—应 变(strain)关系的假定
土体中的应力分布,主要取决 于应力—应变关系特性。真实的应 力—应变关系非常复杂,为简化计 算,假定土体为均质、各向同性的 半无限线弹性体(semi-infinite elastic body),其应力应变关系 如图。
在一般情况下,饱和土体所受总应力由孔隙水和土骨架承担,即总应力等于 孔隙水压力和有效压力。当总压力σ不变,u的减小就意味着σ的增加,反之亦然。 如饱和粘土在地下水面以下,孔隙水压力乃为地下水面以下水柱压力。由外力 引起的附加孔隙水压力,称为超静水压力。还有一种作用在骨架单位体积上的 力,它也能使骨架变形,这是一种体力,一般称为有效力。如地下水面上的容 重,地下水面以下的浮容重 =sat - w。
图A压力作用下孔隙水上,砂层不产生压缩,图B压力作用在土骨架上,应 力通过土骨架传递下去,砂层产生压缩变形。
1 、几个概念
(1)有效应力(effectives stress):凡使骨架产生变形的力, 称为有效应力σ。
(2)孔隙水压力(pore water pressure):孔隙水所承担压力 称为孔隙水压力或孔隙压力,也称为中性压力,用u表示。
地基中的几种应力状态 计算地基应力时,将
地基当作半无限空间弹 性体。 1. 三维应力状态
ij yxxx
xy yy
xz yz
zx zy zz
矩阵表达式
每一点的应力状态都可用9个应力分量(独立的有6个)
第4章 土中应力

19×3=57.0kPa 57+10.5×2.2=80.1kPa 80.1+9.2×2.5=103.1kPa 103.1+10×4.7=150.1kPa 150.1+22×2=194.1kPa
§4.2 土中自重应力
例4-2:某地基土层情况及其物理性质指标如图所示, 试计算a,b,c3个点处的自重应力σz度(m)。
则基底压力p按下式计算:
§4.3 基底压力
2.偏心荷载下的基底压力
对于单向偏心荷载下的矩形基础
(如图),通常基底长边方向和偏心
方向一致,基底两边缘的最大、最小
压力pmax、pmin按下式计算:
pmax
pm
in
F G lb
M W
式中:M - 作用于的矩形基础底面的力矩,kN m;
§4.1 概 述
(3)土体可视为半无限体 所谓半无限体就是无限空间体的一半。即该物 体在水平方向是无限延伸的,而在竖直方向仅在向 下的方向是无限延伸的,向上的方向为零。地基土 在水平方向和深度方向相对于建筑物地基的尺寸而 言,可认为是无限延伸的。因此,可以认为地基土 体是符合半无限体的假定。
§4.1 概 述
§4.3 基底压力
荷载条件 基底压力分布
地基条件
•大小 •方向 •分布
基础条件
•土类 •密度 •土层结构等
•刚度 •形状 •大小 •埋深
§4.3 基底压力
1. 基础刚度的影响 基础刚度是指其抗弯刚度,基础按刚度可划分 为如下三种类型: (1)柔性基础 柔性基础刚度很小,在荷载作用下,基础的变 形与地基的变形一致,如土坝、土堤、路基等土工 建筑物,其基底压力分布和大小与作用在基底上的 荷载分布和大小相同。
§4.4 地基附加应力
§4.2 土中自重应力
例4-2:某地基土层情况及其物理性质指标如图所示, 试计算a,b,c3个点处的自重应力σz度(m)。
则基底压力p按下式计算:
§4.3 基底压力
2.偏心荷载下的基底压力
对于单向偏心荷载下的矩形基础
(如图),通常基底长边方向和偏心
方向一致,基底两边缘的最大、最小
压力pmax、pmin按下式计算:
pmax
pm
in
F G lb
M W
式中:M - 作用于的矩形基础底面的力矩,kN m;
§4.1 概 述
(3)土体可视为半无限体 所谓半无限体就是无限空间体的一半。即该物 体在水平方向是无限延伸的,而在竖直方向仅在向 下的方向是无限延伸的,向上的方向为零。地基土 在水平方向和深度方向相对于建筑物地基的尺寸而 言,可认为是无限延伸的。因此,可以认为地基土 体是符合半无限体的假定。
§4.1 概 述
§4.3 基底压力
荷载条件 基底压力分布
地基条件
•大小 •方向 •分布
基础条件
•土类 •密度 •土层结构等
•刚度 •形状 •大小 •埋深
§4.3 基底压力
1. 基础刚度的影响 基础刚度是指其抗弯刚度,基础按刚度可划分 为如下三种类型: (1)柔性基础 柔性基础刚度很小,在荷载作用下,基础的变 形与地基的变形一致,如土坝、土堤、路基等土工 建筑物,其基底压力分布和大小与作用在基底上的 荷载分布和大小相同。
§4.4 地基附加应力
第3章 土中应力计算

表3-1 z=3m处水平面上竖应力计算
r(m)
0
1
2
3
4
5
r/z
0
0.33
0.67
1
1.33
1.67
K
0.478 0.369
0.189
0.084
0.038
0.017
z(kPa)
10.6
8.2
4.2
1.9
0.8
0.4
表3-2 r=1m处竖直面上竖应力z的计算
z(m)
0
1
2
3
4
5
6
r/z
1
0.5
0.33
M(x,y,0)
z
附加应力系数
z
K
P z2
M(x,y,z) z
1885年法国学者 布辛内斯克解
z
3Pz 3
2R5
3P
2R2
cos3 q
图 直角坐标表示
❖ 讨论6个应力分量和3个位移分量:
法向应力:
z
3Fz3
2 R5
x
3F
2
zx2
R5
1 2
3
R2 Rz z2 R3(R z)
x2 (2R z)
(a) 马鞍形分布 (b) 抛物线分布 (c) 钟形分布
▪上述演化只是一典型的情形,实际情况十分复杂 ▪大多数情况处于上述两种极端情况之间。
(3)情况3 弹塑性地基上有限刚性的基础
3.2.2 基底压力的简化计算
❖ 基底压力分布十分复杂;
❖ 但是,根据弹性理论中圣维南原理,在基底一定深度 处引起的地基附加应力与基底荷载分布形状无关,只与 其合力的大小和位置有关。
第四章地基中土中应力计算PPT课件
4.3荷载作用下计算力地基中附加
假设地基为半无限弹性体,在地面上作用一竖向集中力P
4.3荷载作用下计算力地基中附加应力计算
4.3.1地面上作用一集中力地基中附加应力计算
法国J.布辛奈斯克(Boussinesq, 1885)运用弹性理论推 出了在弹性半空间表面上作用一个竖向集中力时,半 空间内任意点M(x、y、z)处的六个应力分量和三个位 移分量的弹性力学解答。
(c' z)A 1za
地基中深度z处土体自重产生的有效应力:
n
' cz
(γsatiw)hi
i1
地基中深度z处土体自重产生的水平有效应力:
Hale Waihona Puke c' xc' yK0
' cz
式中:K0——静止土压力系数。
4.2 地基中自重应力计算
2.自重应力分布、变化规律
(1)土的自重应力分布曲线是一条折线 ,拐点在土层交界处和地下水位处。同 一层土的自重应力按直线变化。自重应 力随深度的增加而增大。 (2)自重应力大小与土层厚度、土体重 度、饱和重度、地下水位深度有关。 (3)对天然在基一般不考虑自重应力引 起的土体变形,但对新近沉积和冲填的 土层,应考虑自重应力下尚未完成的压 缩变形。 (4)地下水位的变化会引起地基土体中 自重应力的变化。
(如右图),当应力变化不 大时,可用一条割线近似代 替相应的曲线,这样,就可 以把土看成是线性变形体, 以简化计算。
4.2 地基中自重应力计算
4.2.1均质土的自重应力
假设天然土体是一个半无限
体,地面以下土质均匀,天
然重度为 (kN/m3),则在天
然地面下任意深度 z(m) 处的
竖向自重应力cz(kPa),可取
土体中的应力计算—附加应力的计算(土力学课件)
土中任意点所受的附加应力
z 2 p
x
p x
z z
x z
二、条形面积受均布荷载土中附加应力
2.条形面积受三角形荷载作用下的附加应力
土中任意点所受的附加应力
z 3 p
-x 0
z x
p x
z
注意坐标系的建立,以荷载0为坐标原点,向荷 载增大的方向为正方向。
二、条形面积受均布荷载土中附加应力
3.圆形面积均布荷载作用下的竖向附加应力
(1)距离地面越深, 附加应力的分布范围 越广,r/z=2.5范围内。
(2)在距地面为z的平 面上,集中力作用线 下的附加应力最大, 向两侧逐渐减小。
集中力作用下附加应力分布图
一、竖直集中荷载作用下的地基附加应力计算
1、附加应力分布规律
(3)距P作用线为r竖直 线上的附加应力随深 度先增加再减小。
171
332 kPa
134
条形荷载作用下土中附加应力
(1)p1=134kPa
+x
+x
+(x 2)p2=198kPa
-x
z x1 x/b z/b
x2 x/b z/b
00 0 0 1
134 1 0.5 0 0.500 99 233
1 0 0 0.5 0.820 110 1 0.5 0.5 0.410 81 191
条形荷载作用下 土中附加应力
条形荷载作用下土中附加应力
条形荷载作用下土中附加应力
1.条形面积受均布荷载作用下的土中竖向附加应力
土中任意点所受的附加应力 x
z 2 p
2 ——条形均布荷载作用
下的竖向附加应力系数
2 (x / b, z / b)
z 2 p
x
p x
z z
x z
二、条形面积受均布荷载土中附加应力
2.条形面积受三角形荷载作用下的附加应力
土中任意点所受的附加应力
z 3 p
-x 0
z x
p x
z
注意坐标系的建立,以荷载0为坐标原点,向荷 载增大的方向为正方向。
二、条形面积受均布荷载土中附加应力
3.圆形面积均布荷载作用下的竖向附加应力
(1)距离地面越深, 附加应力的分布范围 越广,r/z=2.5范围内。
(2)在距地面为z的平 面上,集中力作用线 下的附加应力最大, 向两侧逐渐减小。
集中力作用下附加应力分布图
一、竖直集中荷载作用下的地基附加应力计算
1、附加应力分布规律
(3)距P作用线为r竖直 线上的附加应力随深 度先增加再减小。
171
332 kPa
134
条形荷载作用下土中附加应力
(1)p1=134kPa
+x
+x
+(x 2)p2=198kPa
-x
z x1 x/b z/b
x2 x/b z/b
00 0 0 1
134 1 0.5 0 0.500 99 233
1 0 0 0.5 0.820 110 1 0.5 0.5 0.410 81 191
条形荷载作用下 土中附加应力
条形荷载作用下土中附加应力
条形荷载作用下土中附加应力
1.条形面积受均布荷载作用下的土中竖向附加应力
土中任意点所受的附加应力 x
z 2 p
2 ——条形均布荷载作用
下的竖向附加应力系数
2 (x / b, z / b)