静电纺丝与纳米纤维

静电纺丝与纳米纤维
静电纺丝与纳米纤维

摘要

纳米纤维是一种新型的纤维材料,其优异的性能,潜在的用途引起了各个领域的重视。静电纺丝作为一种生产纳米纤维的方法,有着简单,低成本,纤维形貌可控等特点。本文将对纳米纤维与静电纺丝的发展历史,通过控制纳米纺丝工艺参数制造形貌可控的纤维进行阐述,并对静电纺丝法制备纳米纤维进行展望。关键词:静电纺丝,纳米纤维,形貌,工艺参数

1 绪论

1.1 纳米纤维简介

从古至今,人类从未停止对微观世界的探索。光学显微镜的发明使我们可以观察次微米级的物质特征;1906年,英国物理学家汤姆逊发现电子,并提出原子的枣糕模型;1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。1933年,德国人发明第一台电子显微镜,人类开始可以对纳米级微观世界进行直接的观察。纳米技术由此孕育而生。纳米技术是一门前沿交叉学科,其涉及物理,化学,生物等各个学科,在纳米尺度上研究物质的结构性能与制备。有人预言,纳米技术将成为21世纪的主导,将带来一大批产业革命,其意义不亚于近现代的三次工业革命[1]。

通常人们将长度比直径大千倍以上且具有一定柔韧性和强力的纤细物质统称为纤维。纤维广泛存在于我们生活的各个角落,例如我们穿的衣物。最初的纤维主要来源于自然界,例如棉,麻等植物纤维以及动物毛发等动物纤维。随着科技的发展,人类逐渐掌握了合成纤维的制备技术。合成纤维的化学组成和天然纤维完全不同,是从一些本身并不含有纤维素或蛋白质的物质如石油、煤、天然气、石灰石或农副产品,用化学合成与机械加工的方法制成纤维。如聚酯纤维(涤纶)、聚酰胺纤维(锦纶或尼龙)、聚乙烯醇纤维(维纶)、聚丙烯腈纤维(腈纶)、聚丙烯纤维(丙纶)、聚氯乙烯纤维(氯纶)等。由于日常生产生活对纤维的性能要求越来越高,纤维的制造技术就成了纺织和化工工业关注的重点[2]。

纳米技术的发展不可避免的引起了合成纤维研究者的注意,纳米纤维由此诞生。纳米纤维尺寸效应非常明显,在声、光、磁、电、热等方面表现出许多独特

的性能,受到广泛的关注。将在航空航天、能源、电子、医疗等各个领域发挥作用。然而传统的纤维纺丝纺丝例如熔融纺丝、溶液纺丝等得到的纤维直径只有5-500um,无法得到直径小于100nm的纤维。因此一种新的纺丝方法孕育而生。

1.2 静电纺丝简介

静电纺丝一词来源于electrospinning。1934年,Formhals[3]发明了利用高压电场的作用进行纺丝的设备并申请了专利。这被认为是静电纺丝研究的开端。静电纺丝是借助于高压电场的作用,使得高聚物溶液带电,当液滴表面的电荷斥力大于表面张力时,就会喷射出聚合物的微小液体流,简称“射流”,这些射流沉积在收集板上,得到聚合物纤维。早在1882年,Rayleigh就研究了带电液体的相关性质,他认为当液体表面的电荷斥力大于表面张力时,就会有射流产生,并从理论上给出了产生射流的条件[4]。在Formhals发表专利后,静电纺丝作为一种新型的制备纤维的方法引起了人们的注意,Taylor[5]发现随着电压的升高,在带电液滴尖端会出现一个半球形的悬垂液滴,随后这个液滴会变成圆锥形,电荷继续聚集达到一定浓度时就会有射流在圆锥尖端射出,这种现象被称为“泰勒锥”,同时taylor还计算出这个锥角为49.3°。然而,静电纺丝研究的热潮在20世纪80年代才到来。在纳米技术的推动以及对纳米纤维制造的需求,使得人们开始关注静电纺丝技术,静电纺丝技术由此得到迅速发展并得到各国各个课题组的重视。1971年,Baumgarten[6]对丙烯酸的二甲基甲酰胺溶液进行静电纺丝,制的了直径小于1um的纤维。1977年,Martin等[7,8]对多组分溶液静电纺丝进行了研究,一种是具有多种溶剂的溶液用单个喷头纺出,另一种则是同时用多个喷头纺出聚合物纤维收集在一起,验证了多组分溶液进行静电纺丝的可行性。我国对静电纺丝的研究相对较晚,2000年,张锡玮[9]研究了用静电纺丝法纺制纳米级聚丙烯腈纤维毡的方法,分析了纺丝工艺条件与纤维的直径及初生纤维的溶剂残留量的关系并探讨了采用二甲基甲酰胺及适量的丙酮为复合溶剂对纤维性能的影响。2004年,袁晓燕等[10]以丙酮为溶剂,用静电纺丝法,制备了聚丙交酯(PLA)及其与己内酯共聚物(PUA-CL)的超细纤维。考察了溶剂、电压、溶液质量分数及流量对超细纤维形貌和直径的影响。

2静电纺丝加工参数

在进行静电纺丝加工受众多因素的影响,大体上可分为溶液性质和加工参

数。

2.1溶液性质对静电纺丝的影响

2.1.1 聚合物的相对分子质量

聚合物的相对分子质量是聚合物本身的一种重要参数,由于它直接影响到聚合物溶液的流动性能和电学性能,因此也是影响静电纺丝的一种重要参数。一般来说,相对分子质量越高,高分子链的链长越长,也越溶液缠结,溶液粘度也越大。高分子链进行缠结使聚合物溶液具有一定的粘度,是聚合物溶液能过进行静电纺丝的必要条件。这是因为在射流的过程中,要保证射流的连续性,防止射流断裂。分子链缠结,沿射流方向进行取向,就可以避免射流发生断裂得到珠粒纤维。Koski[11]等人研究了聚乙烯醇相对分子质量对静电纺丝形貌的影响,发现在聚合物容易浓度一定的情况下,当聚乙烯醇的相对分子质量为9000-10000时,静电纺丝得到的纤维为珠粒纤维,这说明纤维在纺丝过程中发生了断裂,聚合物分子链在纺丝过程中没有取向完全;当相对分子质量达到13000-23000时,静电纺丝得到了无珠粒的纤维,这表明此时的纤维没有断裂,分子链在纺丝过程中由于拉伸的作用取向完全。

由此可以看出,分子链在溶液中的缠结程度直接影响到纤维中珠粒的形成。高分子量的聚合物更容易缠结,所以在较低浓度时就能静电纺丝,与此相反低分子量的聚合物需要在较高的浓度下才能进行静电纺丝。

2.1.2 聚合物溶液的浓度

在聚合物的相对分子质量固定时,在其他条件不变的情况下,聚合物溶液浓度就成了影响聚合物分子链缠结的决定性的因素。聚合物以分子状态分散在溶剂中所形成的均相体系称为高分子溶液。一般将溶液的浓度低于1%称为稀溶液,对于稀溶液,随着浓度的提高,孤立存在的无规线团分子开始相互接触,继而交叠,形成所谓的“亚浓溶液”[12]。随着浓度的增加,聚合物溶液的黏度也会增加。在1971年,Gupta[13]就研究了聚合物浓度和黏度对静电纺丝形貌的影响,证实了当聚合物溶液是稀溶液时,由于分子链没有缠结,得到的是聚合物珠粒;加大浓度,聚合物分子链发生缠结,得到了含有珠粒的聚合物纤维;当溶液浓度继续增大,就得到了不含有珠粒的聚合物纤维。何晨光[14]等研究静电纺丝不同参数对PLGA纤维形貌的影响,发现浓度对形貌的影响最大,流速次之,而电场强度相

对影响较小。大量的研究已经证明,在聚合物溶液浓度和黏度较低的情况下,只能得到聚合物珠粒,只有当浓度和黏度超过一定条件时,才能得到连续的聚合物纤维。

如上所述,基于聚合物相对分子质量、聚合物溶液浓度、黏度对静电纺丝纤维形貌影响的一般规律,我们可以调整以上的三种参数对最终得到的纤维形貌进行调控。最近的研究还发现,通过往聚合物溶液中添加无机粒子改变溶液黏度的方法对静电纺丝纤维的形貌进行调控。

2.1.3 聚合物溶液的电导率

静电纺丝的原理是由于在高压电场的作用下,溶液表面液滴的电荷斥力大于表面张力,发生“射流”的现象。因此溶液的电导率会对制得的纤维形态产生直接影响。近些年来,通过将少量有机盐或者无机盐加入到聚合物溶液中,增加离子总量从而提高电导率,来研究静电纺丝纤维形貌的变化成为一个研究热点。Fong[15]等通过往聚环氧乙烷/水溶液中添加NaCl,提高溶液电导率,使得纤维的珠粒明显变小,直径变细。

总得来说,聚合物溶液的各方面性质对静电纺丝纤维的形态都会产生一定影响,其中起决定性作用的是溶液中分子链的缠结情况。聚合物分子链发生缠结,在射流过程中发生取向,就会避免射流断裂,产生珠粒。

2.2 加工参数对静电纺丝的影响

2.2.1 电压

与传统的纺丝方式相比,静电纺丝的最大特点就在于利用高压电场是聚合物溶液发生射流。因此,电场的电压的控制对静电纺丝加工非常重要。一般来说,电场电压必须超过一个临界电压,是的液滴表面的电荷斥力大于表面张力,是射流产生。随着电压的增大,射流的流速会增大,并且变得不稳定,甚至会发生由于射流速度过快导致纤维发生断裂的情况。Deitzel等[16]以7%的聚环氧乙烷水溶液进行静电纺丝,研究电压对纤维形态的影响。他们发现,当电压为5.5kv时,射流能够从喷头尖端稳定喷出;当电压达到7.5kv时,射流变得不稳定,得到的纤维中出现珠粒。陆建巍等[17]发现电压是聚甲醛纤维制备的决定性参数,电压过低,纺丝加工无法进行。

2.2.2 纤维接收距离

纤维接收距离即喷头到接收器的距离。纤维在射流后到达接受器的过程中,纤维中的溶剂必须蒸发才能固化,因此若距离过短,必然导致纤维还未固化完全从而使纤维之间发生粘黏;距离过长则可能使纤维发生断裂。覃小红等[17]研究静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径的关系,发现当接收距离增大时,纤维的分散半径变大,纤维直径变小。常丽娜等[18]研究静电纺丝工艺参数对丝素/壳聚糖纳米纤维直径和形貌的影响,发现极距变大,纤维直径变小且分布均匀。

2.2.3 喷头及纤维接收装置

静电纺丝设备中,喷头的种类很多,例如单喷头、同轴喷头、并列喷头、多头喷头等等,喷头直径也各不相同。喷头直径过细,由于高聚物溶液黏度较大,溶液发生堵塞;直径过大,与空气接触面增大,导致溶质蒸发,溶液固化,也容易发生堵塞。纤维的接收装置一般都是包覆铝箔的铝板,铜板或者铁板等等,随着研究的深入,一些新的接收装置被开发出来以制得理想的纤维制品。比较多见的有旋转接收装置、平行板接收装置等。Doshi[19]在20世纪90年代就提出,利用旋转接收装置,可以获得高度取向的纳米纤维。Li等[20]利用平行板接收装置同样或者了高度取向的纳米纤维。因此,需要获得高度取向或者特殊形貌的纤维制品,接收装置往往是至关重要的。

除了上述的这些参数外,一些别的因素也会影响静电纺丝,例如溶液注射速度,空气湿度,环境温度等等。总之,静电纺丝纤维的形貌是众多因素共同作用的结果。

3 用静电纺丝法制备纳米纤维

目前用静电纺丝法制备的纳米纤维种类很多,大体上可分为无机纳米纤维,有机纳米纤维,无机/有机复合纳米纤维。这其中碳纳米纤维是研究的重点。

20世纪60年代,碳纤维被发明后就被当做一种重要的工业原料引起了大家的重视,在碳纤维研究初期,主要是用熔融纺丝法进行生产[21]。利用静电纺丝法制造的纤维不仅直径小,而且相对简单,成本低廉,很快引起了碳纤维制造者的注意,碳纳米纤维由此诞生[22]。利用静电纺丝法制造碳纳米纤维的步骤一般是:先配置聚合物溶液,一般常用的是聚丙烯腈的水溶液或者二甲基甲酰胺溶液,经过静电纺丝后在氮气条件下进行高温炭化。其中静电纺丝是控制碳纳米纤维直径

和形貌的关键步骤。Wang[23]研究了利用聚丙烯腈的二甲基甲酰胺溶液进行静电纺丝,并进行了形貌控制。Zussman[24]对通过高温碳化用静电纺丝聚丙烯腈的二甲基甲酰胺溶液的纤维制得的碳纳米纤维结构进行了分析。目前,利用多组分溶液或者不同的喷头、接受装置控制碳纳米纤维形貌的方法也得到了人们的重视。Kim[25]用聚丙烯晴/聚甲基丙烯酸甲酯的二甲基甲酰胺溶液进行静电纺丝得到纤维后,进行高温炭化,得到了中空碳纳米管。也有一些研究致力于利用碳纳米纤维的直径小,比表面积大的特点制造性能优异的超级电容,燃料电池等。Ji等[26]在聚丙烯腈的二甲基甲酰胺溶液中加入Si后用静电纺丝法制得碳纳米纤维,对其进行充放电循环性能进行测试,发现其随着循环次数的增加,容量基本不变,而且要远高于石墨烯。当往聚丙烯腈的二甲基甲酰胺溶液中加入氧化锰或者醋酸锰粒子后用静电纺丝法制得碳纳米纤维,充放电循环性能测试得到了相似的结果[27]。可以看出,利用静电纺丝制造碳纳米纤维,并对其形貌进行控制,得到的制品性能优异,有着广泛的前景。

4 展望

在静电纺丝发展的六十多年里,人们已经对其进行了系统细致的研究,其简单,低廉,纤维形貌可控的特点被人类发掘和接受。其将在工程材料领域特别是在医学、生物、太阳能电池等方面发挥重要作用。当然,其也存在这一些亟待解决的问题,例如可纺聚合物种类有限,产量低,不适合大批量生产,主要处于实验室研究阶段等。静电纺丝以后的发展方向将会主要集中于:提高静电纺丝的产量,如何实现大批量工业化生产等。最后,静电纺纳米纤维是一个新兴的多学科交叉领域,该领域的研究还是处于基础阶段,其在许多领域都有着潜在的用途,这种新型的纤维成型加工方式必将大力发展并改变我们的生活[28-30]。

参考文献

[1] 施利毅. 纳米科技基础[M]. 上海:华东理工大学出版社, 2005.

[2] 杜建时. 卤化银纳米粒子/聚合物纳米复合材料的制备与表征[D]. 吉林大学, 2007.

[3] Formhals A. Process and apparatus fob pbepabing: U.S. Patent 1,975,504[P]. 1934-10-2.

[4] Rayleigh L. XX. On the equilibrium of liquid conducting masses charged with electricity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1882, 14(87): 184-186.

[5] Taylor G. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 280(1382): 383-397.

[6] Baumgarten P K. Experimental characterization of electrospinning: The electrically forced jet and instabilities[J]. J. Colloid Interface Sci, 1971, 36: 71.

[7] Cockshott I D, Martin G E. Fibrillar product of electrostatically spun organic material: U.S. Patent 4,043,331[P]. 1977-8-23.

[8] Cockshott I D, Fildes F J T, Martin G E. Fibrillar lining for prosthetic device: U.S. Patent 4,044,404[P]. 1977-8-30.

[9] 张锡玮, 夏禾. 静电纺丝法纺制纳米级聚丙烯腈纤维毡[J]. 塑料, 2000, 29(2): 16-19.

[10] 袁晓燕, 董存海, 赵瑾, 等. 静电纺丝制备生物降解性聚合物超细纤维[J]. 天津大学学报: 自然科学与工程技术版, 2004, 36(6): 707-709.

[11] Koski, A., K. Yim, and S. Shivkumar. "Effect of molecular weight on fibrous PV A produced by electrospinning." Materials Letters 58.3 (2004): 493-497.

[12] 金日光, 华幼卿. 高分子物理[M]. 化学工业出版社, 2007.

[13] Gupta, Pankaj, et al. "Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent." Polymer 46.13 (2005): 4799-4810.

[14] 何晨光, 等. 静电纺丝的主要参数对PLGA 纤维支架形貌和纤维直径的影响中国生物杂志27.8 (2007): 46-52.

[15] Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999, 40(16): 4585-4592.

[16] Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001, 42(1): 261-272.

[17] 陆建巍, 任祥忠, 陈艺章, 等. 静电纺丝法制备聚甲醛纳米纤维[J]. 高等

学校化学学报, 2008, 29(9): 1870-1873.

[18] 常丽娜, 张幼珠, 张晓东. 静电纺丝工艺参数对丝素/壳聚糖纳米纤维的形貌及直径的影响[J]. 合成纤维, 2006, 35(2): 14-17.

[19] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers[J]. Journal of electrostatics, 1995, 35(2): 151-160.

[20] Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano letters, 2003, 3(8): 1167-1171.

[21] Inagaki M, Kang F. Carbon materials science and engineering: from fundamentals to applications[M]. 清华大学出版社有限公司, 2006.

[22] Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel?[J]. Advanced materials, 2004, 16(14): 1151-1170.

[23] Wang Y, Serrano S, Santiago-Avilés J J. Raman characterization of carbon nanofibers prepared using electrospinning[J]. Synthetic Metals, 2003, 138(3): 423-427.

[24] Zussman E, Chen X, Ding W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J]. Carbon, 2005, 43(10): 2175-2185. [25] Kim C, Jeong Y I, Ngoc B T N, et al. Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs[J]. Small, 2007, 3(1): 91-95.

[26] Ji L, Jung K H, Medford A J, et al. Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization[J]. Journal of Materials Chemistry, 2009, 19(28): 4992-4997.

[27] Ji L, Lin Z, Medford A J, et al. In‐Situ Encapsulation of Nickel Particles in Electrospun Carbon Nanofibers and the Resultant Electrochemical Performance[J]. Chemistry-A European Journal, 2009, 15(41): 10718-10722.

[28] 迟蕾, 姚永毅, 李瑞霞, 等. 静电纺丝方法制备纳米纤维的最新进展[J]. 纺织科技进展, 2004, 5: 1-5.

[29] 左秀琴, 李自轩, 叶志殷. 静电纺丝聚合物加工技术及其应用[J]. 塑料, 2005, 34(3): 1-7.

[30] 钟智丽. 碳纳米纤维的开发现状与应用前景[J]. 纺织导报, 2005 (7): 66-66.

静电纺纳米纤维与药物控制释放

静电纺纳米纤维与药物控制释放 陈义旺博士、教授、博士生导师、洪堡学者。南昌大学化学系主任,理学院副院长。 摘要 将抗肿瘤药物通过静电纺丝的方法装载到纳米纤维中以实现药物的控制释放,载药纳米纤维具有较低的药物突释效应,延长药物释放时间,并且从纳米纤维中缓释的抗肿瘤药物能很好地抑制HepG-2细胞的生长。负载抗肿瘤药物的电纺纳米纤维膜纤维能很好的应用于药物缓释系统,对肿瘤进行定位治疗及癌症手术后的化疗有很好的应用前景。 药物的控制释放一直是药物治疗领域中的重要课题。纳米纤维具有纵横交错的纳米孔结构、尺寸可控性好、比表面积大,是一种良好的新型载药系统;纳米纤维是封装药物的理想材料,它不但能将固体药物以颗粒形式封装入纤维内,还可以将液体药物以双层纤维或链珠状纤维形式进行封装[1,2]。因此,纳米纤维及其复合材料在药物控释系统、组织工程支架、伤口敷料等领域均得到了广泛的应用[3,4]。 研究内容 1.溶液电纺或乳液电纺PEG-PLLA/明胶复合纤维纳米纤维担载亲水/疏水药物控制释放及抗肿 瘤活性研究[5-7]应用。PEG-PLLA纳米纤维作为大环内酯类抗生素药物布雷菲德菌素A(BFA)的控制释放系统,用HPLC测定药物BFA在PBS溶液中的释放曲线,结果表明药物可以长时间的控制释放。用MTT法对含有3%,6%,9%,12%和15%BFA的纳米纤维进行体外抗肿瘤活性测试(人肝癌HepG2细胞),细胞生长抑制率在72h分别为64%,77%,80%,81%和85%。结果证明担载BFA的PEG-PLLA纳米纤维(BFA/PEG-PLLA)的对药物BFA 有很好的控释效果,适合癌症的术后化疗。通过乳液电纺方法成功将亲水药物头孢拉定及疏水的药物五氟尿嘧啶装载入PLGA纤维中,同时装载天然蛋白明胶来提高纤维的细胞粘附能力。装载明胶的纤维具有很好亲水性及力学性能,乳液电纺纤维具有低的药物突释效应,具有低的毒性

纳米蜘蛛——静电纺丝纳米纤维工业化的武器

Production Nozzle-Less Electrospinning Nanofiber Technology Stanislav Petrik and Miroslav Maly Elmarco s.r.o. V Horkach 76/18, CZ-46007 Liberec, Czech Republic ABSTRACT The theoretical background and technical capabilities of the free liquid surface (nozzle-less) electrospinnig process is described. The process is the basis of both laboratory and industrial production machines known as Nanospider TM and developed by Elmarco s.r.o. Technical capabilities of the machines (productivity, nanofiber layer metrics, and quality) are described in detail. Comparison with competing/complementary technologies is given, e.g. nozzle electrospinning, nano-meltblown, and islets-in-the sea. Application fields for nanofiber materials produced by various methods are discussed. Consistency of the technology performance and production capabilities are demonstrated using an example of polyamide nanofiber air filter media. INTRODUCTION Electrospinning methods for creating nanofibers from polymer solutions have been known for decades [1, 2]. The nozzle-less (free liquid surface) technology opened new economically viable possibilities to produce nanofiber layers in a mass industrial scale, and was developed in the past decade [3]. Hundreds of laboratories are currently active in the research of electrospinning process, nanofiber materials, and their applications. Nanofiber nonwoven-structured layers are ideal for creating novel composite materials by combining them with usual nonwovens. The most developed application of this kind of materials is air filtration [4]. liquid filters and separators are being developed intensively with very encouraging results. Also well known are several bio-medical applications utilizing nanofiber materials, often from biocompatible/degradable polymers like PLA, gelatine, collagen, chitosan. These developing applications include wound care, skin-, vessel-, bone- scaffolds, drug delivery systems and many others. [3, 5]. Inorganic/ceramic nanofibers attract growing interest as materials for energy generation and storage (solar and fuel cells, batteries), and catalytic materials [6-10]. To fully explore the extraordinary number of application opportunities of nanofibers, the availability of reliable industrial-level production technology is essential. This paper intends to demonstrate that the technology has matured to this stage.

静电纺丝技术研究及纳米纤维的应用前景..

静电纺丝技术研究及纳米纤维的应用前景 引言: 术语“电纺”来源于“静电纺丝”。虽然电纺这一术语是20世纪90年代才开始使用,但是其基本思想可以追述到60年前。1934一1944年间,FomalaS[1]申请了一系列的专利,发明了用静电场力来制备聚合物纤维的实验装置。1952年,vonnegut和NeubauerI53)发明了电场离子化技术,得到了粒径(0.lmm)均匀、带电程度高的线流。1955年,Drozin进行了不同液体在高电压下,形成气溶胶的研究。1966年,Simons发明了一种装置,用静电场纺丝法制备出了很轻超薄的无纺织物,他在研究中发现,低浓度溶液纺出的纤维较短且细;高浓度溶液纺出的纤维长且连续[2]。1971年,Baumgarten采用静电纺丝法制备出了直径在0.05u m一1.1um的丙烯酸纤维。自从80年代,特别是近些年,由于纳米技术的兴起,使得静电纺丝技术再度引起了纳米材料研究人员的高度关注。采用静电纺丝技术可以很容易的制备出直径在几百微米到几百纳米甚至几十纳米的高质量纤维。目前为止,己经有近上百种高分子采用静电纺丝技术被纺成纳/微米纤维。这些纳/微米纤维有些己经广泛应用于纳米复合材料、传感器、薄膜制造、过滤装置,以及生物医用材料的加工和制造上。本文立足于静电纺丝技术的研究现状,分别从材料的化学组成、纤维的分布方式和特殊结构形态三个方面进行了阐述。同时,概括并展望了纳米纤维的应用领域与前景。 1静电纺丝的基本原理 在电纺丝过程中,喷射装置中装满了充电的聚合物溶液或熔融液。在外加电场作用下,受表面张力作用而保持在喷嘴处的高分子液滴,在电场诱导下表面聚集电荷,受到一个与表面张力方向相反的电场力。当电场逐渐增强时,喷嘴处的液滴由球状被拉长为锥状,形成所谓的“泰勒锥”(Taylorcone)[3-6]。而当电场强度增加至一个临界值时,电场力就会液体的表面张力,从“泰勒锥”中喷出。喷射流在高电场的作用下发生震荡而不稳,产生频率极高的不规则性螺旋运动。

静电纺丝制备纳米纤维

静电纺丝制备MWNTs 高度取向的PSF/MWNTs-Epoxy 杂化纳米纤维 刘大伟,李旭,李刚,杨小平 北京化工大学有机/无机复合材料国家重点实验室,北京,100029 CFRP 复合材料在航天航空领域的广泛应用要求其具有良好的强度及韧性[1,2],然而单向纤维增强树脂基复合材料在垂直于纤维的方向力学性能较差,层间强度低,影响了CFRP 的 整体性能。本课题组采用静电纺丝的方法将MWNTs-Epoxy 预分散在纺丝液中[3],制备 PSF/MWNTs-Epoxy 杂化的纳米纤维膜,以碳纤维预浸布包覆的辊筒作为静电纺丝的接收器,通过将预浸料按照不同角度铺放于辊筒上以接收纳米纤维,来控制碳纳米管在复合材料中的取向,最终实现复合材料性能的可设计性。我们考察了MWNTs 环氧化改性效果,研究了不同MWNTs-Epoxy 含量对PSF/MWNTs-Epoxy 杂化纳米纤维膜微观形貌的影响。研究成果可总结为以下两方面:1)利用纯化、混酸化、环氧化等手段制备了MWNTs-Epoxy 。官能化MWNTs-Epoxy 的环氧基团接枝率为24.87%。MWNTs-Epoxy 在静电纺丝液中分散良好,且静电纺丝液的表面张力和电导率随MWNTs-Epoxy 含量的增加而提高。2)随着MWNTs-Epoxy 含量的升高,通过SEM 、TEM 照片可以看出,PSF/MWNTs-Epoxy 杂化纳米纤维的直径逐渐减少,通过取向红外和拉曼谱图研究发现PSF/MWNTs-Epoxy 杂化纳米纤维以及嵌于其内部的MWNTs-Epoxy 的取向度逐渐提高。MWNTs-Epoxy 良好的分散于PSF/MWNTs-Epoxy 杂化纳米纤维轴向位置。 图 1 5wt% MWNTs-Epoxy 含量的PSF/MWNTs-Epoxy 杂化纳米纤维取向表征图 (a )SEM 照片(b )TEM 照片(c )取向红外谱图(d )偏振拉曼谱图 本研究为江苏省自然科学基金(BK2011227)资助 参考文献: [1] Williams JC, Starke Jr EA. Progress in structural materials for aerospacesystems. Acta Metall 2003;51(10):5775–99. [2] Ahmed K, Noor AK, Venneri SL, Donald B, Paul DB, Hopkins MA. Structurestechnology for future aerospace systems. J Comput Struct 2000;74:507–19. [3] Gang Li , Xiaolong Jia , Zhibin Huang , Bo Zhu , Peng Li , Xiaoping Yang , Wuguo Dai. Prescribed morphology and interface correlation of MWNTs-EP/PSF hybridnanofibers reinforced and toughened epoxy matrix, Materials Chemistry and Physics 134 (2012) 958-965 10μm 10μm (a) (b) (c) (d) 10μm

通过静电纺丝技术制备导电高分子纳米纤维【开题报告】

开题报告 应用化学 通过静电纺丝技术制备导电高分子纳米纤维 一、选题的背景与意义 静电纺丝技术是目前制备纳米纤维最重要的基本方法。由于能直接、连续制备聚合物纳米纤维,因而成为国内外的研究热点。利用静电纺丝技术制备导电聚合物纤维是今年来发展起来的一项新的技术,然而由于导电高分子具有不溶,不熔的特点,利用静电纺丝技术制备导电聚合物纤维过程中遇到了许多困难,主要的问题在于:第一,导电聚合物刚性结构的特性使得静电纺丝过程难以进行;第二,大多数关于静电纺丝制备导电聚合物纤维的研究和应用仅仅处于实验室阶段,因此,必须通过更加深入的研究来探索静电纺丝技术制备聚合物纤维的最科学、最有效的方法,这将作为一个刺激,来实现在工业中大规模生产可控、可重复利用的静电纺丝聚合体纤维。 二、研究的基本内容与拟解决的主要问题: 综述利用静电纺丝技术制备导电聚合物纳米纤维的方法及相应的导电聚合物纤维的用途,综合对比各种方法的优缺点。 制备聚2乙烯基吡啶纳米纤维,利用它作为模板制备聚吡咯纳米纤维,尝试新的合成导电聚合物纳米纤维的方法。 三、研究的方法与技术路线: 合成聚2乙烯基吡啶,将2-乙烯基吡啶在引发剂存在聚合,产生聚2-乙烯基吡啶。 将聚2-乙烯基吡啶同氯金酸混合后,通过静电纺丝直接在高压下纺成纳米纤维。 上述纳米纤维在吡咯蒸汽中进行气相聚合,制备成核壳结构的聚吡咯纳米纤维。四、研究的总体安排与进度: 2010.07.08至2010.07.11:翻译文献,熟悉实验流程,设计实验步骤; 2010.07.12至2010.08.10:通过静电纺丝技术制备导电高分子纳米纤维;2010.11.08至2010.12.25:完成文献综述,文献翻译和开题报告; 2011.04.18至2011.05.08:撰写论文,准备答辩; 2011.05.12至2011.05.19:论文答辩。 五、主要参考文献: [1].Ioannis S. Chronakis , Sven Grapenson , Alexandra Jakob . Science Direct

超疏水静电纺丝纳米纤维

超疏水静电纺丝纳米纤维 摘要:这篇文章介绍了最先进的静电纺丝纳米纤维的科技发展,以及它在自清洁簿膜、智能响应材料和其他相关领域的应用。超疏水自清洁,也成为“荷叶效应”,就是利用表面化学结构和拓扑学的正确结合,在表面形成了一个非常大的接触角并且通过重力使水带着表面上的污垢、颗粒以及其他污染物离开表面。本文简单介绍了超疏水自清洁的理论和静电纺丝过程中的基本原则,为了生成超疏水自清洁表面还讨论了静电纺丝过程的各种参数,这些参数可以有效的控制疏水实体的多渗透性结构的粗糙度,静电纺丝在纳米尺寸上的主要原则以及在通过静电纺丝合成一维材料时存在的困难也被完全的隐藏。另外,本文还比较了不同的静电纺丝纳米纤维的超疏水性能以及它们的科技应用。 关键字:超疏水静电纺丝纳米纤维性能应用展望

Superhydrophobic electrospun nanofibers Abstract: This review describes state-of-the-art scientific and technological developments of electrospun nanofibers and their use in self-cleaning membranes, responsive smart materials, and other related applications. Superhydrophobic self-cleaning, also called the lotus effect, utilizes the right combinations of surface chemistry and topology to form a very high contact angle on a surface and drive water droplets away from it, carrying with them dirt, particles, and other contaminants by way of gravity. A brief introduction to the theory of superhydrophobic self-cleaning and the basic principles of the electrospinning process is presented. Also discussed is electrospinning for the purpose of creating superhydrophobic self-cleaning surfaces under a wide variety of parameters that allow effective control of roughness of the porous structure with hydrophobic entities. The main principle of electrospinning at the nanoscale and existing difficulties in synthesis of one-dimensional materials by electrospinning are also covered thoroughly. The results of different electrospun nanofibers are compared to each other in terms of their superhydrophobic properties and their scientific and technological applications. Key words: superhydrophobic; electrospinning; nanofibers; properties; applications; outlook

静电纺丝纳米纤维的制备工艺及其应用

综述与专论 合成纤维工业,2009,32(4):48CH I NA SYNTHETI C FI BER I NDUSTRY 收稿日期:2008 09 17;修改稿收到日期:2009 05 27。作者简介:董晓英(1956 ),教授。从事纳米材料的教学和科研工作。 静电纺丝纳米纤维的制备工艺及其应用 董晓英1 董 鑫 2 (1.江苏技术师范学院,江苏常州 213001;2.慕尼黑大学,德国慕尼黑 80539)摘 要:简述了静电纺丝制备纳米纤维的原理;探讨了静电纺丝电压、流速、接收距离、溶剂浓度等工艺条 件;介绍了同轴静电纺丝制备皮芯结构的超细纤维及中空纤维技术以及静电纺丝纳米纤维毡在生物医药方面的应用。指出静电纺丝纳米纤维材料在生物医用方面具有广阔的应用前景,进一步实现低压纺丝、开发无毒溶剂,控制同轴静电纺丝纳米纤维的释放性能是今后静电纺丝的研发方向。 关键词:静电纺丝 纳米纤维 工艺 生物 医药 应用 中图分类号:TQ 340.64 文献识别码:A 文章编号:1001 0041(2009)04 0048 04 静电纺丝法是一种高速制备纳米纤维的有效方法,其装置简单,成本低廉,供选择的基体材料和所载药物种类众多,可通过改变电压、流速、接 收距离、溶液浓度配比等纺丝工艺控制纤维形貌,从而控制药物的释放。静电纺丝纳米纤维在生物、医药方面有着广泛的应用。1 静电纺丝及其工艺条件 静电纺丝技术最早报道于1934年的美国专利[1] ,发明人For mhals 用静电斥力的推动成功纺出醋酸纤维素纤维,溶剂为丙酮和乙醇。后来,For mha ls 改进了静电纺丝设备,通过多个针头纺丝或复合纺丝 [2] 。 1969年,英国Taylor [3] 研究了强电场作用下 水/油界面的形成。首先,从理论计算上考虑电场、重力和溶液粘度的影响,建立了锥状物模型,即在高压电场下溶液喷出前的形状称为Tay lor 锥。Tay l o r 还根据其模型计算了喷出时的临界锥角为98.6 。 静电纺丝纤维喷出针头后,在空中弯曲回转,最后落在接收器上,给人多股纤维同时喷出的印 象。阿克隆大学的Dosh i 等[4] 假设带电高分子溶液在喷出后互相排斥,克服表面张力而分裂成若干股纤维,落到接收器上形成无纺纤维毡。但是 麻省理工学院的Shin 等[5]和以色列的Yari n [6] 等通过高速成像,只有1股纤维从喷丝口喷出,然后在电场力作用下快速弯曲旋转,给人以很多股纤维的假象。1971年,杜邦公司的B au m garten [7] 研究了纺丝工艺参数对丙烯酸在N,N 二甲基甲酰(D M F)胺溶液中静电纺丝纤维直径的影响。纺 丝工艺参数主要包括喷射距离、溶液粘度、环境气体、流速和电压等。 1.1 电压 足够的电压是形成连续稳定纤维的先决条件。如果电压过小,则产生静电喷射,形成独立的珠状物。随着电压的增加,逐渐形成串珠结构,电压进一步增大,串珠逐渐减少,直至形成连续稳定 的纤维。Deitzel 等[8] 研究了聚氧化乙烯(PEO )/水体系中电压对喷丝口Tay lor 锥表面的影响。结果表明,当电压较小时,Tay lor 锥形成于针头外悬挂液滴的表面;随电压增加,液滴体积逐渐变小,直至液滴和Tay lor 锥相继消失。同时,纤维上串珠的分布密度也随电压增大而增加。因此,一般适宜电压为10~25kV 。1.2 流速 流速是影响静电纺丝纤维形貌的另一重要参数。M ege lski [9] 等研究了静电纺丝流速对聚苯乙烯/四氢呋喃(THF)体系的影响,随着流速增大,纤维直径增加,纤维表面的孔径也增大。同时,流速增大也促进了更明显的串珠结构,其原因是溶剂在到达接受装置前不能完全挥发。目前所采用的流速为1~3mL /h 。1.3 接收距离 接收距离也会在一定程度上影响静电纺丝的 纤维形貌。Jaeger [10] 等研究了PEO /水溶液的静电纺丝行为,随着接收距离由1c m 增大到3.5c m,纤维直径从19 m 下降到9 m 。根据M egel

静电纺丝法制备SrTiO_3多晶微纳米纤维

Vo.l 28 高等学校化学学报No .72007年7月 CHEM I CAL J OURNAL OF CH I NESE UN I VERSI T I E S 1220~1222 静电纺丝法制备SrTi O 3多晶微纳米纤维 周险峰1,2,赵 勇2,曹新宇2,薛燕峰1,许大鹏1,江 雷2,苏文辉1 (1.吉林大学物理学院,长春130012;2.中国科学院化学研究所分子科学中心,北京100080) 摘要 应用静电纺丝法并结合So l g el 技术制备了SrT i O 3微纳米纤维.SE M,TEM 及电子衍射分析结果显示,于900 煅烧获得的纤维直径分布在50~400n m 之间,其典型直径约为280n m.XRD 分析结果表明,纤维由立方结构的S r T i O 3晶粒组成,平均晶粒尺寸为33n m. 关键词 静电纺丝;溶胶 凝胶;钛酸锶(Sr T i O 3);超细纤维 中图分类号 O 614 文献标识码 A 文章编号 0251 0790(2007)07 1220 03 收稿日期:2007 03 19. 基金项目:国家自然科学基金(批准号:30370406)资助. 联系人简介:许大鹏(1960年出生),男,博士,教授,博士生导师,主要从事稀土纳米材料研究.E m ai:l xudp@jlu .edu .cn 钛酸锶(Sr T i O 3)为典型的ABO 3钙钛矿型氧化物,由于具有高介电常数、低介电损耗和热稳定性好等优点,在电子、机械和陶瓷工业领域中已得到广泛应用[1].近年来,Sr T i O 3纳米材料的制备和研究 已引起了人们的极大兴趣,但已有研究主要集中于纳米粉体和纳米薄膜上 [2,3],而具有准一维结构的Sr T i O 3微纳米纤维的制备及研究还未见报道. 作为一种制备微纳米超细纤维重要而简单的方法,静电纺丝技术被应用于无机材料微纳米纤维的制备始于2002年[4],至今人们已制备出20多种无机材料超细纤维[5~7].当前国际上微米/纳米系统的研究热点是纳米材料的可控调变制备及其在纳电子学中的应用,通过制备尺寸、形貌和结构都可控的微米/纳米结构单元,进而研究组装分子电子器件、纳米结构传感器等新型器件.因此,制备具有准一维结构的Sr T i O 3微纳米电子陶瓷纤维,在纳电子学研究方面具有重要的应用价值.本文应用静电纺丝法并结合溶胶 凝胶(So l ge l)技术,制备了Sr T i O 3多晶微纳米纤维. 1 实验部分 1.1 试剂与仪器 乙酸锶[Sr(C H 3C OO )2 1/2H 2O )],分析纯,A lfa A esar 公司;钛酸四丁酯[T i(OC 4H 9)4],化学纯,北京化学试剂公司;聚乙烯吡咯烷酮(P VP), A.R.级,ALDR I C H 公司,平均分子量1300000;无水乙醇(C 2H 5OH )和冰醋酸(C H 3COOH )均为分析纯,北京化学试剂公司. JEOL JS M 6700F 型扫描电子显微镜(SE M );J EOL 100CX 型透射电子显微镜(TE M );R i g aku D /m ax 2500型X 射线衍射仪(XRD);STA 409PC 型差热 热重分析仪(TG DSC ,NETZSC H 公司). 1.2 前驱体溶胶的配制 在搅拌下,将0 54g 乙酸锶缓慢地加入到10mL 质量分数为10%的PVP 乙醇溶液中,再滴入1mL 冰醋酸,然后把0 85g 钛酸四丁酯边搅拌边滴入到上述溶液中,在室温下搅拌2h,得到前驱体溶胶. 1.3 静电纺丝 将前驱体溶胶加入到由玻璃注射器制成的纺丝器中(纺丝喷头内径为0 8mm ),用一根插入前驱体溶胶中的铜丝作阳极,铝箔作阴极,铝箔与水平面成30!角,阳极和阴极之间的垂直距离为15c m,在18kV 电压下静电纺丝,在铝箔上即得到无序排列的复合超细纤维. 1.4 Sr T i O 3微纳米纤维的制备 将从铝箔上取下来的复合纤维放入马弗炉中,以2 /m i n 的速率升温,在600,800和900 下分

认识静电纺丝

静电纺丝即在高压静电下用聚合物溶液进行纺丝的过程。静电纺丝可以制备直径在几十到几百纳米的纤维,产品具有较高的孔隙率和较大的比表面积,成分多样化,直径分布均匀,在生物医学、环境工程以及纺织等领域具有很高的应用价值。 原理 将聚合物溶液或熔体带上几千至上万伏高压静电,带电的聚合物液滴在电场力的作用下在毛细管的Taylor锥顶点被加速。 当电场力足够大时,聚合物液滴克服表面张力形成喷射细流。在细流喷射过程中溶剂蒸发或固化,最终落在接收装置上,形成类似非织造布状的纤维毡。

装置 静电纺丝的装置主要由推进泵、注射器、高压电源以及接收装置组成。其中,高压电源的正极与负极分别与注射器针头和接收装置相连,而接收装置的形式也是多样化的,可以是静止的平面、高速转动的滚筒或者圆盘。纺丝的参数设置、环境条件等对纺丝过程的影响至关重要。 高聚物

目前静电纺丝技术已经可用于几十种不同的高分子聚合物,既包括聚酯、聚酰胺、聚乙烯醇、聚丙烯腈等柔性高聚物的静电纺丝,也包括聚氨酯弹性体的静电纺丝以及液晶态的刚性高分子聚对苯二甲酰对苯二胺等的静电纺丝。 影响因素 静电纺丝法制备纳米纤维的影响因素很多,这些因素可分为溶液性质,如黏度、弹性、电导率和表面张力;控制变量,如毛细管中的静电压、毛细管口的电势和毛细管口与收集器之间的距离;环境参数,如溶液温度、纺丝环境中的空气湿度和温度、气流速度等。 溶液黏度对纤维性能的影响 同轴静电纺丝

同轴静电纺是在静电纺的基础上改造而来,其基本原理是在两个内径不同但同轴的毛细管中分别注入芯质和壳质溶液,二者在喷头末端汇合,在电场力的作用下固化成为复合纳米纤维。 同轴静电纺丝解决了纺丝时纺丝液必须是均一体系的缺陷,所制备的同轴纤维在均匀性、连续性上都优于其它方法得到的纤维。采用同轴静电纺丝的方法可以制得中空纤维和纳米复合纤维等。 应用

静电纺丝纳米纤维薄膜的应用进展_李蒙蒙

基金项目:国家自然科学基金(20904037)、江苏省自然科学基金(BK2009141); 作者简介:李蒙蒙(1988-),男,硕士研究生,主要从事静电纺丝制备纳米材料及其性质等方面的研究; *通讯联系人,E -mail :dy yang2008@sinano .ac .cn . 静电纺丝纳米纤维薄膜的应用进展 李蒙蒙1,2,朱 瑛1,仰大勇1*,蒋兴宇3,马宏伟1 (1.中国科学院苏州纳米技术与纳米仿生研究所,苏州 215125; 2.青岛大学物理科学学院,青岛 266071; 3.国家纳米科学中心,北京 100190) 摘要:静电纺丝是一种简单而高效制备高分子微纳米纤维的技术,由于设备和实验成本低、纤维产率高、制 备出的纤维比表面积比较大、适用性广泛等独特的优势,近些年来备受关注。静电纺丝的应用是静电纺丝研究 的最基本动力和终极目标,因此成为研究者一直努力的方向。为了研究静电纺丝应用的研究现状和主要发展 方向,本文综述了静电纺丝纳米纤维薄膜几个主要的应用领域,包括组织工程、药物缓释、纳米传感器、能源应 用、生物芯片和催化剂负载等,并展望了未来可能的发展方向。 关键词:静电纺丝;纳米纤维薄膜;应用进展 引言 静电纺丝是一种简便易行、可以直接从聚合物及复合材料制备连续纤维的方法,其制备的纳米纤维薄膜通常是以无纺布形式存在的。静电纺丝技术具有一些突出的优点:设备和实验成本较低,纤维产率较高,制备出的纤维比表面积比较大(纤维直径在几十纳米到几个微米的范围内),并且适用于许多不同种类的材料。这些优点使静电纺丝纳米纤维薄膜在许多领域具有广泛的潜在应用 [1~6]。静电纺丝的原理和设备如图1(a )所示[7],高压电源提供高压,正极接在医用注射器的不锈钢针头上, 负极(接地)接在铝箔上。电压一般在5kV 到30kV 之间,针头到收集极间的距离(工作距离)一般在5cm 到20cm 之间。实验时,将纺丝溶液装入注射器内,并加上高压。由于高压电场的作用,在针头处形成“泰勒锥”。溶液在高电压作用下形成射流,并经过多次分裂,同时溶剂快速挥发,在收集板上就得到了微纳米尺度的纤维,如图1(b )&(c )所示 。 图1 (a )静电纺丝的装置示意图及得到的聚合物纳米纤维的(b )数码照片和(c )电镜照片[7] Fig ure 1 (a )Schematic illustration of electr ospinning se t -up ;(b )Dig ital came ra imag e and (c )SEM image o f electro spun nanofiber s co llected on an aluminum fo il [7] 近年来,静电纺丝逐渐成为材料科学与纳米科技的研究热点之一,吸引着全世界的科技工作者。纵观近期已发表的相关文献,研究的内容包括以下几个方面:(1)新材料静电纺丝的制备,主要包括生物材

静电纺丝纳米纤维膜在过滤领域的应用研究

建设科技 ∣ 81部品技术与应用 建设科技CONSTRUCTION SCIENCE AND TECHNOLOGY 2018年11月上 总第371 期1 前言 随着现代化进程的加快,污染问题也越来越严重。 空气中漂浮的颗粒物浓度超标,由此形成的雾霾天气不 仅影响人们的生活,更是严重危害人民的身心健康;水 资源的匮乏也使得污水处理问题引起人们的极大关注。 因此,开发出有效拦截污染物的过滤材料是全世界共同 的目标。静电纺制备的纤维直径可达到微纳米级,且纤 维直径在一定的程度上可以进行有效调控,大到几微米 小到几十纳米。静电纺丝纳米纤维因其优良的性能被引静电纺丝纳米纤维膜在过滤领域的应用研究 方梦珍1 张弘楠1 覃小红1 匡宁2 (1.东华大学纺织学院,上海 201620;2.中材科技股份有限公司,江苏南京 210012) [摘要]静电纺丝纳米纤维膜具有很高的比表面积、孔隙率和通透性,在多个领域都有着不可替代的作用,尤其是过滤领域。本文简要介绍了近年来国内外静电纺丝纳米纤维膜在空气过滤和液体过滤领域中的研究进展。项目团队在功能型纳米纤维过滤材料研究及产业化方面取得的研究成果,展望了未来在被动式建筑室内空气质量提升方面的应用趋势。 [关键词]静电纺丝;纳米纤维膜;空气过滤;液体过滤;被动式建筑 Progress in Application of Electrospun Nanofibrous Membranes for Filtration Fang Mengzhen 1, Zhang Hongnan 1, Qin Xiaohong 1, Kuang Ning 2 (1.College of Textile of Donghua University, Shanghai, 201620; 2.Sinoma Science & Technology Co., Ltd., Nanjing, 210012, Jiangsu) Abstract : Electrospun nanofibrous membranes enjoy high specific surface area, porosity and permeability, and have an irreplaceable role in many fields, especially in the field of filtration. This review briefly summarizes the progress on application of electrospun nanofibrous membranes in the field of air filtration and liquid filtration in recent years as well as the achievements of the project team in the research and industrialization of functional nanofiber filtration materials. The application trend to improve indoor air quality in passive buildings in the future is prospected. Keywords : Electrospun, nanofibrous membrane, air filtration, liquid filtration, passive buildings 入过滤领域,表现出极大的优势。2 静电纺丝的发展静电纺丝即高分子流体在电场下受到静电力而拉伸成丝的过程,最终固化形成纤维。其最早可以追溯到18世纪中,一种牛顿流体的静电雾化。但是真正被世人认可的静电纺丝的开端是1934年Formhals 申请的关于纺丝装置的专利[1-3],这是首次利用高压静电制备纤维的装置,其专利详细描述了高分子溶液如何在高压DOI: 10.16116/https://www.360docs.net/doc/de10838170.html,ki.jskj.2018.21.014

静电纺丝纳米纤维在过滤材料中的应用

静电纺丝纳米纤维在过滤材料中的应用 戚妙北京永康乐业科技发展有限公司 1.静电纺过滤材料简述 一般说来,人们对于过滤材料原材料的甄选基本会在以下几种材料中进行:天然纤维、合成纤维、玻璃纤维、陶瓷、矿物等等[1-2]。按照不同的加工工艺这些过滤材料可分为以下几类[3]:①机织物、针织物、编织网和纤维束等;②纺粘和熔喷无纺布;③多孔陶瓷材料;④有机膜和无机膜材料; ⑤静电纺丝材料。 传统纤维过滤材料是直通的孔隙,其孔隙率也只有30%~40%[4]。从生产工艺流程角度审视,传统纤维织造过滤材料流程长,产品的生产效率低,主要通过经纬纱之间的孔隙进行过滤,滤料本身产生的阻力也比较大;且织造成型的过滤材料必须在其形成粉尘层之后,才能起到阻挡较小颗粒状物质的作用,如果过滤材料还没有形成粉尘层、过滤层清灰或者其它原因破坏了滤料的粉尘层时,就会导致传统纤维滤料的过滤效率大幅下降。 在过滤材料上运用静电纺丝技术有非常多的优点,现将其归纳成以下几个方面[5-9]。 (1)纤维直径小,均一性好。提高纤维滤材过滤性能的有效方法之一就是降低其纤维的直径,因为对于由直径数十微米的纤维制备出的纤维过滤器,随着纤维直径的降低滤材的过滤效率会得到提高。 (2)小孔径、高孔隙率及高通量。运用静电纺丝技术的纤维孔隙率可达80%~90%,这种结构的滤材在有效地去除亚微米级别以及微米级别的颗粒的同时,对水流只会产生较小的阻碍比。 (3)大比表面积、强吸附力。静电纺纤维有非常大的比表面积,这种结构大大地增加了颗粒沉积在纤维滤材表面的几率,这会对过滤的效果产生巨大的改观。其次,当过滤的颗粒非常小时,这些细小的颗粒会堆积在膜表面,产生所谓的“层效应”,也会使得静电纺丝薄膜的有效孔径尺寸显著下降。 (4)可再生性、节约环保。在实际的过滤过程中,大部分的杂质会留在静电纺丝薄膜的表面,只有其他很少的一部分颗粒会在静电纺薄膜内部和底部沉积,这就决定了该过滤材料方便清洁的特性,它的可持续再生的吸附功能有利于环保要求并会降低成本。 (5)低成本、种类多及工艺可控。静电纺丝已经是高效制备纳米级纤维材料的主要途径之一,它的优点甚多,可纺物质种类涵盖广、生产制造的装置简单、纺丝成本低廉、纺丝工艺可控等等。静电纺丝技术已经成功制备出多种纳米纤维,包括有机、有机/无机复合和无机纳米纤维。 目前应用静电纺丝技术的纳米纤维过滤材料已经可以应用于诸多高要求的过滤领域,其对直径在0.3um以下的颗粒,过滤效率可达到99.97%以上,也由于它出色的过滤精度,该材料具备了广泛应用于电子、生物、医药和防护等领域的前景[10]。 2.静电纺丝在过滤材料的应用 根据不同的应用领域可将对于静电纺丝过滤材料的研究分为以下三个方面: 2.1气体过滤

静电纺丝技术的工艺原理及应用

静电纺丝技术的工艺原理及应用 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。 1、静电纺技术 静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。 1.1 静电纺技术的基本原理 静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。对聚合物纤维电纺过程的图式说明见图1。 静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。液体供给装置是一端带有毛细管的容器(如注射器),其中盛 有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。收集板用导线接地,作为负极,并与高压电源负极相连。另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。电场的大小与毛细管口聚合物溶液的表面张力有关。由于电场的作用,聚合物溶液表面会产生电荷。电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。带电后的聚合物射流经过不稳定拉伸过程,

影响静电纺丝制备纳米纤维的因素有哪些

影响静电纺丝制备纳米纤维的因素有哪些? 静电纺丝技术是制备纳米纤维的有效方法之一,影响因素较多,工艺较难控制。那么影响静电纺丝制备纳米纤维的因素有哪些呢? 纺丝温度对静电纺丝的影响是多方面的,升高温度有利于溶剂的挥发,使射流在电场中快速固化,使纳米纤维直径增大另一方面,纺丝温度变化还会直接影响纺丝液的粘度、表面张力及导电性,比如升高纺丝温度,纺丝液的粘度和表面张力均减小,导电率提高,加快射流分子链的运动速度,在电场力的作用下,射流不稳定性增强,容易形成珠结。 湿度对静电纺丝的影响主要表现在湿度会改变溶剂的挥发性,湿度升高会降低溶剂的挥发速率,湿度降低会增加溶剂的挥发速率,因此,可以通过调节环境湿度对纺丝所得的纳米纤维形貌进行调控。 当所施加的电压不同时,为打破表面张力与电场力的平衡,毛细管顶端的液滴将会产生不同的表面形状,影响然后所产生的喷射液滴及细流尺寸的分布情况、纤维形态和其所传导的电流大小。 纺丝液性质——包括纺丝液的分子质量、浓度、粘度、电导率、表面张力、比热、相变热等。 生产条件——包括施加的电场强度电压纺丝速度、喷丝头与收集板之间的收集距离、纺丝温度、毛细孔直径等。 环境参数——包括室温、湿度、环境气流速度等。 纺丝液粘度直接影响静电纺丝所得的纳米纤维的形貌和性质。纺丝液粘度越大,聚合物分子链越易缠结,射流越不稳定,纺丝难度较大,不易制得直径分布均匀的纳米纤维但是粘度小无法形成射流,只能形成微滴。 静电纺丝过程中,纺丝液由于表面电荷的静电斥力产生射流,在电场力作用下拉伸、固化成膜,因此纺丝液的导电性对纺丝效果有直接影响。选择导电性高的溶剂是最简单直接的方法,或者可以通过向纺丝液中加入无机盐、有机盐、离子液体及导电金属粒子来提高纺丝液的导电性。 静电纺丝过程中,当静电斥力大于溶液的表面张力时纺丝液才会形成射流。纺丝液的表面张力不仅影响泰勒锥的形成,而且还影响射流在高压场中的运动及分裂,对纤维的形貌有决定性作用。表面张力有减小液体表面积的作用,使纺丝液射流变成球形,而高压电场中的电场力以及纺丝液的黏弹力会抑制射流形状的快速变化,从而有利于形成光滑且均一的纤维。 接收距离直接影响电场强度和射流在电场中的飞行和拉伸时间。接收距离小,电场强度会增大,电场力对射流的拉伸作用随之增强,有利于形成直径较小的纳米纤维但是同时也会减小射流拉伸时间,导致溶剂未完全挥发,难以制备直径均匀的纳米纤维。 若纺丝液的喷射速度非常小,无法在喷丝口形成泰勒锥,也即无法进行静电纺丝。随着纺丝液喷射速度增大至某一最佳值时,泰勒锥形成后会不断旋转直至接收板上,喷射过程的间隔时间能充分的将溶剂挥发掉,制备直径较小且分布均匀的纳米纤维;当纺丝液喷射速度过大,射流内部的溶剂含量增大以致无法完全挥发,残余的溶剂使纤维粘结,纤维出现很多珠结。

相关文档
最新文档