初中数学定理知识点汇总八年级

合集下载

(完整版)八年级数学重点知识点(全)

(完整版)八年级数学重点知识点(全)

初二数学知识点因式分解1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b)(a- b);(2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“⎛p ⎫2x2+px+q 是完全平方式⇔ ⎪= q ”.⎝2 ⎭分式1.分式:一般地,用 A、B 表示两个整式,A÷B就可以表示为A的形式,如果 B 中含有字母,⎩式子 A B叫做分式.⎧ 整式2. 有理式:整式与分式统称有理式;即 有理式 ⎨ 分式.3. 对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零, 则分式无意义.4. 分式的基本性质与应用:(1) 若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2) 注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;- 分 子 - 分子 分子 分子即 - - 分母 = 分母 = - 分母 = -分母(3) 繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5. 分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6. 最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7. 分式的乘除法法则:a ⋅ c = ac,a ÷ c = a ⋅ d = ad .b d bdb d bc bc⎛ a ⎫n8. 分式的乘方:b ⎪ = a n b n .(n 为正整数). ⎝ ⎭9. 负整指数计算法则:(1)公式: a 0=1(a≠0), a -n= 1 a n(a≠0);(2) 正整指数的运算法则都可用于负整指数计算;⎛a ⎫-n(3) 公式: b ⎪ ⎛ b ⎫n= a ⎪ a -n , b -m b m ; a n ⎝ ⎭ ⎝ ⎭(4)公式: (-1)-2=1, (-1)-3=-1.=10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.12.同分母与异分母的分式加减法法则:a±bc c=a ± b;ca±cb d=adbd±bcbd=ad ± bc.bd13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x 是未知数,a 和 b 是用字母表示的已知数,对 x 来说,字母 a 是 x 的系数,叫做字母系数,字母 b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用 a、b、c 等表示已知数,用 x、y、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为 0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方1.平方根的定义:若x2=a,那么 x 叫a 的平方根,(即a 的平方根是 x);注意:(1)a 叫x 的平方数,(2)已知 x 求a 叫乘方,已知 a 求x 叫开方,乘方与开方互为逆运算.2.平方根的性质:a a a a ⎨- a (1)正数的平方根是一对相反数;(2)0 的平方根还是 0;(3)负数没有平方根.3. 平方根的表示方法:a 的平方根表示为和-.注意: 可以看作是一个数,也可以认为是一个数开二次方的运算.4. 算术平方根:正数 a 的正的平方根叫 a 的算术平方根,表示为 .注意:0 的算术平方根还是0.5. 三个重要非负数: a 2≥0 ,|a|≥0 ,≥0 .注意:非负数之和为 0,说明它们都是 0.6. 两个重要公式:(1)( a )2 = a ; (a≥0)(2) = a = ⎧a⎩ (a ≥ 0) . (a < 0)7. 立方根的定义:若 x 3=a,那么 x 叫 a 的立方根,(即 a 的立方根是 x ).注意:(1)a 叫 x 的立方数;(2)a 的立方根表示为3 a ;即把 a 开三次方.8. 立方根的性质:(1)正数的立方根是一个正数;(2)0 的立方根还是 0;(3)负数的立方根是一个负数.9. 立方根的特性: 3 - a = -3 a .10. 无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数.11. 实数:有理数和无理数统称实数.⎧ ⎧正有理数⎫⎪ ⎪ ⎪ 有理数⎨0 ⎬有限小数与无限循环小数 12. 实数的分类:(1) 实数⎪ ⎪负有理数⎪ (2) ⎨ ⎩ ⎭ ⎪⎧正无理数⎫⎪无理数⎨ ⎬无限不循环小数 ⎩⎪⎩负无理数⎭ a a 2⎩⎧正实数 ⎪ ⎨0. ⎪负实数13. 数轴的性质:数轴上的点与实数一一对应.14. 无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时, 中间过程要多保留一位;(2)要求记忆: 三角形= 1.414= 1.732 = 2.236 .几何 A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)2 3 5 实数几何 B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.DE二 常识:1. 三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2. 三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点 都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3. 如图,三角形中,有一个重要的面积等式,即:若 CD⊥AB,BE⊥CA,则 CD·AB=BE·CA.4. 三角形能否成立的条件是:最长边<另两边之和.A5. 直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.6. 分别含 30°、45°、60°的直角三角形是特殊的直角三角形.BC7.如图,双垂图形中,有两个重要的性质,即: AD (1) AC·CB=CD·AB ; (2)∠1=∠B ,∠2=∠A .1 2CB8. 三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9. 全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10. 等边三角形是特殊的等腰三角形.11. 几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12. 符合“AAA”“SSA”条件的三角形不能判定全等.13. 几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14. 几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15. 会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16. 作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形 ABC 中,AB=AC(5)其它。

八年级数学|下册勾股定理预习,知识点归纳+五大题型解析

八年级数学|下册勾股定理预习,知识点归纳+五大题型解析

八年级数学|下册勾股定理预习,知识点归纳+五大题型解析八年级数学学习的勾股定理是初中数学当中为数不多的涉及几何与代数相结合的知识板块之一。

它利用三角形三边的关系与角度的问题相结合,中考当中勾股定理的考点,主要体现在勾股定理的实际应用当中。

由于勾股定理中涉及其三边的关系,所以在涉及到求边长的直角三角形当中,都可以利用三角形作为基础的解题方法。

预习的同学,不仅要了解勾股定理所涉及的内容还要了解其学习中的难点及勾股定理的实际应用,特别是勾股定理涉及到的五大题型当中,最后两种是大家重点关注的内容,它在勾股定理的实际应用当中具有非常典型的代表性。

下面唐老师将带领大家对勾股定理的基础知识归纳以及五大典型题型解析两部分进行综合的讲解与认识,通过这些基础知识的学习,在典型的例题当中该如何进行解答与运用,都是大家在学习勾股定理时应当掌握技巧的具体展现。

一、勾股定理知识点归纳勾股定理主要的知识点就是勾股定理的具体内容,以及勾股定理的逆定理的理解,我们可以通过几何图形的方式,也就是勾股定理的证明,这个过程当中涉及到几种方法,这些方法大家一定要去一一的去整理思路,明白其证明的过程是从何而来的。

虽然在考试当中,勾股定理的证明并不需要大家去掌握,考试也不会考,但是其中涉及到的证明方法可以从代数的方向,左手也可以利用数形结合的方式来进行证明,这种思想对于拓宽大家数学学习的思路都是非常好的,所以对于证明的过程,大家一定要从头到尾理解其证明的思路。

特别提醒,在勾股定理当中,我们都记住其三边的关系为c方等于a 方加b方。

但是在具体的应用过程当中,abc所代表的意义一定要明白,不能用固定的字母来代替,c代表的是直角三角形的斜边,a,b分别代表的是直角三角形的两条直角边,所以当字母发生变化时,我们要提高警惕,以防范低级错误。

二、勾股定理五大题型分类解析类型一、勾股定理的直接应用勾股定理的直接应用其实就是对勾股定理概念的深刻理解,学会利用三边的关系求任意一边的长度,这是利用勾股定理进行其他的运算以及其应用的基础。

【初中数学】圆的相交弦定理、切割线定理和割线定理补充知识点

【初中数学】圆的相交弦定理、切割线定理和割线定理补充知识点

【初中数学】圆的相交弦定理、切割线定理和割线定理补充知识点一、相交弦定理1、相交弦在圆的内部相交的两条弦,称为相交弦.2、相交弦定理圆内的两条相交弦,被交点分成的两条线段的积相等。

几何语言:弦AB和CD相交于⊙O内一点P,那么PA·PB=PC·PD. 3、相交弦定理的证明证明:连接AC、BD由圆周角定理推论得:∠C=∠B,∠A=∠D∴△ACP∽△DBP∴ PA:PD=PC:PB二、切割线定理1、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

几何语言:BC是⊙O的一条割线,PA是⊙O的一条切线,切点为A,则:PA²=PB·PC。

2、切割线定理的证明证明:如图,连接AB,AC∵ PA是圆O的切线,由弦切角定理可得∴∠PAC=∠B∵∠APB=∠CPA∴△APC∽△BPA∴ PA:BP=PC:PA三、割线定理1、割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

几何语言:从⊙O一点P引圆的两条割线AB、CD,则:PA·PB=PC·PD.2、割线定理证明证明:如图,连接AD、BC,由圆周角定理推论,得:∠D=∠B∵∠BPC=∠DPA∴△BPC∽△DPA∴ PB:PD=PC:PA∴ PA·PB=PC·PD四、例题例1、如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE·ED=3,BE =1,求⊙O的直径。

解:作OH⊥AB于H,OG⊥CD于G,连接OA由相交弦定理得:CE·ED=AE·EB∴ 3=AE×1∴ AE=3∴ AB=AE+EB=3+1=4∴ AB=CD=4∴ AH=HB=2∴ HE=HB-EB=2-1=1∵ AB=CD,AB⊥CD∴ OH=OG∴四边形OGEH为正方形∴ OH=HE=1由勾股定理得,OA=,∴⊙O的直径为,例2、如题图,⊙O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3, CE:ED=2:1 ,求BE的值。

八年级数学重点知识点(全)

八年级数学重点知识点(全)

文档初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫文档做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.文档11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.文档3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,文档实用标准文案文档而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12实用标准文案文档② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形ABC 中,AB=AC(5)其它文档。

部编版初中数学八年级下册必背几何公式汇总

部编版初中数学八年级下册必背几何公式汇总

部编版初中数学八年级下册必背几何公式汇总1. 三角形相关公式1.1 周长和面积公式- 三角形的周长公式为:周长 = 边长1 + 边长2 + 边长3。

- 三角形的面积公式为:面积 = (底边长 ×高)/ 2。

1.2 直角三角形相关公式- 直角三角形的斜边长度公式为:斜边长度 = 根号下(直角边1的平方 + 直角边2的平方)。

- 直角三角形的勾股定理公式为:直角边1的平方 + 直角边2的平方 = 斜边长度的平方。

2. 四边形相关公式2.1 矩形相关公式- 矩形的周长公式为:周长 = (长 + 宽)× 2。

- 矩形的面积公式为:面积 = 长 ×宽。

2.2 正方形相关公式- 正方形的周长公式为:周长 = 边长 × 4。

- 正方形的面积公式为:面积 = 边长 ×边长。

2.3 平行四边形相关公式- 平行四边形的周长公式为:周长 = (边长1 + 边长2)× 2。

- 平行四边形的面积公式为:面积 = 底边长 ×高。

3. 圆相关公式3.1 圆的周长和面积公式- 圆的周长公式为:周长= 2 × π × 半径。

- 圆的面积公式为:面积= π × 半径的平方。

3.2 扇形和弧长公式- 扇形的面积公式为:面积 = 1/2 ×扇形的圆心角度数× π × 半径的平方。

- 弧长的公式为:弧长 = 扇形的圆心角度数/360 × 2 × π × 半径。

以上是部编版初中数学八年级下册必背的几何公式汇总,希望对你有所帮助!。

初中数学公式定理大全八年级(下册)

初中数学公式定理大全八年级(下册)

初中数学公式定理大全:八年级(下册)第十六章 分式16.1.1 从分数到分式一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式(fraction )。

16.1.2 分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

不改变分式的值,使xx x 22-化为21-x ,这样的分式变形叫做分式的约分(reduction of a fraction )。

经过约分后的分式21-x ,其分子与分母没有公因式,像这样的分子与分母没有公因式的分式,叫做最简分式(fraction in lowest terms )。

我们利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把ab b a +和22ab a -化成分母相同的分式,这样的分式变形叫做分式的通分(reduction of fractions to a common denominator )。

16.2.1 分式的乘除分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方要把分子、分母分别乘方。

16.2.2 分式的加减分式加减法则:同分母分式相加减,分母不变,把分子相加减。

异分母分式相加减,先通分,变为同分母的分式,再加减。

16.3 分式方程vv -=+206020100,像这样分母中含未知数的方程叫做分式方程(fractional equation )。

将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

第十七章 反比例函数17.1.1 反比例函数的意义一般地,形如xk y =(k 为常数,k ≠0)的函数称为反比例函数(inverse proportional function ),其中x 是自变量,y 是函数。

人教数学八年级下册专题:第18章.勾股定理知识点与常见题型总结.docx

初中数学试卷桑水出品专题:第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

初二下学期数学勾股定理知识点总结

初二下学期数学勾股定理知识点总结
数学勾股定理是初中数学中的一个重要知识点,它是描述直角三角形的边之间的关系的定理。

下面是初二下学期数学勾股定理的知识点总结:
1. 勾股定理的表达方式:
a² + b² = c²
其中,a、b为直角三角形的两个直角边,c为直角三角形的斜边(斜边就是斜边对应的直角三角形的边)。

2. 勾股定理适用的条件:
只适用于直角三角形,即该三角形有一个内角为90度的三个内角的其中一个内角。

3. 勾股定理的推论及性质:
- 斜边是直角边中最长的一边。

- 如果三角形的三个边长满足勾股定理,那么这个三角形一定是直角三角形。

- 两个边的平方和等于第三边的平方,只能成立在直角三角形中。

4. 勾股定理的应用:
- 用勾股定理求直角三角形的边长:当给定两个直角边的边长,可以利用勾股定理求解斜边的边长。

- 判定三角形是否为直角三角形:当给定三角形的三个边长,可以利用勾股定理判断该三角形是否为直角三角形。

以上是初二下学期数学勾股定理的知识点总结,掌握了这些知识点,可以帮助你更好地理解和应用勾股定理。

八年级上册人教版数学知识点7篇

八年级上册人教版数学知识点7篇八年级上册人教版数学知识点11全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11推论1等腰三角形顶角的平分线平分底边并且垂直于底边12等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13推论3等边三角形的各角都相等,并且每一个角都等于60°14等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15推论1三个角都相等的三角形是等边三角形16推论2有一个角等于60°的等腰三角形是等边三角形17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18直角三角形斜边上的中线等于斜边上的一半19定理线段垂直平分线上的点和这条线段两个端点的距离相等20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初二数学求定义域口诀求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次。

限制条件不唯一,不等式组求解集。

初中提高数学成绩诀窍很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。

初二数学知识点汇总

初二数学知识点汇总八年级数学三角证明知识点第一章三角形的证明1、等腰三角形(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)直角三角形两个锐角之间的关系定理:直角三角形两个锐角互余。

逆定理:有两个锐角互余的三角形是直角三角形。

(3)含30度的直角三角形的边的定理定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。

初二上数学知识点同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也叫同类项。

判断几个单项式或项,是否是同类项的两个标准:①所含字母相同。

②相同字母的次数也相同。

判断同类项时与系数无关,与字母排列的顺序也无关。

合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

合并同类项步骤:⑴.准确的找出同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初中数学定理知识点汇总八年级(上册)第一章勾股定理※直角三角形两直角边的平和等于斜边的平方。

即:(由直角三角形得到边的关系)如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。

满足条件的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)第二章实数※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。

0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

※正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根。

※正数的立方根是正数;0的立方根是0;负数的立方根是负数。

第三章图形的平移与旋转平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移。

平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。

旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点叫旋转中心,转动的角度叫旋转角。

旋转的性质:旋转后的图形与原图形的大小和形状相同;旋转前后两个图形的对应点到旋转中心的距离相等;对应点到旋转中心的连线所成的角度彼此相等。

(例:如图所示,点D、E、F分别为点A、B、C的对应点,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

)第四章四平边形性质探索※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。

※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两条对角线互相平分的四边形是平行四边形。

※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。

这个距离称为平行线之间的距离。

菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

※矩形的定义:有一个角是直角的平行四边形叫矩形。

矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

※两条腰相等的梯形叫做等腰梯形。

※一条腰和底垂直的梯形叫做直角梯形。

※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

※多边形内角和:n边形的内角和等于(n-2)·180°※多边形的外角和都等于360°※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。

※中心对称图形上的每一对对应点所连成的线段被对称中心平分。

第五章位置的确定※平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。

※点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P 点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标。

※在直角坐标系中如何根据点的坐标,找出这个点(如图4所示),方法是由P(a、b),在x轴上找到坐标为a的点A,过A 作x轴的垂线,再在y轴上找到坐标为b的点B,过B作y轴的垂线,两垂线的交点即为所找的P点。

※如何根据已知条件建立适当的直角坐标系?根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:①以某已知点为原点,使它坐标为(0,0);②以图形中某线段所在直线为x 轴(或y轴);③以已知线段中点为原点;④以两直线交点为原点;⑤利用图形的轴对称性以对称轴为y轴等。

※图形“纵横向伸缩”的变化规律: A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:①当n>1时,伸长为原来的n倍;②当0<n<1时,压缩为原来的n倍。

B、将图形上各个点的坐标的横坐标不变,而纵坐标分别变成原来的n倍时,所得的图形比原来的图形在纵向:①当n>1时,伸长为原来的n倍;②当0<n<1时,压缩为原来的n倍。

※图形“纵横向位置”的变化规律: A、将图形上各个点的坐标的纵坐标不变,而横坐标分别加上a,所得的图形形状、大小不变,而位置向右(a>0)或向左(a<0)平移了|a|个单位。

B、将图形上各个点的坐标的横坐标不变,而纵坐标分别加上b,所得的图形形状、大小不变,而位置向上(b>0)或向下(b<0)平移了|b|个单位。

※图形“倒转与对称”的变化规律: A、将图形上各个点的横坐标不变,纵坐标分别乘以-1,所得的图形与原来的图形关于x轴对称。

B、将图形上各个点的纵坐标不变,横坐标分别乘以-1,所得的图形与原来的图形关于y轴对称。

※图形“扩大与缩小”的变化规律: 将图形上各个点的纵、横坐标分别变原来的n倍(n>0),所得的图形与原图形相比,形状不变;①当n>1时,对应线段大小扩大到原来的n倍;②当0<n<1时,对应线段大小缩小到原来的n 倍。

第六章一次函数若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y 为因变量)。

特别地,当b=0时,称y是x的正比例函数。

※正比例函数y=kx的图象是经过原点(0,0)的一条直线。

※在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y 随x的增大而减小。

第七章二元一次方程组※含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

两个一次方程所组成的一组方程叫做二元一次方程组。

※解二元一次方程组:①代入消元法;②加减消元法(无论是代入消元法还是加减消元法,其目的都是将“二元一次方程”变为“一元一次方程”,所谓之“消元”)※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x或y;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

※处理问题的过程可以进一步概括为:第八章数据的代表※加权平均数:一组数据的权分加为,则称为这n个数的加权平均数。

(如:对某同学的数学、语文、科学三科的考查,成绩分别为72,50,88,而三项成绩的“权”分别为4、3、1,则加权平均数为:)※一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

※一组数据中出现次数最多的那个数据叫做这组数据的众数。

※众数着眼于对各数据出现次数的考察,中位数首先要将数据按大小顺序排列,而且要注意当数据个数为奇数时,中间的那个数据就是中位数;当数据个数为偶数时,居于中间的两个数据的平均数才是中位数,特别要注意一组数据的平均数和中位数是唯一的,但众数则不一定是唯一的。

北师大版初中数学定理知识点汇总[八年级(下册) 第一章一元一次不等式和一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式. ¤2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系. ※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语. 非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0 非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于0 二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用: (1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c. (2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, cbca . (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc, c bca ※2. 比较大小:(a、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b; 如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b; 如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b; 即: a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集: ※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式. ※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左四. 一元一次不等式: ※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式. ※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3. 解一元一次不等式的步骤: ①去分母; ②去括号; ③移项; ④合并同类项; ⑤系数化为1(不等号的改变问题) (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(cbaacab ※2. 概念内涵: (1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式; (3)提公因式法的理论依据是乘法对加法的分配律,即: )(cbammcmbma ※3. 易错点点评: (1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”; (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法. ※2. 主要公式: (1)平方差公式: ))((22bababa (2)完全平方公式: 就没有分解到底. ※4. 运用公式法: (1)平方差公式: ①应是二项式或视作二项式的多项式; ②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式: ①应是三项式; ②其中两项同号,且各为一整式的平方; ③还有一项可正负,且它是前两项幂的底数乘积的2倍. ※5. 因式分解的思路与解题步骤: (1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法; (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法: ※1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ) ※2. 概念内涵: 分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. ※3. 注意: 分组时要注意符号的变化. 五. 十字相乘法: ※※3. 规律内涵: (1)理解:把qpxx2分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同. (2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. ※4. 易错点点评: (1)十字相乘法在对系数分解时易出错; (2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确. 第三章分式一. 分式※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式. 整式A除以整式B,可以表示成BA的形式.如果除式B中含有字母,那么称B A 为分式,对于任意一个分式,分母都不能为零. ※2. 整式和分式统称为有理式,即有: 分式整式有理式※3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. ※4. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式, 也就是把分子、分母的公因式约去,这叫做约分.二. 分式的乘除法※1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘. b a1 ③三边对应成比例. ①一个锐角对应相等; ②两条边对应成比例: a. 两直角边对应成比例; b. 斜边和一直角边对应成比例. ※2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. . ※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 八. 相似的多边形的性质※相似多边形的周长等于相似比;面积比等于相似比的平方. 九. 图形的放大与缩小※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比. ※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比. ◎3. 位似变换①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心. ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小. 第五章数据的收集与处理一. 每周干家务活的时间※1. 所要考察的对象的全体叫做总体; 把组成总体的每一个考察对象叫做个体; 从总体中取出的一部分个体叫做这个总体的一个样本. ※2. 为一特定目的而对所有考察对象作的全面调查叫做普查; 为一特定目的而对部分考察对象作的调查叫做抽样调查. 二. 数据的收集※1. 抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值. 而估计值是否接近实际情况还取决于样本选得是否有代表性. 第六章证明(一) 二. 定义与命题※1. 一般地,能明确指出概念含义或特征的句子,称为定义. 定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现. ※2. 可以判断它是正确的或是错误的句子叫做命题. 正确的命题称为真命题,错误的命题称为假命题. ※3. 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理. ※4. 有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理. ¤5. 根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明. 三. 为什么它们平行※1. 平行判定公理: 同位角相等,两直线平行.(并由此得到平行的判定定理) ※2. 平行判定定理: 同旁内互补,两直线平行. ※3. 平行判定定理: 同错角相等,两直线平行. 四. 如果两条直线平行※1. 两条直线平行的性质公理: 两直线平行,同位角相等; ※2. 两条直线平行的性质定理: 两直线平行,内错角相等; ※3. 两条直线平行的性质定理: 两直线平行,同旁内角互补. 五. 三角形和定理的证明※1. 三角形内角和定理: 三角形三个内角的和等于180°¤2. 一个三角形中至多只有一个直角¤3. 一个三角形中至多只有一个钝角¤4. 一个三角形中至少有两个锐角六. 关注三角形的外角※1. 三角形内角和定理的两个推论: 推论1: 三角形的一个外角等于和它不相邻的两个内角的和; 推论2: 三角形的一个外角大于任何一个和它不相邻的内角.。

相关文档
最新文档