数字信号处理第三版西安科大出版高西全丁玉美课后答案第5章

合集下载

西安电子科技大学版数字电子技术(第三版)课后习题答案第五章

西安电子科技大学版数字电子技术(第三版)课后习题答案第五章

西安电子科技大学版数字电子技术(第三版)第五章触发器1. 解由或非门组成的RS触发器电路如图(a)所示。

由电路和或非门的功能列出状态真值表如表所示。

运用卡诺图求出其特征方程。

+1n QnQ+=SY约束条件为0=R∙S具体过程如图(b)所示。

2. 解因为图中触发器是由或非门组成的,所以CP=0时有效,状态由输入A、B确定,CP=1状态不变,图(a)、(b)所示电路状态真值表分别如表(a)、(6)所示。

画出对应的卡诺图,可求得其特征方程分别为AQ B AQQ n nn =+=++1211;约束条件 A+B=13. 解:5.解:6. 解:7. 解 (a)图中,第一级nn Q Q 010=+,每来一个CP必翻转,但它又受第二级1Q 控制,当其为0时,第一级触发器Rd=0,异步复“0”。

第二级nnn Q Q Q 1011=+,具体分析如下:第1、2个B 脉冲因为Q 0=0,所以Q 1不动作,第1个A 脉冲上升沿使Q 0由“0”翻转为“1”,因此在第3个月脉冲上升沿时,11011==+n nn Q Q Q ,翻为“1”态,与此同时01=nQ ,使第一级触发器Rd=0,故nQ 0立即复“0”。

第4个B 脉冲上升沿时,01011==+nnn Q Q Q ,故11+n Q 又回到“0”,此状态一直维持到第二个A 信号上升沿来时,再重复上述过程。

该电路是单脉冲电路。

(b)图中,Q 2触发器每来一个A 信号(下降沿)必翻转一次,此时J 3=K 3=1,故在第6个B 脉冲下降沿时,Q 3必翻转一次,与此同时03=Q ,使Q 2复“0”,故在第7个B 脉冲时J 3=0,K 3=1,使Q 3又回到“0”,如此反复,与(a)一样获得一个单脉冲电路。

波形如图所示。

8.解:9.解:。

数字信号处理实验课后答案

数字信号处理实验课后答案

数字信号处理实验课后答案数字信号处理实验课后答案【篇一:数字信号处理第三版课后实验程序(高西全)】txt>close all;clear all%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性====== a=[1,-0.9];b=[0.05,0.05]; %系统差分方程系数向量b和ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=r8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(b,a,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y=h(n);tstem(hn,y); %调用函数tstem绘图title((a) 系统单位脉冲响应h(n));box ony1n=filter(b,a,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y=y1(n);tstem(y1n,y);title((b) 系统对r8(n)的响应y1(n));box ony2n=filter(b,a,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y=y2(n);tstem(y2n,y);title((c) 系统对u(n)的响应y2(n));box on%===内容2:调用conv函数计算卷积============================ x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=r8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y=h1(n);tstem(h1n,y); %调用函数tstem绘图title((d) 系统单位脉冲响应h1(n));box onsubplot(2,2,2);y=y21(n);tstem(y21n,y);title((e) h1(n)与r8(n)的卷积y21(n));box onsubplot(2,2,3);y=h2(n);tstem(h2n,y); %调用函数tstem绘图title((f) 系统单位脉冲响应h2(n));box onsubplot(2,2,4);y=y22(n);tstem(y22n,y);title((g) h2(n)与r8(n)的卷积y22(n));box on%=========内容3:谐振器分析======================== un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号a=[1,-1.8237,0.9801];b=[1/100.49,0,-1/100.49]; %系统差分方程系数向量b和a y31n=filter(b,a,un); %谐振器对u(n)的响应y31(n) y32n=filter(b,a,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y=y31(n);tstem(y31n,y);title((h) 谐振器对u(n)的响应y31(n));box onsubplot(2,1,2);y=y32(n);tstem(y32n,y);title((i) 谐振器对正弦信号的响应y32(n));box on10.2.2 实验程序清单1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mtp=64/1000; %观察时间tp=64微秒%产生m长采样序列x(n)% fs=1000;t=1/fs;fs=1000;t=1/fs;m=tp*fs;n=0:m-1;a=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=a*exp(-alph*n*t).*sin(omega*n*t);xk=t*fft(xnt,m); %m点fft[xnt)]yn=xa(nt);subplot(3,2,1);tstem(xnt,yn); %调用自编绘图函数tstem绘制序列图box on;title((a) fs=1000hz);k=0:m-1;fk=k/tp;subplot(3,2,2);plot(fk,abs(xk));title((a) t*ft[xa(nt)],fs=1000hz);xlabel(f(hz));ylabel(幅度);axis([0,fs,0,1.2*max(abs(xk))])%===================================== ============ % fs=300hz和fs=200hz的程序与上面fs=1000hz完全相同。

(完整版)数字信号处理习题集(5-7章)

(完整版)数字信号处理习题集(5-7章)

第五章 数字滤波器一、数字滤波器结构填空题:1.FIR 滤波器是否一定为线性相位系统?( ).解:不一定计算题:2.设某FIR 数字滤波器的冲激响应,,3)6()1(,1)7()0(====h h h h6)4()3(,5)5()2(====h h h h ,其他n 值时0)(=n h 。

试求)(ωj e H 的幅频响应和相频响应的表示式,并画出该滤波器流图的线性相位结构形式。

解: {}70,1,3,5,6,6,5,3,1)(≤≤=n n h ∑-=-=10)()(N n nj j e n h e H ωω⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+++++++=---------------ωωωωωωωωωωωωωωωωωωω2121272323272525272727277654326533566531j j j j j j j j j j j j j j j j j j j e e e e e e e e e e e ee e e e e e e )(27)(27cos 225cos 623cos 102cos 12ωφωωωωωωj j e H e=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=- 所以)(ωj e H 的幅频响应为ωωωωωω2727cos 225cos 623cos 102cos 12)(j eH -⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= )(ωj e H 的相频响应为ωωφ27)(-=作图题:3.有人设计了一只数字滤波器,得到其系统函数为:2112113699.00691.111455.11428.26949.02971.114466.02871.0)(------+-+-++--=z z z z z z z H 2112570.09972.016303.08557.1---+--+z z z请采用并联型结构实现该系统。

数字信号处理第三版习题答案

数字信号处理第三版习题答案

数字信号处理第三版习题答案数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行处理和分析的学科。

它在现代通信、音频处理、图像处理等领域有着广泛的应用。

为了更好地理解和掌握数字信号处理的知识,许多人选择了《数字信号处理(第三版)》这本经典教材。

本文将为大家提供一些《数字信号处理(第三版)》习题的答案,以帮助读者更好地学习和巩固所学知识。

第一章:离散时间信号和系统1.1 习题答案:a) 离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。

b) 离散时间系统是对离散时间信号进行处理的系统,而连续时间系统是对连续时间信号进行处理的系统。

c) 离散时间信号可以通过采样连续时间信号得到。

1.2 习题答案:a) 线性系统满足叠加性和齐次性。

b) 时不变系统的输出只与输入的时间延迟有关,与输入信号的具体形式无关。

c) 因果系统的输出只与当前和过去的输入有关,与未来的输入无关。

第二章:离散时间信号的时域分析2.1 习题答案:a) 离散时间信号的能量是信号幅值的平方和,而功率是信号幅值的平方的平均值。

b) 离散时间信号的能量和功率可以通过计算信号的幅值序列的平方和和平方的平均值得到。

2.2 习题答案:a) 离散时间信号的自相关函数是信号与其自身经过不同时间延迟的乘积的和。

b) 离散时间信号的自相关函数可以用于确定信号的周期性和频率成分。

第三章:离散时间信号的频域分析3.1 习题答案:a) 离散时间信号的频谱是信号在频率域上的表示,可以通过对信号进行傅里叶变换得到。

b) 离散时间信号的频谱可以用于分析信号的频率成分和频谱特性。

3.2 习题答案:a) 离散时间信号的频谱具有周期性,其周期等于采样频率。

b) 离散时间信号的频谱可以通过对信号进行离散傅里叶变换得到。

第四章:离散时间系统的频域分析4.1 习题答案:a) 离散时间系统的频率响应是系统在不同频率下的输出与输入之比。

数字信号处理》第三版课后习题答案

数字信号处理》第三版课后习题答案

数字信号处理课后答案教材第一章习题解答1.用单位脉冲序列()nδ及其加权和表示题1图所示的序列。

解:2.给定信号:25,41 ()6,040,n nx n n+-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n序列;(3)令1()2(2)x n x n=-,试画出1()x n波形;(4)令2()2(2)x n x n=+,试画出2()x n波形;(5)令3()2(2)x n x n=-,试画出3()x n波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)(3)1()x n的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n时,先画x(-n)的波形,然后再右移2位,3()x n波形如题2解图(四)所示。

3.判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14;(2)12,168w wππ==,这是无理数,因此是非周期序列。

5.设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。

解:(1)令:输入为0()x n n -,输出为'000'0000()()2(1)3(2)()()2(1)3(2)()y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=故该系统是时不变系统。

数字信号处理_西安电子(_高西全丁美玉)第三版_课后习题答案(全)1-7章[1]

数字信号处理_西安电子(_高西全丁美玉)第三版_课后习题答案(全)1-7章[1]

第 1 章
(6) y(n)=x(n2) 令输入为
时域离散信号和时域离散系统
x(n-n0)
输出为 y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n)
故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)] 故系统是线性系统。
解: (1) y(n)=x(n)*h(n)= R4(m)R5(n-m)
先确定求和域。 由R4(m)和R5(n-m)确定y(n)对于m的
0≤m≤3 -4≤m≤n
m


非零区间如下:
第 1 章
时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0 ② 0≤n≤3时, y(n)=
m


第 1 章
时域离散信号和时域离散系统
题7图
第 1 章
时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章
解法(二)
时域离散信号和时域离散系统
采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
第 1 章
(5)y(n)=x2(n) (6)y(n)=x(n2) (7)y(n)= n
时域离散信号和时域离散系统
x(m) (8)y(n)=x(n)sin(ωn)
m 0

解: (1) 令输入为 x(n-n0)
输出为
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2) =y′(n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档