圆的对称性
圆的对称性第一课时

——毕达哥拉斯[古希腊数学家]
23.1.2圆的对称性
(第一课时)
学习目标
1.理解圆是旋转对称图形,并能运 用其特有的性质推出在同一个圆中, 圆心角、弧、弦之间的关系。
2.能运用这些关系解决问题,培 养学生善于从实验中获取知识的科 学的方法。
旋转对称图形:把一个图形绕着一 个定点旋转一定角度后,能与原图形 重合,这个图形叫做旋转对称图形, 这个定点叫做旋转对称中心,旋转的 角度叫做旋转角。( 0度< 旋转角<360度) 中心对称图形:把一个图形绕某一 点旋转180°,如果旋转后的图形能够 和原来的图形互相重合.那么这个图形 叫作中心对称图形。
课堂小结
1.圆是旋转对称图形、中心对称图形, 它的对称中心是圆心; 2.圆心角、弧、弦之间的关系。
在同圆或等圆中,如果两个圆心角、 两条弧、两条弦,有一组量相等,那么 它们所对应的其余两组量也分别相等.
(注意: 运用此性质的前提是:在同圆或等圆中.)
在同圆或等圆中,如果圆心 角相等,那么它所对的弧相等, 所对的弦相等。
∠AOB=∠A'OB'
{
⌒ ⌒ AB = A'B'
O
B' B'
AB=A'B'
A' A'
A
B
在同圆或等圆中,如果弧相 等,那么所对的圆心角相等, 所对的弦相等。
⌒ ⌒ AB = A'B'
{
∠AOB=∠A'OB'
O
B' B'
AB=A'B'
A' A'
A
圆的对称性

条弦中有一组量相等,那么它们所对应的其余各组量
都分别相等。 符号语言: ∵⊙O 和⊙O′是等圆 AB=A′B′ ∴∠AOB=∠A′O′B′ AB= A′B′
O′ A′ B
O
A B′
1、如图,AB、ED是⊙O的直径,C是⊙O上的一点, 且AD=CE. BE与CE的大小有什么关系?为什么?
解:BE=CE. 理由如下
3、如图,AB是⊙O的直径,OD∥AC. CD与BD的大小有什么关系?为什么? 解:CD=BD. 理由如下
连接OC
∵OD∥AC
●
∴ ∠1=∠2
∵OA=OC ∴ ∠1=∠4 ∴ ∠2=∠3 ∴CD=BD
∠3=∠4
4 ●1
3
●●
2
4、如图,在⊙O中,AB,CD是两条弦, OE⊥AB,OF⊥CD,重足分别为E,F. ⑴如果∠AOB=∠COD,那么OE与OF的 大小有什么关系?为什么? ⑵如果OE=OF,那么AB与CD的大小有什么
第二节 圆的对称性
1、点与圆的位置关系: 点在圆外 d>r 点在圆上 d=r
点在圆内
2、什么叫轴对称图形?
d<r
把一个图形沿着某条直线对折,直线两旁的部分 能够完全重合,那么这个图形叫做轴对称图形。
3、我们是用什么方法研究轴对称图形的? 折叠
1、圆是轴对称图形吗?
2、它的对称轴是什么?
3、你能找到多少条对称轴?
O B
∵⊙O 和⊙O′是等圆
∠AOB=∠A′O′B′
A
′
想一想
1、在同圆或等圆中,如果两个圆心角所对的弧相等, 那么它们所对的弦相等吗?这两个圆心角相等吗? 2、在同圆或等到圆中,如果两条弦相等,那么它们
所对的圆心角相等吗?它们所对的弧相等吗?
苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

2.2 圆的对称性圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心. 【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)注意关系中不能忽视“同圆或等圆”这一前提. (3)圆心角的度数与它所对的弧的度数相等. 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O 中弦AB CD .求证:AD=BC .看例题,涨知识教材知识总结【例题2】如图,在⊙O 中,弧AB =弧AC ,∠A =120°,求∠ABC 的度数.【例题3】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若BE =5,CD =6,求AE 的长.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF 的中点P ;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接OP 交EF 于点Q ,10AB =,6EF =,求PQ 的长度.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等4.如图,CD为⊙O的直径,弦AB CD⊥,垂足为E,1CE=,10AB=,则CD的长为()A.20 B.24 C.25 D.265.如图,在O中,⊥OD AB于点D,AD的长为3cm,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm课后习题巩固一下6.如图,AB是O的直径,弦CD AB⊥于点E,如果20CD=,那么线段OE的长为()AB=,16A.4 B.6 C.8 D.97.如图,AB为圆O的一弦,且C点在AB上.若6BC=,AB的弦心距为3,则OC的长度为何?AC=,2()A.3 B.4 C11D138.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42DE=,AC=4则BC的长是()A.1 B2C.2 D.49.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A 41B 34C .4D .3二、填空题11.在⊙O 中,弦AB =16cm ,弦心距OC =6cm ,那么该圆的半径为__cm .12.如图,AB 为⊙O 的弦,半径OC ⊥AB 于E ,AB =8,CE =2,则⊙O 的半径为_____.13.已知⊙O 的半径为6cm ,弦AB =6cm ,则弦AB 所对的圆心角是________度.14.如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC __2CD (填“>”,“ <”或“=” ).15.如图,AB ,CD 是O 的直径,弦CE AB ,CE 所对的圆心角为40°,则AOC ∠的度数为______.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.三、解答题17.如图,O的弦AB、CD相交于点E,且AB CD=.求证:BE DE=.18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.∠,求19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD 证:劣弧BC与劣弧BD相等.20.如图,已知弓形的弦长AB=8,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径r的长.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .22.如图,AB 为圆O 的直径,点C 在圆O 上.(1)尺规作图:在BC 上求作一点E ,使OE AC ∥(不写作法,只保留作图痕迹); (2)探究OE 与AC 的数量关系.23.如图,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E . (1)求证:四边形ADOE 是正方形; (2)若AC=2cm ,求⊙O 的半径.24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点. (1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA ①求OGC ∠;②请比较GE 和BE 的大小.2.2 圆的对称性解析教材知识总结圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心.【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.(3)圆心角的度数与它所对的弧的度数相等.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(4)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(5)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(6)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O中弦AB CD=.求证:AD=BC.【答案】见解析【分析】先根据等弦所对的劣弧相等得到AB CD=,从而得到AD AB BD CD BD BC=-=-=,再由等弧所对的弦相等即可得到AD BC=.【解析】证明:∵AB=CD,∴AB CD=,∴AD AB BD CD BD BC=-=-=,∴AD BC=.【例题2】如图,在⊙O中,弧AB=弧AC,∠A=120°,求∠ABC的度数.【答案】30°【分析】根据同圆中,相等的弧所对的弦相等,再根据等腰三角形的性质即可求解.【解析】解:∵在⊙O中,弧AB=弧AC,∴AB=AC,∵∠A=120°,∴∠ABC=()1801203012⨯︒-︒=︒.【例题3】如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE的长.看例题,涨知识【答案】95【分析】如图,连接OC ,设OE x =,由垂径定理知132CE CD ==,5OC BE OE x =-=-,在Rt OCE 中,由勾股定理知222CE OC OE =-,解出x 的值,由2AE BE OE =-,计算求解即可. 【解析】解:如图,连接OC ,设OE x =由垂径定理知132CE CD ==5OC BE OE x =-=-在Rt OCE 中,由勾股定理知222CE OC OE =- ∴()22235x x =-- 解得85x =92525AE BE OE x =-=-=∴AE 的长为95.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,10AB=,6EF=,求PQ的长度.【答案】(1)见解析;(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交EF于点P,点P即为所求.(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解.【解析】(1)解:如图中,点P即为所求.(2)解:连接OF,由作图知OP⊥EF,EQ=QF=12EF=3,∵AB=10,∴OF=OP=12AB=5,∴OQ222254OF QF-=-,∴PQ= OP-OQ=1,∴PQ的长度为1.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦课后习题巩固一下②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④【答案】D【分析】根据垂径定理及其推论进行判断.【解析】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm【答案】B【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,AB=4,连接OA,AM=12由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得:OA=5.所以⊙O的半径是5cm.故选:B.3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等【答案】C【分析】利用圆的有关性质、垂径定理、平行四边形的判定方法及平行线的性质分别判断后即可确定正确的选项.【解析】A 、在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧不一定相等,故原命题错误,是假命题,不符合题意;B 、平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,不符合题意;C 、如图,四边形ABCD ,AB ∥CD ,∠A=∠C ,∵AB ∥CD ,∴∠A +∠D =180°,又∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形,故一组对边平行且一组对角相等的四边形是平行四边形,正确,是真命题,符合题意;D 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意.故选:C .4.如图,CD 为⊙O 的直径,弦AB CD ⊥,垂足为E ,1CE =,10AB =,则CD 的长为( )A .20B .24C .25D .26【答案】D 【分析】连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =5,Rt △OAE 中由勾股定理建立方程求解即可;【解析】如图,连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =BE =12AB =5,Rt △OAE 中,OA 2=AE 2+OE 2,x 2=25+(x -1)2,解得:x =13,,∴CD =26, 故选: D .5.如图,在O 中,⊥OD AB 于点D ,AD 的长为3cm ,则弦AB 的长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【分析】根据垂径定理求出AD =BD =3cm 即可.【解析】解:∵AB 为非直径的弦,⊥OD AB ,∴AD =BD =3cm ,∴AB =AD +BD =6cm .故选B .6.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .4B .6C .8D .9【答案】B 【分析】连接OD ,那么OD =OA =12AB ,根据垂径定理得出DE =12CD ,然后在Rt △ODE 中,根据勾股定理求出OE .【解析】解:如图,∵弦CD ⊥AB ,垂足为E∴CE =DE =1116822CD =⨯=, ∵OA 是半径∴OA =11201022AB =⨯=, 在Rt △ODE 中,OD =OA =10,DE =8,22221086OE OD DE =--=,故选:B .7.如图,AB 为圆O 的一弦,且C 点在AB 上.若6AC =,2BC =,AB 的弦心距为3,则OC 的长度为何?( )A .3B .4C 11D 13【答案】D 【分析】作⊥OD AB 于点D ,由垂径定理得4AD BD ==,Rt OCD △中勾股定理即可求解.【解析】解:作⊥OD AB 于点D ,如图所示,由题意可知:6AC =,2BC =,3OD =, 8AB ∴=,4AD BD∴==,2CD∴=,在Rt OCD△中22223213OC OD CD∴+=+故选:D.8.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42AC=4DE=,则BC的长是()A.1 B2C.2 D.4【答案】C【分析】根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.【解析】设OD=x,则OE=OA=DE-OD=4-x.∵AB是O的直径,OD垂直于弦AC于点,42AC=∴1222AD DC AC===∴OD是△ABC的中位线∴BC=2OD∵222OA OD AD=+∴222(4)(22)x x-=+,解得1x=∴BC=2OD=2x=2故选:C9.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【答案】C【分析】过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,由于DE =FG =MN ,所以弦的弦心距也相等,所以OB 、OC 是角平分线,根据∠A =50°,先求出180130ABC ACB A ∠+∠=︒-∠=︒,再求出,进而可求出∠BOC .【解析】解:过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠ACB , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠, ∵∠A =50°,∴180130ABC ACB A ∠+∠=︒-∠=︒,∴1122OBC OCB ABC ACB ∠+∠=∠+∠ ()12ABC ACB =∠+∠ 65=︒,∴∠BOC =()180OBC OCB ︒-∠+∠18065=-︒115=︒故选:C .10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A41B 34C.4 D.3【答案】D【分析】作AH⊥BC于H,作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,则AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3.【解析】作AH⊥BC于H,作直径CF,连接BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE BF=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3,故选:D.二、填空题11.在⊙O中,弦AB=16cm,弦心距OC=6cm,那么该圆的半径为__cm.【答案】10【分析】根据题意画出相应的图形,由OC垂直于AB,利用垂径定理得到C为AB别的中点,由AB的长求出BC的长,再由弦心距OC的长,利用勾股定理求出OB的长,即为圆的半径.【解析】解:如图所示:过点O作OC AB⊥于点C,∵AB=16cm,OC⊥AB,∴BC=AC12=AB=8cm,6OC cm=,在Rt△BOC中,2210.OB OC BC cm∴=+故答案为:10.12.如图,AB为⊙O的弦,半径OC⊥AB于E,AB=8,CE=2,则⊙O的半径为_____.【答案】5【分析】如图,连接OA,设OA=r.在Rt△AOE中,根据OA2=OE2+AE2,构建方程即可解决问题;【解析】解:如图,连接OA,设OA=r.∵OC⊥AB,∴AE=EB=4,∠AEO=90°,在Rt△AOE中,∵OA2=OE2+AE2,∴r2=42+(r﹣2)2,∴r=5,故答案为:5.13.已知⊙O的半径为6cm,弦AB=6cm,则弦AB所对的圆心角是________度.【答案】60【分析】连接OA、OB,可证得△OAB是等边三角形,由此得解.【解析】如图,连接OA、OB,∵OA=OB=AB=6,∴△OAB是等边三角形∴∠AOB=60°故弦AB所对的圆心角的度数为60°.故答案为:60.14.如图,在O中,AB BC CD==,连接AC,CD,则AC__2CD(填“>”,“ <”或“=” ).【答案】<【分析】根据AB BC CD==推出AB=BC=CD,利用三角形三边关系得到答案【解析】解:∵AB BC CD==,AB BC CD∴==,<+,AC AB BCAC CD∴<,2故答案为:<.∠的度数为______.15.如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC【答案】70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE ,根据平行线的性质即可得到∠AOC 的度数.【解析】解:连接OE ,如图,∵弧CE 所对的圆心角度数为40°,∴∠COE =40°,∵OC =OE ,∴∠OCE =∠OEC ,∴∠OCE =(180°-40°)÷2=70°,∵CE //AB ,∴∠AOC =∠OCE =70°,故答案为:70°.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.【答案】30【分析】先根据圆心角定理可得40AOB BOC COD ∠=∠=∠=︒,从而可得120AOD ∠=︒,再根据等腰三角形的性质即可得.【解析】解:∵AB BC CD ==,40COD ∠=︒,∴40AOB BOC COD ∠=∠=∠=︒,∴120AOD ∠=︒, 又OA OD =,∴1(180)302ADO OAD AOD ∠=∠=︒-∠=︒, 故答案为:30.三、解答题17.如图,O 的弦AB 、CD 相交于点E ,且AB CD =.求证:BE DE =.【答案】详见解析【分析】由弧、弦、圆心角的关系进行证明,结合等角对等边,即可得到结论成立.【解析】证明:AB CD=,CAB D∴=,AB AC CD AC∴-=-,即AD BC=,B D∴∠=∠,BE DE∴=;18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.【答案】(1)见解析;(2)10【分析】(1)过点O作OD⊥AC,交AC于点E,交⊙O于点D;(2)由题意可得OD=5,由(1)得:OE⊥AC,点E为AC中点,继而可得118422AE AC==⨯=,然后根据三角形的面积公式即可求得答案.【解析】(1)解:如图,点E即为所求;(2)解:如图,连接AD,∵⊙O的直径是10,∴OD=5,由(1)得:OE⊥AC,点E为AC中点,∴118422AE AC==⨯=,∴11541022OADS OD AE=⋅=⨯⨯=.19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD∠,求证:劣弧BC与劣弧BD相等.【答案】见详解【分析】过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,由题意易得OE=OF,然后可得BOC BOD∠=∠,进而问题可求证.【解析】证明:过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,如图所示:∵PB 平分CPD ∠,∴OE =OF ,∵OC =OD ,∴EOC FOD △≌△(HL ),∴C D ∠=∠,∴BOC BOD ∠=∠,∴BC BD =.20.如图,已知弓形的弦长AB =8,弓高CD =2(CD ⊥AB 并经过圆心O ).求弓形所在⊙O 的半径r 的长.【答案】r =5.【分析】先由垂径定理得AD =4,由于OD =r -2,则利用勾股定理得到62+(r -2)2=r 2,然后解方程即可.【解析】CD AB ⊥并经过圆心O ,∴118422AD BD AB ===⨯=,2OD OC CD r =-=-, 在Rt △OAD 中,2224(2)r r +-=,解得r =5.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .【答案】见解析【分析】根据圆心距、弦、弧之间的关系定理解答即可.【解析】证明:∵四边形ABCD是正方形,∴AB=CD,∴AB CD=,∵AM DM=,∴AB AM CD DM+=+,即BM CM=,∴BM=CM.22.如图,AB为圆O的直径,点C在圆O上.∥(不写作法,只保留作图痕迹);(1)尺规作图:在BC上求作一点E,使OE AC(2)探究OE与AC的数量关系.【答案】(1)见解析;(2)AC=2OE【分析】(1)过点O作OE⊥BC即可.(2)利用三角形中位线定理证明即可.【解析】(1)如图所示,点E即为所求的点.(2)结论:AC=2OE.理由:由作图得:OE⊥BC∴BE=CE,即点E为BC的中点,∴OE为△ABC的中位线,∴AC=2OC.23.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见解析;2cm【分析】(1)根据AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,可得四边形ADOE 是矩形,由垂径定理可得AD=AE ,根据邻边相等的矩形是正方形可证;(2)连接OA ,由勾股定理可得.【解析】(1)证明:∵AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,∴四边形ADOE 是矩形,12AD AB =,12AE AC =, 又∵AB=AC ,∴AD=AE ,∴四边形ADOE 是正方形.(2)解:如图,连接OA ,∵四边形ADOE 是正方形,∴112OE AE AC ===cm , 在Rt △OAE 中,由勾股定理可得:22+2OA OE AE , 即⊙O 2cm .24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点.(1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA①求OGC ∠; ②请比较GE 和BE 的大小.【答案】(1)证明见解析(2)①∠OGC=90°;②BE>GE【分析】(1)先由平行线得出∠COD=∠ODE,再用SAS证△OCF≌△DOE即可;(2)①先由C、D是AB的三等分点,∠AOB=90°,求得∠AOC=∠COD=∠BOD=30°,由(1)知△OCF≌△DOE,所以∠OCF=∠DOE=30°,即可由三角形内角和求解;②由①∠OGC=90°,∠OCF=∠DOE=30°,利用直角三角形的性质和勾股定理即可求得3OG OF=2,又∠OCF=∠COF=30°,所以CF=OF,又由△OCF≌△DOE,所以OE=CF=OF=2,即可求得23GE= 232BE=,再比较即可得出结论;=OC,【解析】(1)解:∵DE AB2AC∴∠COD=∠ODE,∵OC=OD,OF=DE,∴△OCF≌△DOE(SAS);(2)解:①∵C、D是AB的三等分点,∠AOB=90°,∴∠AOC=∠COD=∠BOD=30°,∵△OCF≌△DOE,∴∠OCF=∠DOE=30°,∵∠COG=∠COD+∠DOB=60°,∴∠OGC=90°.②∵23===,OA OC OB∴3OG又∵∠DOE=30°,∴OF=2,∵∠OCF=∠COF=30°,∴CF=OF,∵△OCF≌△DOE,∴OE=CF=OF=2,∴23GE OE OG=-=232=-=,BE OB OE∵3340-,BE GE=>∴BE>GE.。
初中数学_3.1 圆的对称性教学设计学情分析教材分析课后反思

3.1.3《圆的对称性》教学设计一、学情分析中学生心理学研究指出,初中阶段是智力和思想发展的关键年龄段,学生逻辑思维能力逐步发展,观察能力、记忆能力和想象能力也随之迅速发展,由于学生在七(下)“圆的初步认识”一节中,已经学习了圆、弧、弦、等圆、等弧、扇形等概念,了解了点与圆的位置关系。
在八(上)学习了轴对称与轴对称图形,在八(下)学习了旋转中心对称与中心对称图形。
有了学习的基础,本节课通过教师引导、组织学生观察、思考、经历1°的弧概念的发生过程,理解这一定义的合理性。
并结合图形让学生理解“圆心角的度数与它所对弧的度数相等”、教师通过例4和例5引导学生独立思考、小组合作交流找出解决问题的思路,让学生说出每步推理和计算的依据,体会解题过程中辅助线的作用以及转化的思。
通过教师组织学生自主合作、主动探究的课堂教学活动,从而激发学生的创新意识和创新思维。
二、教材分析本节《圆的对称性》共安排3课时,在七(下)“圆的初步认识”一节中,已经学习了圆、弧、弦、等圆、等弧、扇形等概念,了解了点与圆的位置关系。
在八(上)学习了轴对称与轴对称图形,在八(下)学习了旋转中心对称与中心对称图形。
在此基础上,第3课时学习圆心角与弧的度量以及圆心角与它所对弧的度数之间的关系。
本课时的内容为弧的度量,利用学生已知道角的度量单位和圆心角与其所对弧的关系度量弧的大小,这是本课时的主要内容。
如果把圆周看作是圆心角是周角所对的弧,便可把1°的弧规定为一个圆周的1/360的弧,作为弧的度量单位。
因为n°的角是周角的n/360,所以n°的圆心角所对的弧是n°的弧。
建立了圆心角与所对弧的度数之间的联系后,对研究与圆有关的直线的平行、垂直,所成的角的度数提供了很大的方便。
例4和例5都是综合运用本节所学的圆的有关定理以及解直角三角形的知识解决有关圆心角、弧的度数及弦长的计算,使学生感受不同数学知识之间的实质性联系。
圆的对称性教案

教学过程一、课堂导入前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴。
圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴二、复习预习圆是轴对称图形,其对称轴是任意一条过圆心的直线.下面我们来认识一下弧、弦、直径这些与圆有关的概念1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc)2.弦:连接圆上任意两点的线段叫做弦(chord).3.直径:经过圆心的弦叫直径(diameter).如下图,以A、B为端点的弧记作 AB,读作“圆弧AB”或“弧AB”;线段AB是⊙O的一条弦,弧CD是⊙O的一条直径注意:1.弧包括优弧(major arc)和劣弧(minor arc),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A、D 为端点的弧有两条:优弧ACD(记作 ACD),劣弧ABD(记作 AD).半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.2.直径是弦,但弦不一定是直径.三、知识讲解考点1垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧;如图,∵CD是圆O的直径,CD⊥AB于E,∴= ,=C垂径定理的推论1:平分弦(此弦非直径)的直径,垂直于弦,并且平分弦所对的弧如图,∵CD是圆O的直径,EA=EB,∴= ,=,⊥垂径定理的推论2:平分弦所对的一条弧的直径,垂直平分这条弦,并且平分弦所对的另一条弧如图,∵CD是圆O 的直径,∴= ,=,⊥C垂径定理的推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
四、例题精析例1 如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()【规范解答】解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,∵PC=4,OP=3,∴OC===5.故选C.【总结与反思】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键考点二例2 如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()【规范解答】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.【总结与反思】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键考点三如图,⊙O的直径AB垂直弦CD于M,且M是半径OB的中点,CD=8cm,求直径AB的长.【规范解答】解:连接OC,∵直径AB⊥CD,∴CM=DM=cm,∵M是OB的中点,∴OM=由勾股定理得:OC2=OM2+CM2∴,∴OC=cm(3分)∴直径AB的长=cm.【总结与反思】解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解考点四如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D,(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹);(2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.【规范解答】解:(1)M就是所求的圆的圆心;(2)设圆的半径是r.在直角△ADM中,AM=r,AD=4,DM=r﹣2.根据勾股定理即可得到:r2=42+(r﹣2)2解得:r=5.即圆的半径为5cm【反思与总结】圆中半径、弦长、弦心距之间计算可以转化为直角三角形之间的计算课程小结。
初三培优专题18 圆的对称性

AC
DB
(第 6 题图)
O
B
A
EC
DF
(第 7 题图)
A
E CP F D
B (第 8 题图)
7.如图,AB 为⊙O 的直径,CD 是弦.若 AB=10cm,CD=8cm,那么 A,B 两点到直线 CD 的距离之和
为( )
A.12cm
B.10cm
C.8cm
D.6cm
8.如图,半径为 2 的⊙O 中,弦 AB 与弦 CD 垂直相交于点 P,连结 OP.若 OP=1,求 AB2+CD2 的
AP
BE
C
O
F
D 图3
⑵ 如图 2,若弦 BC 经过半径 OA 的中点 E,F 是 C»D 的中点,G 是 F»B 的中点,⊙O 的半径为 1,求弦
FG 的长; ⑶ 如图 3,在⑵中若弦 BC 经过半径 OA 的中点 E,P 为劣弧上一动点,连结 PA,PB,PD,PF,求证:
PA PF
的定值.
PB PD
【例 4】如图,已知圆内接△ABC 中,AB>AC,D 为 B¼AC 的中点,DE⊥AB 于 E.求证:BD2-AD2=AB g
AC. (天津市竞赛试题)
解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明. D A E C
B
圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形
⑴如图 1,PA+PB= 3 PH;
⑵如图 2,PA+PB=PH;
⑶ 进 一 步 , 如 图 3 , 若 ∠ APB=α , PH 平 分 ∠ APB , 则 PA+PB=2PHcos 为 定
圆圆的对称性课件ppt

在几何中,圆的中心对称性可以用于证明和计算与圆 相关的几何性质和定理。
在三角函数中,圆的中心对称性可以用于研究三角函 数的图像和性质,以及进行相关的计算和证明。
05
圆形对称性与其他几何形状的关系
圆形对称性与其他几何形状的关系
圆形与正方形的关系
圆圆的对称性课件ppt
xx年xx月xx日
contents
目录
• 引言 • 圆圆的对称性 • 圆的轴对称性 • 圆中心对称性 • 圆形对称性与其他几何形状的关系 • 教学反思与总结
01
引言
课程背景
对称性是数学和物理中的基本概念,涉及众多领域如几何、 代数、分析和物理学等。
对称性在数学教育中也扮演着重要角色,可以帮助学生理解 抽象概念并培养解决难题的能力。
VS
价值
通过对称性的学习,可以帮助学生更好地 理解其他学科中的一些概念和原理,提高 跨学科学习的能力。此外,对称性在生活 中也有广泛的应用,如建筑设计、图案设 计等,学习对称性的相关知识可以为学生 的未来职业和生活提供一定的帮助。
THANKS
谢谢您的观看
圆在生活中的应用非常广泛,比如建筑设计、机械制造、艺术图案等领域都会涉 及到圆及其对称性。
04
圆中心对称性
中心对称性的定义
中心对称性是指对于一个点集,如果将其中每个点的位置相 对于某一点进行变换,那么该点集的形状和大小保持不变, 且变换前后的点集关于该点成中心对称。
在二维平面内,如果将一个图形相对于圆心进行旋转180度, 则旋转后的图形与原图形关于圆心成中心对称。
圆的中心对称性的性质
圆的中心对称性具有旋转不变 性和反射对称性。
3.1圆的对称性

2、如图,⊙O的半径为5cm,弦AB为6cm, 求圆心O到弦AB的距离。
O
∟
A
E
B
3、如图,在⊙O中,AB、AC为互相垂直且 相等的两条弦,OD⊥AB于D,OE⊥AC于E, 四边形ADOE的形状?
C
E
·
D B
O
A
4、已知:如图,在以O为圆心的两个同心圆 中,大圆的弦AB交小圆于C,D两点。你认为 AC和BD有什么关系?为什么?
AB的中点吗?
①
垂径定理:
②
如何判断圆的圆心的位置
弦的垂直平分线必定经过圆心!
③ 在解有关题目的时候,
常利用直角三角形的勾股定理!
M A
. O
B A C
C A O E
.
.O
N
D B
D
B
小结:
解决有关弦的问题,经常是过圆心作 弦的垂线,或作垂直于弦的直径,连结半 径等辅助线,为应用垂径定理创造条件。
它有无数条对称轴.
●
O
交流合作探究:
CD为⊙O 直径,作弦 AB,使
AB⊥CD,若将⊙O 沿直径CD所
D
在的直线折叠,
A M C
B
D
探究总结:
根据前面的分析, 我们用数学语言表示一下条件和结论 条件: CD是直径 CD⊥AB 总结:垂径定理 结论: AM=BM AC BC
⌒= ⌒
过圆心的直线或线段
3.1 圆的对称性
一、圆的定义(旋转法定义)
1、在一个平面内,线段OP绕它固定的一个端点 O旋转一周,则• 另一个端点P所形成的封闭曲线 叫做圆。
固定的端点O叫做圆心,线段OP叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的对称性 关键问答 ①在同圆或等圆中,假设两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其他各组量都具有什么关系?
②弧、弦、圆心角之间的相等关系成立的前提是什么? 1.①以下命题中正确的有( )
(1)相等的圆心角所对的弧相等;(2)圆是中心对称图形;(3)长度相等的两条弧是等弧;(4)圆是轴对称图形,任何一条过圆心的直线都是它的对称轴.
A.4个 B.3个 C.2个 D.1个 2.如图3-2-1,AB是⊙O的直径,D,C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE的度数是( )
图3-2-1 A.40° B.60° C.80° D.120°
3.②如图3-2-2,ABD︵=BDC︵,假定AB=3,那么CD=________.
图3-2-2 命题点 1 应用圆的对称性解题 [热度:81%] 4.③如图3-2-3所示,三个大小不同的圆的圆心都为O,AB=4 cm,CD⊥AB于点O,
那么图中阴影局部的面积为________cm2.
图3-2-3 方法点拨 ③求解不规那么图形的面积,解题的关键是将不规那么图形转化为规那么图形. 5.学校有一个圆形花坛,现要求将它三等分,以便在下面种植三种不同的花,如图3-2-4,你以为契合设计要求的图案是________.(将一切契合设计要求的图案的序号都填上)
图3-2-4 命题点 2 圆心角、弧、弦之间的关系 [热度:74%] 6.④如图3-2-5,在⊙O中,AB=2CD,那么( )
图3-2-5
A.AB︵>2CD︵ B.AB︵<2CD︵
C.AB︵=2CD︵ D.AB︵与2CD︵的大小关系不能确定
易错警示 ④留意弧与弦的对应关系. 7.如图3-2-6,C,D为半圆的三等分点,那么以下说法正确的有( ) 图3-2-6
①AD︵=CD︵=BC︵;②∠AOD=∠DOC=∠BOC;③AD=CD=OC;④△AOD沿OD翻折与△COD重合.
A.4个 B.3个 C.2个 D.1个
8.如图3-2-7,在三个等圆上各有一条劣弧:AB︵,CD︵,EF︵,假设AB︵+CD︵=EF︵,
那么AB+CD与EF的大小关系是( )
图3-2-7 A.AB+CD=EF B.AB+CD<EF C.AB+CD>EF D.大小关系不确定 命题点 3 应用圆心角、弧、弦之间的关系停止计算或证明 [热度:100%] 9.⑤如图3-2-8,AB是⊙O的直径,四边形ABCD内接于⊙O,假定BC=CD=DA=4
cm,那么⊙O的周长为( )
图3-2-8 A.5π cm B.6π cm C.8π cm D.9π cm 解题打破 ⑤应用同圆中,等弦所对的圆心角相等,再结合圆的性质,即可处置. 10.⑥⑦形如半圆的量角器的直径为4,把它放在如图3-2-9所示的平面直角坐标系中(量 角器的中心与坐标原点O重合,零刻度线在x轴上),衔接60°和120°刻度线的端点P,Q,线段PQ交y轴于点A,那么点A的坐标为( )
图3-2-9 A.(-1,3) B.(0,3) C.(3,0) D.(1,3) 方法点拨 ⑥留意坐标、线段长度、角度三者之间的相互转化. 拓展探求 ⑦假设将条件〝衔接60°和120°刻度线的端点〞改为〝衔接45°和135°刻度线的端点〞,那么结果又是多少?
11.如图3-2-10,⊙O经过五边形OABCD的四个顶点.假定ABD︵的度数是150°,
∠A=65°,∠D=60°,那么BC︵的度数是( ) 图3-2-10 A.25° B.40° C.50° D.55° 12.半径为5的⊙O中,弦AB=52,弦AC=5,那么∠BAC的度数是________.
13.⑧⑨2021·牡丹江如图3-2-11,在⊙O中,AC︵= CB︵,CD⊥OA于点D,CE⊥OB
于点E,求证:AD=BE.
图3-2-11 解题打破 ⑧衔接OC,你能失掉OD=OE吗? 方法点拨 ⑨证明两条线段相等的方法:(1)证明三角形全等;(2)证明等腰三角形;(3)应用相等线段的和(或差)证明.
14.如图3-2-12,A,B,C,D,E,F是⊙O的六等分点. (1)衔接AB,AD,AF,求证:AB+AF=AD; (2)⑩假定P是圆周上异于六等分点的动点,衔接PB,PD,PF,写出这三条线段长度的
数量关系(不用说明理由). 图3-2-12 易错警示 ⑩需思索点P的位置状况. 15.:如图3-2-13,P为⊙O的直径AB上的一点,EF,CD为过点P的两条弦,且∠DPB=∠EPB.
图3-2-13 求证:(1)CD=EF;
(2)CE︵=DF︵. 16.⑪:如图3-2-14,点A是半圆上的一个三等分点,B是AN︵的中点,P是直径
MN上一动点,⊙O的半径为1,那么AP+BP的最小值为________.
图3-2-14 解题打破 ⑪(1)如何将两线段之和最小的效果转化为〝两点之间线段最短〞的效果?(2)如何计算两点之间的距离?
17.如图3-2-15,A,B是圆O上的两点,∠AOB=120°,C是劣弧AB的中点. (1)试判别四边形OACB的外形,并说明理由; (2)延伸OA至点P,使得AP=OA,衔接PC,假定圆O的半径R=2,求PC的长. 图3-2-15
18.⑫如图3-2-16,∠AOB=90°,C,D是AB︵的三等分点,衔接AB与OC,OD区
分交于点E,F.求证:AE=BF=CD.
图3-2-16 解题打破 ⑫衔接AC,BD,先证明AC=AE,BD=BF,再结合AC=CD=BD即可处置效果.
详解详析 1.C 2.B [解析] ∵D,C是劣弧EB的三等分点,∠BOC=40°,∴∠EOD=∠COD=∠BOC=40°,∴∠AOE=60°.应选B.
3.3 [解析] ∵ABD︵=BDC︵,∴ABD︵-BD︵=BDC︵-BD︵,即AB︵=CD︵,∴CD=AB=3.
4.π [解析] 依据圆的对称性可得图中阴影局部的面积正好是大圆面积的14,
故阴影局部的面积为14π(4÷2)2=π(cm2).
5.②③④ [解析] ②和③都是先把圆三等分,然后依据圆的旋转不变性,在每一局部外做了相反的图形;④是把圆六等分,每一种占其中的2份.故②③④契合要求.
6.A [解析] 如图,把2CD︵作出来,变成一段弧,然后比拟2CD︵与AB︵的大小.
作DE︵=CD︵,那么CE︵=2CD︵.
∵在△CDE中, CD+DE>CE, ∴2CD>CE. ∵AB=2CD,∴AB>CE,
∴AB︵>CE︵,即AB︵>2CD︵.
7.A [解析] ∵C,D为半圆的三等分点,
∴AD︵=CD︵=BC︵.
依据在同圆或等圆中,等弧所对的圆心角相等,等弧所对的弦相等知AD=CD=BC,∠AOD=∠DOC=∠BOC=60°.
又∵AO=OD=OC=OB, ∴△AOD≌△COD≌△COB, ∴四种说法都正确.应选A.
8.C [解析] 在EF︵上取一点M,使EM︵=AB︵,那么FM︵=CD︵,∴AB=EM,CD=FM.
在△MEF中,FM+EM >EF,∴AB+CD>EF.
9.C [解析] 衔接OD,OC. ∵AB是⊙O的直径,四边形ABCD内接于⊙O,BC=CD=DA=4 cm,
∴DA︵=CD︵=BC︵, ∴∠AOD=∠DOC=∠BOC=60°. 又∵OA=OD,∴△AOD是等边三角形, ∴OA=AD=4 cm, ∴⊙O的周长=2×4π=8π(cm). 10.B [解析] 衔接OQ,OP,那么∠POQ=120°-60°=60°.又∵OP=OQ,∴△POQ是等边三角形,∴PQ=OP=OQ=12×4=2,∠OPQ=∠OQP=60°.又∵∠QAO=90°,∴AQ=OQcos60°=1.在Rt△AOQ中,由勾股定理可得OA=22-12=3,∴点A的坐标为()0,3.应选B.
11.B [解析] 衔接OB,OC. ∵OA=OB=OC=OD, ∴△OAB,△OBC,△OCD都为等腰三角形. ∵∠A=65°,∠D=60°, ∴∠1=180°-2∠A=180°-2×65°=50°,∠2=180°-2∠D=180°-2×60°=60°.
∵ABD︵的度数是150°,∴∠AOD=150°, ∴∠3=∠AOD-∠1-∠2=150°-50°-60°=40°,
即BC︵的度数是40°. 12.105°或15° [解析] 易得∠OAC,∠OAB的度数,那么∠BAC的度数应为∠OAC与∠OAB度数的和或差.
如图,衔接OC,OA,OB. ∵OC=OA=AC=5, ∴△OAC是等边三角形,∴∠OAC=60°. ∵OA=OB=5,AB=52, ∴OA2+OB2=50=AB2, ∴△OAB是等腰直角三角形,∴∠OAB=45°. 点C的位置有两种状况,如图①, ∠BAC=∠OAC+∠OAB=60°+45°=105°; 如图②,∠BAC=∠OAC-∠OAB=60°-45°=15°.