锂空气电池综述
铝电池研究进展_马正青

铝电池研究进展马正青 左列 庞旭 曾苏民(中南大学材料科学与工程学院,湖南长沙 410083)摘要:综述了铝电池国内外发展概况,对Al/空气电池、Al/AgO电池、Al/MnO2电池、Al/H2O2电池、Al/S 电池、Al/MnO4-电池、Al/Ni电池、Al/KFe(CN)6和熔盐铝电池的基本性能特点和研究状况作分别介绍,并对铝电池未来研究热点和重要意义进行探讨。
关键词:铝电池 铝阳极 高比能电池中图分类号:TM911.41 文献标识码:A文章编号:1003-4862(2008)05-0257-05Advance in Aluminum BatteriesMa Zhengqing, Zuo Lie, Pang Xu, Zeng Sumin(Department of Material Science and Engineering of Central South University, Changsha 410083, China)Abstract: Advance in aluminum batteries is reviewed. The main properties and research progresses of Al/air battery, Al/AgO battery, Al/MnO2 battery, Al/H2O2 battery, Al/S battery, Al/MnO4- battery, Al/Ni battery, Al/KFe(CN)6 battery and molten salt system Al battery are introduced. And the future research focuses and significances of aluminum battery are discussed.Key words: aluminum battery; aluminum anode; high specific energy battery铝电极电位负,中性及酸性介质中为-1.66V (vs SHE),碱性介质中为-2.35V (vs SHE),比能量高、价格低廉且资源丰富;表1为常见金属阳极材料的性能,铝阳极容量为2.98 Ah/g,仅次于锂;而其体积比容量为8.05Ah/cm3,高于其他所有金属材料,是理想的阳极材料[1]。
锂离子电池正极材料的发展现状和研究进展

作者简介:蒋 兵(1981-),男,助理工程师,主要从事有色金属材料的检验和测试工作。
锂离子电池正极材料的发展现状和研究进展蒋 兵(湖南有色金属研究院,湖南长沙 410015)摘 要:介绍了锂离子电池正极材料钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、钒的氧化物以及导电高聚合物正极材料的发展现状和研究进展。
LiCoO 2在今后正极材料发展中仍然有发展潜力,通过微掺杂和包覆都可使钴酸锂的综合性能得到提高,循环性能大大改善。
环保、高能的三元材料和磷酸铁锂为代表的新型正极材料必将成为下一代动力电池材料的首选。
关键词:锂离子电池;正极材料;磷酸铁锂;三元材料中图分类号:T G146126 文献标识码:A 文章编号:1003-5540(2011)01-0039-04自日本Sony 公司于1990年首先推出以碳为负极的锂离子二次电池产品后,因具有工作电压高、容量大、自放电小、循环性能好、使用寿命长、重量轻、体积小等突出优点,目前,其应用已渗透到包括移动电话、笔记本电脑、摄像机、数码相机等众多民用及军事领域。
另外,国内外也在竞相开发电动汽车、航天和储能等方面所需的大容量锂离子电池。
对锂离子电池而言,其主要构成材料包括电解液、隔膜、正负极材料等。
一般来说,在锂离子电池产品组成部分中,正极材料占据着最重要的地位,正极材料的好坏,直接决定了最终锂离子电池产品的性能指标。
本文将对锂离子电池正极材料的发展现状和研究进展进行综述和探讨。
1 正极材料的选择正极材料在性质上一般应满足以下条件:(1)在要求的充放电电位范围,与电解质溶液具有相容性;(2)温和的电极过程动力学;(3)高度可逆性;(4)在全锂化状态下稳定性好。
其结构具有以下特点:(1)层状或隧道结构,以利于锂离子的脱嵌,且在锂离子脱嵌时无结构上的变化,以保证电极具有良好的可逆性能;(2)锂离子在其中的嵌入和脱出量大,电极有较高的容量,并且在锂离子脱嵌时,电极反应的自由能变化不大,以保证电池充放电电压平稳;(3)锂离子在其中应有较大的扩散系数,以使电池有良好的快速充放电性能。
尖晶石型锰酸锂综述Microsoft Word 文档汇总

问题:1、尖晶石锰酸锂放电平台?——3.7v,过冲电压4.2v,保护过放电压2.75v。
工作电压:2.5v-4.2v。
2、三维锂离子通道?——空的四面体和八面体通过共面和共边相互联结, 形成三维的锂离子扩散通道。
3J hn-Teller效应?——LiMn2O4中Mn3+的电子组态为d4,由于这些d电子不均匀占据着八面体场作用下分裂的d轨道上,导致氧八面体偏离球对称性,畸变为变形的八面体构型,即发生了所谓的Jahl-Teller效应。
尖晶石型锰酸锂1尖晶石型锰酸锂概述锰酸锂主要包括尖晶石型锰酸锂和层状结构锰酸锂,其中尖晶石型锰酸锂结构稳定,易于实现工业化生产,如今市场产品均为此种结构。
尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料(空的四面体和八面体通过共面和共边相互联结, 形成三维的锂离子扩散通道),至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有价格低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子电池的正极材料。
但其较差的循环性能及电化学稳定性却大大限制了其产业化。
尖晶石锰酸锂动力电池循环寿命较短和储藏性能差的主要原因之一是锰酸锂的锰易溶解于电解液中,特别在高温下(60℃)锰的溶解尤为严重。
传统认为锰酸锂能量密度低、循环性能差、结构不稳定!尖晶石型锰酸锂属于立方晶系,Fd3m空间群,理论比容量为148mAh/g,由于具有三维隧道结构,锂离子可以可逆地从尖晶石晶格中脱嵌,不会引起结构的塌陷,因而具有优异的倍率性能和稳定性。
如今,传统认为锰酸锂能量密度低、循环性能差的缺点已经有了很大改观(万力新能典型值:123mAh/g,400次,高循环型典型值107mAh/g ,2000次)。
表面修饰和掺杂能有效改善其电化学性能,表面修饰可有效地抑制锰的溶解和电解液分解。
掺杂可有效抑制充放电过程中的Jahn-Teller效应。
三元材料综述重要

三元材料综述引言目前,以锰、钴、镍三种元素摩尔比相等的LiNi1/3Co1/3Mn1/3O2三元复合正极材料受到广泛的关注。
由于LiNi1/3Co1/3Mn1/3O2比容量高,循环性能好,热稳定性好,而且锰、镍价格都比钴低,可大大降低材料的成本,是一种理想的锂离子电池正极材料。
LiNi1/3Co1/3Mn1/3O2具有单一的α-NaFeO2型层状结构,空间点群为 R-3m。
锂离子占岩盐结构的 3a 位,过渡金属离子(M=Ma、Ni、Co)占据 3b 位,氧离子占据 6c 位置,晶格常数a=0.2862nm、c=1.4227nm。
Shaju K M 等[1]对 LiNi1/3Co1/3Mn1/3O2进行XPS 测试,测试结果发现:镍、钴、锰分别以+2、+3 及+4 的价态存在,同时,也存在少量的Ni3+和 Mn3+。
LiNi1/3Co1/3Mn1/3O2作为锂离子电池正极材料,在充电过程中的反应有如下特征:在 3.75-4.54V 之间有两个平台,且容量可达 250mAh/g,为理论容量的 91%。
通过 XANES 和 EXAFS 分析发现在 3.9V 左右时,Ni 的氧化电对为 Ni2+/Ni3+,在 3.9~4.1V之间为 Ni3+/Ni4+。
当高于 4.1V 时,Ni4+不再参与反应,Co 的氧化电对 Co3+/Co4+与上述两个平台都有关。
当电压高于 4.2V 时 LiNi1/3Co1/3Mn1/3O2中 O 的损失会更加严重,这将导致材料的循环性能下降,使不可逆容量增加。
此种材料在 3.0~4.5V 间首次循环伏安扫描发现,在 4.289V 处有一个不可逆阳极氧化峰,对应于首次循环不可逆容量;在3.825V 左右处出现一个阳极氧化峰,相对应的在 3.675V 存在一个阴极还原峰。
当反复扫描这一对氧化还原峰时,峰的高度和峰的位置始终保持不变,说明LiNi1/3Co1/3Mn1/3O2材料具有优异的可逆循环性能。
(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望周俊飞(衢州学院化学与材料工程学院浙江衢州324000)摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。
薄膜型全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高安全性锂二次电池。
作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。
关键词:储能;全固态锂离子电池;固体电解质;界面调控1 全固态锂电池概述全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。
全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。
全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。
放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。
目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。
通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。
锂电池的研究进展

锂电池的研究进展摘要:锂离子电池由于比能量高和使用寿命长,已成为便携式电子产品的主要电源。
尖晶石LiMn2O4正极材料在不同混合溶剂的电解质溶液的电化学性能。
用循环伏安法和交流阻抗技术研究了Li/有机电解液/LiMn2O4电池的电化学行为,综述了锂离子电池正极材料LiMn2O4的制备、结构及其电化学性能。
采用溶胶-凝胶法和旋转涂布工艺,在较低的退火温度(450e)下制备了尖晶石型LiMn2O4薄膜。
关键词:正极材料; 电化学性能 ;薄膜1前言作为锂离子电池电解质溶液的主体成分,溶剂的组成和性质影响和决定着LiMn2O4正极材料的宏观电化学性能。
电解质溶液的电导率大小、电解质溶液在电极表面的氧化电位以及电解质溶液对电极材料活性物质的溶解性都在不同程度上直接影响LiMn2O4电极材料的容量、寿命、自放电性能和倍率充放电性能[。
近年来,寻找合适的电解质溶液组分,以进一步改善和提高LiMn2O4正极材料的电化学性能正在引起人们越来越广泛的关注。
系统地研究溶剂组成对LiMn2O4正极材料电化学性能的影响,探讨影响LiMn2O4正极材料电化学性能电解质溶液因素,进一步明确新型电解质溶液体系的优化目标,将为LiMn2O4正极材料在锂离子电池工业中的广泛应用奠定基础。
本文使用恒电流充放电和粉末微电极的循环伏安方法研究了尖晶石LiMn2O4正极材料在不同混合溶剂体系的电解质溶液中的电化学性能。
结合溶剂组分和电解质溶液的理化特性,详细探讨了影响LiMn2O4正极材料电化学性能的溶剂因素及其影响机制。
锂离子电池正极材料的选择是锂离子电池电化学性能的关键。
作为正极材料的嵌锂化合物是锂离子电池中锂的/存库0,它应满足:(1)在所要求的充放电电范围内,具有与电解质溶液的电化学相容性;(2)温和的电极过程动力学;(3)高度的可逆性;(4)全锂化状态下在空气中的稳定性。
目前研究较多的是层状的LiMO2和尖晶石型LiM2O4(M=Co、Ni、Mn、V等过渡金属离子)。
电沉积法制备碳纸负载合金催化剂的研究进展

电沉积法制备碳纸负载合金催化剂的研究进展吴杰【期刊名称】《《电镀与涂饰》》【年(卷),期】2019(038)020【总页数】5页(P1090-1094)【关键词】合金催化剂; 电沉积; 碳纸; 直接燃料电池; 空气电池; 综述【作者】吴杰【作者单位】广州市二轻研究所股份有限公司广东广州 510663【正文语种】中文【中图分类】TQ153.2; TM911.4直接燃料电池(DFC)因其燃料成本低廉、资源丰富,并且顺应可持续发展理念而受到广泛关注。
另外,由于直接燃料电池具有结构简单,燃料补充方便,体积和质量比能量密度高,红外信号弱等特点,适用于作为移动式或便携式电源,因此在军事和民用方面具有很好的应用前景[1]。
然而,燃料(甲醇、乙醇等直接醇类,甲酸、乙酸等酸类)的催化氧化机制复杂,氧化效率低,因此燃料的催化效率是限制直接燃料电池应用的壁垒之一。
在催化体系中,铂类贵金属是有效的燃料氧化催化剂组分。
应用于直接燃料电池时,铂纳米粒子的形貌和颗粒大小会影响催化效率,也制约着催化剂成本。
此外,铂类贵金属在膜电极中的分布也会影响电池性能,铂纳米粒子同时与燃料分子和固体支持电解质(Nafion)接触可以提高其利用率。
用电沉积法可以选择性地在基底与Nafion膜接触的表面沉积催化剂粒子,减小催化层厚度,同时降低贵金属的用量,提高贵金属的利用率[1-2]。
因此,高效、低成本催化剂的开发对直接燃料电池的商业化发展、解决能源问题具有重要意义。
在采用水热合成[3]、等离子溅射[4]等方法制备贵金属催化剂时,往往存在部分化学物质残留、合成过程复杂、不能批量生产等缺点。
电沉积法作为一种无化学试剂残留的原位金属催化剂制备方法,具有如下优点:(1)可通过调节工艺参数来有效控制沉积量和沉积物形貌,在碳材料上获得低负载量的贵金属催化剂;(2)工艺过程简单,容易控制,易于大规模推广[5-6];(3)制备的纳米材料表面洁净,重现性好。
因此该方法常被用以制备燃料电池等电极材料[1]。
化学电池的参考文献

化学电池的参考文献化学电池是一种将化学能转化为电能的装置。
它由电解质溶液、正极、负极和导电体等组成。
化学电池在现代社会中广泛应用于各个领域,如储能技术、电动车辆、移动设备等。
为了深入了解化学电池的原理、性能和应用,下面是一些重要的参考文献供您参考。
1. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications. John Wiley & Sons. 这本经典教材详细介绍了电化学方法的基本原理和应用。
其中包含了化学电池的基本原理、电解质溶液的选择和电极材料的性能等内容。
2. Scrosati, B., & Garche, J. (2010). Lithium batteries: Advanced technologies and applications. John Wiley & Sons. 这本书全面介绍了锂电池的各个方面,包括锂离子电池、锂聚合物电池和锂硫电池等。
其中也涉及了电池材料的选择、电池循环性能和安全性等内容。
3. Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451(7179), 652-657. 这篇综述文章从历史和技术的角度讲解了电池的进展和挑战。
其中重点介绍了锂离子电池、钠离子电池和固态电池等新兴电池技术。
4. Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22(3), 587-603. 这篇综述文章主要讨论了锂离子电池的挑战和发展方向。
文章提出了增加电池能量密度、提高电池循环寿命和降低成本等关键问题,并探讨了相应的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂空气电池综述
引言:
随着人们对可再生能源和环境保护的关注度不断提高,电池技术也在不断发展。
锂空气电池作为一种新型电池技术,具有高能量密度、轻质化、无污染等优点,受到了广泛的关注。
本文将对锂空气电池的原理、优缺点、应用领域和未来发展进行综述。
一、锂空气电池的原理
锂空气电池是一种以空气中的氧气作为氧化剂,将锂金属或锂离子与氧气反应产生电能的电池。
其工作原理类似于传统的锂离子电池,但在正极反应中,锂离子与氧气发生氧化还原反应,产生锂过氧化物(Li2O2)。
而在充电时,锂过氧化物会分解为锂离子和氧气。
由于氧气是从空气中获取的,因此锂空气电池具有较高的能量密度。
二、锂空气电池的优缺点
锂空气电池具有以下优点:
1. 高能量密度:锂空气电池的能量密度比传统锂离子电池高数倍,可以实现更长的续航里程。
2. 轻质化:由于空气中的氧气作为氧化剂,锂空气电池不需要储存氧化剂,因此可以减轻电池的重量。
3. 无污染:锂空气电池的正极反应产生的产物是无害的锂过氧化物,不会对环境造成污染。
4. 资源丰富:锂是地壳中丰富的元素,因此锂空气电池的原料资源相对充足。
然而,锂空气电池也存在一些缺点:
1. 寿命短:锂空气电池的寿命受到氧气在正极的反应速度限制,充放电过程中容易产生析氧反应,导致正极损耗加剧,从而影响电池寿命。
2. 还原过程困难:锂空气电池在充电过程中需要分解锂过氧化物,这一过程需要较高的电压,限制了电池的充电效率。
3. 电解液腐蚀性:锂空气电池使用的电解液具有一定的腐蚀性,需要采取措施防止电解液泄漏,增加了电池的设计和制造难度。
三、锂空气电池的应用领域
锂空气电池具有高能量密度和轻质化的特点,适用于一些对电池能量密度要求较高的领域,如电动车、无人机等。
锂空气电池的高能量密度可以提供更长的续航里程,满足电动车长距离行驶的需求。
同时,由于无人机对电池重量要求较轻,锂空气电池的轻质化特点使其成为无人机领域的研究热点。
四、锂空气电池的未来发展
锂空气电池作为一种新型电池技术,仍面临着许多挑战和问题。
目前主要困扰锂空气电池的问题包括正极催化剂的寿命和稳定性、氧气的传输和溶解、电解液的腐蚀性等。
未来发展锂空气电池需要解
决这些问题,提高电池的循环寿命和充放电效率。
同时,锂空气电池还需要在电池安全性、成本和可持续性等方面进行进一步改进。
结论:
锂空气电池作为一种具有高能量密度和轻质化特点的新型电池技术,具有广阔的应用前景。
虽然目前仍存在一些技术和工程问题,但随着科技的进步和工艺的改进,锂空气电池有望在电动车、无人机等领域发挥更大的作用。
未来的研究和开发将进一步推动锂空气电池的发展,为可持续能源和环境保护做出贡献。