静电纺丝技术研究及纳米纤维的应用前景..
静电纺丝技术的原理及应用前景

静电纺丝技术的原理及应用前景随着时代的发展,科技的不断进步,纺织工业也不断得到新的提升,其中静电纺丝技术是近年来突破性的技术之一。
静电纺丝是一种新型的材料制备方法,这种方法可以制备出极细的纤维,具有应用前景广阔。
一、静电纺丝技术的原理静电纺丝是指通过高压电场将高分子材料纤维化的一种方法,其原理是利用电场的力量将聚合物液滴从尖端拉伸,喷到距离高压电极的距离处,同时在喷雾丝所在的电场下强制拉伸成纤维形状。
这种方法可以制备出直径从几纳米到几微米的纳米级纤维。
在静电纺丝技术中,原料物质首先通过溶液的形式送入静电纺丝装置中。
将溶液注入静电喷射电极中,当喷出的溶液滴遇到高压静电场时,液滴表面产生了电荷,由于同性相斥,液滴表面会产生一种电势差,从而导致溶液滴的形成变成了锥状,直至其顶端形成了一个纤维化的喷嘴。
当荷电的液滴通过电场的作用被拉伸时,产生了“喷点”对应的“收点”,在喷点到收点之间产生了电张力,从而拉伸液滴,形成如丝质般的超细纤维。
二、静电纺丝技术的应用前景1. 医疗卫生领域静电纺丝技术在医疗卫生领域的广泛应用。
由于其制备的纤维可模拟自然生物纤维的结构,因而制得产品具有很好的生物有效性,可以用作人工血管、人工血小板、人工心脏瓣膜、骨结构支架等等。
也可以制备用于防疫物资、医疗包装、医用敷贴等等。
2. 纺织领域静电纺丝技术在纺织领域是一种绿色技术。
传统的纺织产品采用有机溶剂、洗涤液等,会产生大量的有害气体和废液,造成严重的环境问题,而静电纺丝可以在无需溶剂的情况下将纤维化,不会污染环境,符合绿色可持续发展的理念。
由于其优秀的性能,静电纺丝技术的应用在穿戴、防守装备、运动装备等方面具有广阔的前景。
3. 能源领域静电纺丝技术可以制备高性能的锂离子电池、超级电容器等能源材料。
新型锂电池具有高比能量、长循环寿命、快速充放电等特点,已经成为电动汽车、移动设备等新型电源的首选。
静电纺丝技术可以制备纳米级、微米级的无序三维材料结构,极大提高了锂离子电池和超级电容器电极的电荷传递速率。
静电纺丝技术的研究及其应用前景

静电纺丝技术的研究及其应用前景静电纺丝,又称为电纺或电喷丝,是一种高效的聚合物加工技术。
该技术利用静电作用将溶解或熔融的聚合物拉出细丝,形成纤维织物。
静电纺丝技术具有高效、环保和简便等优点,被广泛应用于纺织、医疗、建筑和能源等领域。
这篇文章将说明静电纺丝技术的研究进展和应用前景。
一、静电纺丝技术的研究进展静电纺丝技术最早是由杜邦公司的V.B.吉伦等人在1934年发明的。
随着人们对纤维材料性能和纺织加工工艺需求的不断提高,静电纺丝技术也得到了广泛的研究。
目前,静电纺丝技术的研究主要集中在两个方面:一是改善纤维品质,二是提高工艺效率。
1. 改善纤维品质静电纺丝组合机构的优化是改善纤维品质的重要手段。
一些研究人员通过改变电场形状、控制溶液流速和温度等手段,使它们更好地适应静电纺丝。
此外,通过控制纺丝过程中溶液中聚合物的浓度和粘度,或者加入其他化合物,还可以改善纤维的物理性能、光学性能和表面活性。
2. 提高工艺效率静电纺丝技术的工艺效率主要取决于喷嘴的制作和工艺条件的控制。
研究人员通过选择不同的喷嘴材料、改变喷嘴形状和大小,或者改变加热温度和电压条件,使得喷射速度和纤维直径更加稳定,丝线连续性更好,从而提高了纤维的产量和生产效率。
二、静电纺丝技术的应用前景静电纺丝技术作为一种高效的纺织加工技术,不仅具有广泛的应用前景,而且有着巨大的发展潜力。
1. 纺织静电纺丝技术可以用于制备各种纤维材料。
目前,已经有很多研究人员对多孔材料、高分子纳米纤维和智能纤维等领域进行了研究。
这些材料有着广泛的应用,比如用于过滤、分离和传感器等领域。
2. 医疗静电纺丝技术可以用于制备医用材料,比如医用纳米纤维膜、医用绷带和人工血管等。
这些材料具有高度的生物相容性和良好的渗透性,可以大大提高医疗治疗效果。
3. 建筑静电纺丝技术可以用于制备建筑材料,比如健康气息墙的制备、建筑保温材料和建筑防水材料等。
这些材料具有良好的防水、防火性能,并且能够吸附有害气体和减少空气污染等。
静电纺丝技术及其应用前景

静电纺丝技术及其应用前景静电纺丝技术是一种快速、简单和低成本的纺织工艺,在纺织、医疗、能源、环境等领域有着广阔的应用前景。
它利用高压电场作用于高分子溶液或熔体,使其成线状或膜状,并在收集器上固化,从而制备出纳米、亚微米级别的纳米纤维或纳米膜。
本文将从静电纺丝技术的原理、优势、应用等方面进行论述,阐明其应用前景。
静电纺丝技术的原理静电纺丝技术是一种利用高压电场将高分子聚合物或其它材料成线状或膜状的制备技术,其主要原理是在高压电场作用下,高分子溶液或熔体中的电荷在电场作用下向电场强度方向移动,引起流体分子的动态变化,形成电荷密集层,并在电场强度足够大的情况下形成喷雾,最终固化在收集器上。
静电纺丝技术的优势静电纺丝技术具有一系列显著的优点:①制备简单、成本低,纺织过程几乎不需要化学剂及其它附加助剂,避免了传统纺织过程中可能存在的有害物质;②可制备纳米级纤维和纳米膜,表面积大,比表面积高,活性和反应性大,应用前景广阔;③可以制备无纺布、药物缓释材料、3D 及仿生材料等多种功能性材料;④制备过程快速、高效,操作简便快速,纺丝过程可以在常温下完成,不需要耗费过高能量。
静电纺丝技术的应用前景静电纺丝技术在新材料领域的应用前景十分广阔,下面列举几个典型应用场景:1. 纳米纤维材料静电纺丝技术制备的纳米纤维材料具有独特的微观结构和物理化学性质,具有非常广泛的应用前景。
如生物医药领域中使用纳米纤维制备的药物缓释材料、伤口敷料、封膜材料、组织工程支架材料等;在环境污染治理方面使用纳米纤维材料制备的过滤材料、防护材料等等。
2. 功能性膜材料静电纺丝技术的另一个典型应用是制备膜材料。
静电纺丝技术可以制备出超滤、气体分离、催化反应、压电、光学等多种性能的功能膜材料,应用广泛。
3. 纳米复合材料利用静电纺丝技术可以将不同材料的纳米粒子制备成复合材料,增强材料的力学性能,例如制备的纳米复合材料可以用于高性能增强材料、透明导电膜、光电材料以及石墨烯增强材料等领域。
静电纺丝制备纳米纤维的研究进展

静电纺丝制备纳米纤维的研究进展近年来,随着纳米技术的快速发展,纳米材料的应用领域也越来越广泛,其中纳米纤维作为一种新型材料备受关注。
静电纺丝技术作为一种制备纳米纤维的有效方法,其应用范围也越来越广泛。
本文将介绍静电纺丝制备纳米纤维的研究进展。
1. 静电纺丝技术概述静电纺丝技术是一种利用静电场将高分子材料制备成纳米纤维的方法。
该技术具有工艺简单、操作方便、成本低、制备纤维直径可调等优点。
静电纺丝技术离不开两个基本元素:溶液和电场。
高分子材料被溶解在溶液中,经过特定的处理后,在电场的作用下开始拉伸,形成纳米直径的纤维。
2. 静电纺丝技术的优缺点静电纺丝技术在制备纳米纤维方面具有以下优点:①纳米纤维可以制备成连续的纤维丝,其长度可达数百米以上,比传统制备方法的纤维连续性更好;②纳米纤维直径可在10纳米至数微米之间调节;③制备成纳米纤维的材料具有极高的比表面积和孔隙度,这些特性使得其在耐热性、膜分离、天然气储存等方面具有广泛的应用前景。
但是,静电纺丝技术也存在一些缺点:①纤维纳米化会导致纤维的拉伸力和断裂十分容易,因此在制备过程中需要控制拉伸度,避免出现纤维过于脆弱导致纤维丝断裂;②由于溶剂挥发以及电场造成的电荷分布不均,容易导致制备的纳米材料出现不均匀性和不稳定性。
3. 静电纺丝技术的进展目前,在静电纺丝技术领域已有许多研究成果。
例如,在制备金属氧化物、生物纳米纤维、纳米复合材料、药物等方面都有广泛的应用。
例如,学者们在制备PCL(聚己内酯)纳米纤维过程中,将X射线光谱法和原子力显微镜(AFM)技术结合,探究了纤维的结构、力学性能和表面形貌等。
研究结果表明,纤维直径的变化可以显著改变材料的力学性能。
在另一项研究中,学者们使用静电纺丝技术制备出药物包被的聚乳酸(PLA)纳米纤维,实现了药物的缓慢释放,有望在医药领域得到应用。
4. 静电纺丝技术未来发展随着人们对纳米材料需求的增加,静电纺丝技术的应用前景也越来越广阔。
微纳米纤维的研究与应用开辟新的技术领域

微纳米纤维的研究与应用开辟新的技术领域微纳米纤维是指纤维的直径在微米(微米,即百万分之一米)或纳米(纳米,即十亿分之一米)尺度范围内的纤维材料。
由于其纤细的直径和高比表面积,微纳米纤维具有独特的物理、化学和生物学特性,在众多领域具有广阔的应用前景。
本文将重点探讨微纳米纤维的研究和应用,以及其在各领域中所带来的创新和突破。
一、微纳米纤维的制备技术1. 静电纺丝技术静电纺丝技术是目前制备微纳米纤维最常用的方法之一。
该技术通过将高分子溶液通过高电压作用下的电纺丝装置喷射出纤维,在风力或电力作用下,纤维在空中形成纤维网,并最终沉积在接收器上。
静电纺丝技术具有制备简单、成本低廉等优点,已广泛应用于纺织、过滤、医疗等领域。
2. 模板法模板法是通过在纳米尺度尺寸的模板上沉积材料,再移除模板得到微纳米纤维的制备方法。
该方法适用于金属、陶瓷、高分子等不同类型的纤维材料制备。
模板法制备的纤维可以具有多种形状和结构,对于一些特殊用途的纤维制备具有较大优势。
二、微纳米纤维的应用领域1. 纺织领域微纳米纤维可以用于制备高性能的纺织材料,如防弹服、防护服和运动服等。
其纤维直径细小,可以增加纺织品的柔软性和透气性,提高穿着舒适感。
微纳米纤维还具有较高的化学稳定性,抗菌性和防紫外线性能,可用于制备功能纺织品。
2. 环境领域微纳米纤维在环境领域的应用主要体现在过滤材料和吸附材料方面。
纤维的高比表面积和丰富的孔隙结构使其成为理想的过滤材料,可以用于空气和水的净化。
此外,微纳米纤维通过调控其表面性质和化学成分,可以实现对污染物的选择性吸附和分离,具有很高的应用潜力。
3. 生物医学领域微纳米纤维在生物医学领域中具有广泛应用前景。
由于其纤细的直径和高比表面积,微纳米纤维可以模拟人体组织的微观结构,用于细胞培养和组织工程。
此外,微纳米纤维还可以用于药物传输和疾病诊断,通过调控纤维的材料和结构,实现药物的缓释和靶向输送。
4. 新能源领域微纳米纤维在新能源领域的应用主要体现在能量存储材料和光伏材料方面。
静电纺丝纳米纤维的工艺原理、现状及应用前景

静电纺丝纳米纤维的工艺原理、现状及应用前景一、本文概述本文旨在深入探讨静电纺丝纳米纤维的工艺原理、现状及应用前景。
我们将详细阐述静电纺丝技术的基本原理,包括其工作原理、操作步骤以及关键影响因素。
接着,我们将概述当前静电纺丝纳米纤维的研究现状,包括纳米纤维的制备技术、性能调控以及应用领域等方面的最新进展。
我们将展望静电纺丝纳米纤维的未来应用前景,分析其在各个领域中的潜在应用价值以及可能面临的挑战。
通过本文的综述,我们希望能够为相关领域的研究人员提供关于静电纺丝纳米纤维的全面了解,并为未来的研究提供有益的参考和启示。
我们也期望能够引起更多研究者对静电纺丝纳米纤维技术的关注,共同推动其在各个领域的广泛应用和发展。
二、静电纺丝纳米纤维的工艺原理静电纺丝是一种利用静电场力将高分子溶液或熔体拉伸成纳米级纤维的技术。
其工艺原理主要涉及到电场力、表面张力和高分子链的缠结作用。
在静电纺丝过程中,高分子溶液或熔体被置于一个强静电场中。
当电场强度足够大时,液体表面电荷密度增加,形成泰勒锥。
随着电荷的不断积累,电场力克服表面张力,使得泰勒锥的尖端形成射流。
射流在电场力的作用下被迅速拉伸,同时溶剂挥发或熔体冷却固化,最终形成纳米级纤维。
在这个过程中,高分子链的缠结作用也起到了关键作用。
高分子链之间的缠结使得纤维在拉伸过程中保持一定的结构稳定性,防止纤维断裂。
缠结作用还有助于纤维在接收装置上的沉积和收集。
静电纺丝技术具有操作简便、纤维直径可控、可制备多种材料等优点,因此在纳米材料制备、生物医用、环境保护等领域具有广泛的应用前景。
通过深入研究静电纺丝纳米纤维的工艺原理,可以进一步优化纺丝过程,提高纤维的性能和产量,为相关领域的科技进步做出贡献。
三、静电纺丝纳米纤维的现状静电纺丝技术自其诞生以来,在纳米纤维制备领域已经取得了显著的进展,并逐渐发展成为一种高效、可控的纳米纤维生产方法。
目前,静电纺丝纳米纤维的研究与应用已经涉及到了众多领域,如环境保护、生物医疗、能源科技、纺织工程等。
静电纺丝纳米纤维制备技术及其应用研究

静电纺丝纳米纤维制备技术及其应用研究随着科学技术的快速发展和产业的不断创新,纳米材料的制备和应用逐渐成为了研究的焦点。
静电纺丝纳米纤维制备技术就是一种常见的制备纳米材料的技术。
本文将对静电纺丝纳米纤维制备技术及其应用研究进行探讨。
一、静电纺丝纳米纤维制备技术静电纺丝技术是利用电场将高分子液体喷出微米甚至纳米级别纤维的一种制备技术。
静电纺丝技术制备纳米纤维在多个领域得到了广泛应用,例如纺织、生物医学、环保等领域。
静电纺丝技术的原理是将高分子液体通过一个细小的孔洞喷射出来,这个过程中,高分子液体受到外界电场的作用,会形成纤维状的微米级别的细丝。
这些细丝经过后续的处理,就能够得到纳米级别的细丝。
静电纺丝技术制备的纳米纤维具有较大比表面积、高比强度、优异的力学性能、良好的电学性质及生物相容性等优点。
静电纺丝技术制备的纳米纤维可以根据不同的材料和应用领域调整其尺寸和形貌,液态中除了高分子溶液,还可以纯化的金属溶液、无机盐溶液、碳纳米管等物质。
二、静电纺丝纳米纤维的应用研究1、生物医学领域由于纳米纤维具有高比表面积等特性,因此在生物组织工程、体内药物释放、生物传感等领域得到广泛应用。
静电纺丝纳米纤维制备的支架具有具有高比表面积、良好的生物相容性、高度的空隙率和良好的可控性等特点。
这些特点使纳米纤维支架成为了生物组织工程领域的研究热点。
纳米纤维支架通过结构的调节、复合材料制备、表面修饰等方法,可以在生物组织中实现不同的生物学功能,如增强细胞的定向生长、促进纤维组织的生长等。
静电纺丝纳米纤维制备的载药纳米材料具有良好的生物相容性和药物的缓释性能。
这种材料可作为药物释放的载体,以实现更加精准的药物治疗。
纳米纤维在其表面修饰上引入不同的生物分子,如细胞识别和粘附分子,不仅能提高纳米纤维植入后的细胞组织相容性,还可以促进细胞的黏附和增殖等。
2、纺织领域静电纺丝技术制备的纳米纤维具有高比表面积、孔隙结构和微结构控制性能等特点,因此在纺织领域应用也得到了快速发展。
静电纺丝技术在纳米材料制备中的应用研究

静电纺丝技术在纳米材料制备中的应用研究近年来,纳米材料的研究与应用成为科学界的热点之一。
纳米材料具有独特的物理、化学和生物学特性,因此在能源储存、生物医学、环境保护等领域具有广泛的应用前景。
而静电纺丝技术作为一种制备纳米材料的有效方法,受到了广泛的关注。
静电纺丝技术是一种基于静电力的纤维制备方法,可以制备出直径在几纳米至几微米的纳米纤维。
它的原理是通过将高电压施加在聚合物溶液或溶胶中,使溶液表面形成电荷分布不均匀的电场。
在电场的作用下,溶液中的聚合物分子被拉伸成纳米尺度的纤维,并在收集器上形成纳米纤维膜。
静电纺丝技术具有简单、快速、低成本等优点,因此在纳米材料制备中得到了广泛的应用。
首先,静电纺丝技术在纳米材料制备中可以实现对纤维直径的精确控制。
通过调节静电纺丝过程中的电场强度、聚合物浓度和喷丝速度等参数,可以控制纳米纤维的直径。
这种精确控制的能力对于纳米材料的研究和应用非常重要。
例如,在生物医学领域,纳米材料的直径对于细胞渗透性、药物释放速率等性能有着重要影响。
静电纺丝技术可以制备出直径均一的纳米纤维,为纳米材料的应用提供了良好的基础。
其次,静电纺丝技术还可以制备出具有复杂结构的纳米材料。
通过在静电纺丝过程中引入多种聚合物、纳米颗粒或其他功能性物质,可以制备出具有复合结构或多功能的纳米纤维材料。
这种复杂结构的纳米材料在能源储存、传感器、光电器件等领域具有广泛的应用。
例如,将导电材料掺入纳米纤维中,可以制备出具有导电性能的纳米纤维薄膜,用于柔性电子器件的制备。
静电纺丝技术的灵活性和多样性为制备复杂结构的纳米材料提供了新的途径。
此外,静电纺丝技术还可以制备出纳米纤维的三维结构。
传统的静电纺丝技术主要是在平面上制备纳米纤维薄膜,但随着科学技术的进步,研究人员发展出了制备纳米纤维的立体结构的方法。
例如,通过在静电纺丝过程中引入旋转收集器或电极,可以制备出具有纳米纤维网状结构的材料。
这种纳米纤维网状结构具有大量的孔隙和高比表面积,可以应用于催化、过滤、吸附等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电纺丝技术研究及纳米纤维的应用前景引言:术语“电纺”来源于“静电纺丝”。
虽然电纺这一术语是20世纪90年代才开始使用,但是其基本思想可以追述到60年前。
1934一1944年间,FomalaS[1]申请了一系列的专利,发明了用静电场力来制备聚合物纤维的实验装置。
1952年,vonnegut和NeubauerI53)发明了电场离子化技术,得到了粒径(0.lmm)均匀、带电程度高的线流。
1955年,Drozin进行了不同液体在高电压下,形成气溶胶的研究。
1966年,Simons发明了一种装置,用静电场纺丝法制备出了很轻超薄的无纺织物,他在研究中发现,低浓度溶液纺出的纤维较短且细;高浓度溶液纺出的纤维长且连续[2]。
1971年,Baumgarten采用静电纺丝法制备出了直径在0.05u m一1.1um的丙烯酸纤维。
自从80年代,特别是近些年,由于纳米技术的兴起,使得静电纺丝技术再度引起了纳米材料研究人员的高度关注。
采用静电纺丝技术可以很容易的制备出直径在几百微米到几百纳米甚至几十纳米的高质量纤维。
目前为止,己经有近上百种高分子采用静电纺丝技术被纺成纳/微米纤维。
这些纳/微米纤维有些己经广泛应用于纳米复合材料、传感器、薄膜制造、过滤装置,以及生物医用材料的加工和制造上。
本文立足于静电纺丝技术的研究现状,分别从材料的化学组成、纤维的分布方式和特殊结构形态三个方面进行了阐述。
同时,概括并展望了纳米纤维的应用领域与前景。
1静电纺丝的基本原理在电纺丝过程中,喷射装置中装满了充电的聚合物溶液或熔融液。
在外加电场作用下,受表面张力作用而保持在喷嘴处的高分子液滴,在电场诱导下表面聚集电荷,受到一个与表面张力方向相反的电场力。
当电场逐渐增强时,喷嘴处的液滴由球状被拉长为锥状,形成所谓的“泰勒锥”(Taylorcone)[3-6]。
而当电场强度增加至一个临界值时,电场力就会液体的表面张力,从“泰勒锥”中喷出。
喷射流在高电场的作用下发生震荡而不稳,产生频率极高的不规则性螺旋运动。
在高速震荡中,喷射流被迅速拉细,溶剂也迅速挥发,最终形成直径在nm级的纤维,并以随机的方式散落在收集装置上,形成无纺布。
如图1.2所示[7],静电纺丝装置主要由三个部分组成:高压电源、喷头、收集装置。
其中,高压电源可以采用交流电,但目前应用更广泛的是直流电源;收集装置通常采用的是表面光滑且具有良好导电性的铝箔;普通的喷头采用注射针管或玻璃管,较精细的静电纺丝装置还包括控制溶液添加速率的流量控制器。
图1.1静电纺丝装置简图[7]静电纺丝过程是一个流体动力学问题[8]。
为了对纺丝产品的性能、形貌及产量能够加以控制,就有必要对纺丝过程进行定量的分析。
当给用作纺丝的前驱溶液施加高电压时,电场力就克服了溶液的表面张力,从作为正极的喷嘴纺出丝,在接地的负极被接收屏收集。
这个过程大致经历了三个阶段:(1)射流的形成;(2)射流细化:(3)射流固化。
1.1射流的形成根据Taylor理论[9],具有一定勤度的液滴在通电情况下产生微射流是由于电场力的作用导致液体表面产生极大不稳定性造成的,当液滴形成圆锥的半顶角小=49.3°时,液体的表面张力和电场力就达到平衡即形成所谓的Tayloocone。
在最近的文献报道中Yarinlssj等[10-13]人认为泰勒锥半顶角应该等于33.5°。
射流形成的另一个问题是到底需要多大的电场力射流才会产生,Taylor给出了产生射流的临界电压(射流出现“鞭动”所需要的最小电压)公式:其中:H为收集距离,L为毛细管长度,R为毛细管半径,r溶液的表面张力(H、L、R单位cm;r单位dyn/cm)[14]1.2射流的细化对于射流细化,目前还不是完全清楚。
在这一阶段喷射随着喷射细流的进一步细化将产生射流的不稳定。
通常人们认为,当带电射流沿着其运动轨迹被加速时,由于自由电荷的相互排斥作用而分裂成多股射流。
纤维直径的大小好象主要是由射流产生分裂的数目来决定决定。
最近的研究表明,使射流进一步细化的根本原因不是由于自由电荷的相互排斥产生分裂造成的,而是射流喷射过程中产生的高频弯曲、拉伸形成的,射流从喷出到接收屏之间是按照螺旋型轨迹运行的,而不是我们所看到的“分裂”假象[15]。
Shin等采用电动流体力学方程的微扰渐进展开级数方法研究了PEO纺丝过程中的稳定性,在对控制方程进行求解后得到如下结论:射流细化过程可能存在三种类型的不稳定,第一种是经典的Rayleigh 不稳定[16],这种不稳定性和射流的轴线成轴对称;第二种也是轴对称不稳定性;第三种是非轴对称的不稳定性,也叫“鞭动”,主要是有曲张力引起的。
保持其它实验参数不变,电场力将和不稳定性的程度成正比,即当电场较低时,将产生Rayleigh不稳定;电场强时将产生后两中不稳定。
当被电场力加速的射流在其运动过程中不稳固时,将可能出现喷射细流的分叉。
对于射流直径,Baumgarten 等得出,随着溶液中高分子溶剂勃度的增加,原本尖锐的Taylor锥将变成近乎球型锥。
通过等势线逼近法,Baumgarten得到了计算近乎球型Taylor锥半径的表达式:e(c/v.cm)为溶液的介电系数,m为溶液的质量流量〔岁s),r0为计算出的Taylor锥半径,k是和电流有关的无量纲参数,s(amp/voftcm)为电导率,p(岁cm3)流体密度[17]。
1.3射流的固化Yarineta等[18-20]假设在纺丝过程中无多股喷射和分叉情况下,推导发过程中,射流质量和射流体积变化的方程。
在起始质量浓度为6%的溶液进行纺丝,他们计算出,纺出的纤维截面积是原射流截面积的 1.31xl0-3倍。
尽管通过此方程得到了固化速率,但对纺丝过程中固化速率随电场强度、接收距离等如何变化还不是很清楚。
2. 静电纺丝的研究现状最近几年,有关静电纺丝的文章和研究成果与过去相比具有飞跃式的发展,与静电纺丝相关的会议也在世界各地举行。
例如,2005年5月底在瑞士St.Gall[21]的瑞士联邦材料测试和研究实验室(EMPA)举行的纤维协会上,许多论文证实了这个领域的研究和技术状况。
2006年7月在吉林大学举办的全国化学会会议上[22],国内的许多纺丝研究者也都纷纷作了研究报告。
该文主要是根据纳米纤维的化学组成、分布形态、特殊结构等方面对静电纺丝的现状进行简单的阐述。
2.1化学组成静电纳米纤维的化学组成可分为:聚合物、聚合物与有机物或者聚合物与聚合物的混合物、聚合物与无机物的混合物。
其实,可直接电纺的材料并不多,对于有些不容易纺丝或者不能纺丝的材料,可以根据产品的性质需要,在其中可添加适量的可纺丝的材料构成两种或者多种材料的混合物。
对于聚合物和无机物的纺丝,国内王策教授[23]领导的研究小组创意性地以固一气反应的方式做出了Pbs/PVP,CdS/PvP无机一聚合物纤维。
无机一有机一纤维材料的研究很有价值,因为它可以结合有机材料与无机材料的优点。
例如,有机材料有好的粘弹性、质轻、可加工处理性等,无机材料的可铸性、耐热耐化学腐蚀性、好的硬度、优良的发光性质。
2.2分布形态静电纺丝的纤维分布形态总体上是随意的,但也有平行丝和螺旋形态纤维的成功研究案例。
其一是大多数纺丝存在的方式。
其二是Royal K∞8ick等[24]利用不导电高分子(PEO)与导电高分子(PASA)双组分溶液的电纺丝试验获得螺旋结构的纤维,并解释这种现象的原因可能是纤维的粘弹力超过电荷问的库仑力导致了纤维发生螺旋结构的分布。
Xin Yi等[25]人利用导电的PPV与不导电的PvP 的混合溶液进行电纺,也得到了螺旋结构的纤维,并发现电压对螺旋结构有影响。
通过对接收装置的调整可以得到相互平行的纳米纤维,Akr叽大学的R肋ek盯等人用高速旋转的圆桶作为接收装置(图1.2)[25],制备了或多或少的相互平行的纳米纤维。
P.勋tta等人也采用圆筒作为接受装置,得到了平行排列的电纺丝。
对于此类装置要注意圆筒滚动的速度、铜丝的直径、铜丝间的距离以及聚合物的种类。
其三是Yo Xia等[26-30]人用平行接收极接收电纺丝的方法,获得了具有一定排列规则的纳米纤维。
J.W即do击等[31-36]人用金属框架作为接收装置,得到了平行排列的聚酰胺纳米纤维,其平均直径为50nm。
之后,陆续有人也做出了平行排列的纤维。
图1.2单轴取向的纳米纤维阵列。
A为接受装置,B,C为扫描图片。
[25]2.3特殊结构的电纺纳米纤维通常静电纺丝得到的纤维都是表面光滑,纤维内部为实体的结构。
目前来讲,还存在一些特殊结构的纺丝,主要是核壳结构[图1.3][36]、纤维内部为空的管状结构、多孔结构。
图1.3同轴法制备核壳结构纳米纤维。
A装置示意图B喷丝时刻液滴的光学照片C制得核壳结构纳米纤维的透射电镜图[36].3应用3.1 电学和光学领域的应用导电纳米纤维的传导率主要取决于纤维的形态,如纤维缺陷量和厚度,因此在静电纺丝过程中,可以通过调整聚合物和溶剂的配合比例来获得不同形态的纤维,从而达到控制混合纳米纤维传导率的目的,所以,导电纳米纤维在微电子和光电子领域的运用中有着潜在的优势。
由于电纺纳米丝在电子设备和光电设备中的潜在应用前景,所以纳米纤维同其它的具有半导体特性的材料一样也倍受关注。
1k SII l(aIlg等[37-43]人通过电纺得到了具有导电性能的聚吡咯的纳米纤维,并发现纤维的电导率是0.5s/cm,比粉末和膜的电导率要高,因此预测此类纤维有望作为电极材料。
3.2服装方面纳米纤维具有很高的比表面积,可用作吸附媒质、生物杀灭剂等。
用电纺丝制成的纤维毡对于空气和水没有太大阻力,对于烟雾颗粒等化学有害制剂的渗透则有很好的阻挡作用,用这些纤维制作的服装,能够高效地吸收并降解有害液体和气体,还能有效地扩散蒸汽,即所谓的可呼吸性。
因此,可用作防护服保护人类免受核武器、生化武器、化学武器、毒气及传染病的侵袭。
Se岫挚.m ke等[44-47]人用电纺的方法得到了聚丙烯的纤维毡,实验证明聚丙烯的纤维毡对空气渗透率和水分的传输功能都比普通的织布要好,舒适度更好,可作为农业工作者的防护服。
Jen—Taut Yeh等[48-49]人对聚乙烯吡咯烷酮和聚乙酰核多糖混合物进行电纺。
研究结构表明当聚乙酰核多糖的含量高时,纤维具有抵制细菌侵蚀的作用。
3.3 静电纺丝在生物医学领域的应用电纺丝在生物医用材料中的应用包括组织功能,人造血管,组织修复,伤口包扎制品,药物载体等方面具有较广泛的应用。
利用静电纺丝法制备的纳米纤维具有比表面积高,空隙率高的特点,因此这类纤维是最理想的人造血管材料。
人造血管的多孔性和顺应性能影响组织反应,多孔的人造血管有利于宿主组织的长入,使其内壁能更好的内膜化。