(完整版)数字信号处理西安电子高西全课后习题答案

合集下载

西安电子(高西全丁美玉第三版)数字信号处理课后答案第1章

西安电子(高西全丁美玉第三版)数字信号处理课后答案第1章
题1图
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
x(n-n0)=x(n)*δ(n-n0)
(3)

n
(
j
)

1 T

X
k
a
(
j

jks
)
这是关于采样定理的重要公式, 根据该公式要求对
信号的采样频率要大于等于该信号的最高频率的两倍以上,
才能得到不失真的采样信号。
xa
(t
)

n
xa
(nt
)
sin[π(t π(t
nT ) /T nT ) /T
这是一个线性卷积公式, 注意公式中是在-∞~∞之间 对m求和。 如果公式中x(n)和h(n)分别是系统的输入和单位 脉冲响应, y(n)是系统输出, 则该式说明系统的输入、 输出和单位脉冲响应之间服从线性卷积关系。
第 1 章 时域离散信号和时域离散系统
(2)
x(n)=x(n)*δ(n)
该式说明任何序列与δ(n)的线性卷积等于原序列。
(2) 0≤n≤3时,
n
y(n) 1 n 1 m0
第 1 章 时域离散信号和时域离散系统
(3) 4≤n≤6时,
n

西安电子(高西全丁美玉第三版)数字信号处理课后答案第2章

西安电子(高西全丁美玉第三版)数字信号处理课后答案第2章
Y (e j ) X (e j )H (e j )
这是时域卷积定理。
第2章 时域离散信号和系统的频域分析
(5) 若y(n)=x(n)h(n), 则
Y (e j ) 1 H (e j ) X (e j ) 2π
这是频域卷积定理或者称复卷积定理。
(6)
xe
(n)

1 2
[x(n)
滤波器是高通还是低通等滤波特性, 也可以通过分析极、 零点分布确定, 不必等画出幅度特性再确定。 一般在最靠近 单位圆的极点附近是滤波器的通带; 阻带在最靠近单位圆的 零点附近, 如果没有零点, 则离极点最远的地方是阻带。 参 见下节例2.4.1。
第2章 时域离散信号和系统的频域分析
2.4 例
[例2.4.1] 已知IIR数字滤波器的系统函数
c (Rx , Rx )
这两式分别是序列Z变换的正变换定义和它的逆Z变 换定义。
第2章 时域离散信号和系统的频域分析
(8)
x(n) 2 1
X (e j ) 2d
n
2π 2
x(n) y(n) 1
n

c
X
(v)Y

(
1 v
)
dv v
max[Rx ,
H(z) 1 1 0.9z 1
试判断滤波器的类型(低通、 高通、 带通、 带阻)。 (某
解: 将系统函数写成下式:
H(z) 1 = z 1 0.9z 1 z 0.9
第2章 时域离散信号和系统的频域分析
系统的零点为z=0, 极点为z=0.9, 零点在z平面的原点, 不影响频率特性, 而惟一的极点在实轴的0.9处, 因此滤波 器的通带中心在ω=0处。 毫无疑问, 这是一个低通滤波器。

数字信号处理课后答案 第1章高西全

数字信号处理课后答案 第1章高西全

(2) 令输入为 x(n-n0) 输出为 y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于 T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
n
③ 4≤n≤7时, y(n)=
m=n−4
④ n>7时, y(n)=0
最后结果为 0 y(n)= n+1 8-n n<0或n>7 0≤n≤3 4≤n≤7
y(n)的波形如题8解图(一)所示。 (2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2) =2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5)] y(n)的波形如题8解图(二)所示
m=0

n
0 .5 − m
1 − 0.5 − n −1 = 1 − 0.5 −1
=-(1-0.5-n-1)0.5n=2-0.5n ③ n≥5时
4
y ( n ) = 0 .5 n
m =0

0 .5 − m
1 − 0.5 −5 n = 0.5 = 31 × 0.5 n 1 − 0.5 −1
故该系统是非时变系统。 因为 y(n)=T[ax1(n)+bx2(n)] =ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)] +3[ax1(n-2)+bx2(n-2)] T[ax1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2) T[bx2(n)]=bx2(n)+2bx2(n-1)+3bx2(n-2) 所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)] 故该系统是线性系统。

数字信号处理课后答案西安电子

数字信号处理课后答案西安电子

第2章 时域离散信号和系统的频域分析 解: 假设输入信号x(n)=ejω0n,系统单位脉冲响应为h(n) 则系统,输出为
上式说明当输入信号为复指数序列时, 输出序列仍是复 指数序列, 且频率相同, 但幅度和相位取决于网络传 输函数。 利用该性质解此题:
第2章 时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析
上式中|H(ejω)|是ω的偶函数, 相位函数是ω的奇函数
|H(ej,ω)|=|H(e-
θ(ω)=-θ(-ω), 故
jω)|,
4. 设
第2章 时域离散信号和系统的频域分析
将x(n)以4为周期进行周期延拓, 形成周期序列
,
画出x(n)和
的波形, 求出
的离散傅里叶级数
和傅里叶变换。
解: 画出x(n) 和
由z3(z-1)=0, 得极点为 z1, 2=0, 1 零极点图和收敛域如题15解图(a)所示, 点相互对消。
图中, z=1处的零极
第2章 时域离散信号和系统的频域分析 题15解图
第2章 时域离散信号和系统的频域分析 (2)
第2章 时域离散信号和系统ຫໍສະໝຸດ 频域分析零点为极点 为
极零点分布图如题15解图(b)所示。 (3) 令y(n)=R4(n), 则
(4) δ(n)
(6) 2-n[u(n)-u(n-10)]
第2章 时域离散信号和系统的频域分析 解 (1)
(2)
第2章 时域离散信号和系统的频域分析 (3)
(4) ZT[δ(n)]=10≤|z|≤∞ (5) ZT[δ(n-1)]=z-10<|z|≤∞
(6)

第2章 时域离散信号和系统的频域分析
16. 已 知

数字信号处理西安电子高西全课后答案

数字信号处理西安电子高西全课后答案

因果系统
因果系统是指系统的输出仅与输入的时间点有关,与输入的时间点无关。
信号与系统的关系
01
系统对信号的作用
系统对信号的作用可以改变信号 的幅度、频率和相位等基本属性 。
02
信号在系统中的传 播
信号在系统中传播时,会受到系 统的特性影响,从而改变信号的 基本属性。
03
系统对信号的响应
系统对信号的响应可以反映系统 的特性,从而可以用来分析和设 计系统。
02 离散傅里叶变换的定义
离散傅里叶变换是针对离散时间信号和系统的傅 里叶变换,它将离散时间信号分解成不同频率的 正弦波的叠加。
03 离散傅里叶变换的性质
离散傅里叶变换具有周期性、对称性和Parseval 等重要性质。
快速傅里叶变换算法
1 2 3
快速傅里叶变换算法的定义
快速傅里叶变换是一种高效计算离散傅里叶变换 的算法,它利用了循环卷积和分治的思想来降低 计算的复杂度。
03
数字信号处理技术能够提高通信系统的抗干扰性能、
传输效率和可靠性。
数字信号处理在通信中的应用
调制解调技术
调制是将低频信号转换为适 合传输的高频信号,解调是 将高频信号还原为原始的低
频信号。
通过调制解调技术,可以实 现信号的多路复用和高效传 输。
数字信号处理在通信中的应用
01
信道编码技术
02
信道编码是在发送端对信号进行编码,以增加信号的冗余 度,提高信号的抗干扰能力。
FIR数字滤波器的优 点
FIR数字滤波器具有稳定性好、易 于实现、没有递归运算等优点, 因此在一些需要稳定的系统中得 到广泛应用。
08
信号处理的应用
数字信号处理在通信中的应用

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

18
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
28
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章 时域离散信号和时域离散系统
解法(二) 采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输 出, 判断系统是否是线性非时变的。
(1)y(n)=x(n)+2x(n-1)+3x(n-2) (2)y(n)=2x(n)+3 (3)y(n)=x(n-n0) n0 (4)y(n)=x(-n)
15
第 1 章 时域离散信号和时域离散系统
非零区间如下:
0≤m≤3 -4≤m≤n
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0

数字信号处理课后答案 第2章高西全

数字信号处理课后答案 第2章高西全
2. 已知

n = −∞


x( n′)e − j2ωn′ = X (e j2ω )
| ω |< ω0
1, X (e ) = 0,
ω0 <| ω | ≤ π
求X(ejω)的傅里叶反变换x(n)。
解:
1 x ( n) = 2π
∫ωe

0
ω0
jωn
sin ω0 n dω = πn
3. 线性时不变系统的频率响应(频率响应函数) H(ejω)=|H(ejω)|ejθ(ω), 如果单位脉冲响应h(n)为实序列, 试 证明输入x(n)=A cos(ω0n+ϕ)的稳态响应为

1

1
j ω j (ω − π ) 1 2 ) + X (e 2 = [ X (e )] 2
1
1
或者
FT[ x(2n)] =
(8)
1 j ω 1 [ X (e 2 )
2
+
1 j ω X (−e 2 )]
FT[ x 2 (n)] =
n = −∞


x 2 ( n ) e − jω n
利用(5)题结果, 令x(n)=y(n), 则



x(n′)e − jω ( n + n0 ) = e − jωn0 X (e jω )

n = −∞
∑ x ( n )e

− jωn
jωn = x ( n ) e = X ∗ ( e − jω ) n = −∞



(3)
FT[ x( −n)] =
n = −∞

西安电子数字信号处理课后答案第1章

西安电子数字信号处理课后答案第1章


1.4
• 1. 用单位脉冲序列δ(n)及其加权和表示题1图所示的序列。
•题1图
西安电子数字信号处理课后答案第1 章
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
•(x(n) =
西安电子数字信号处理课后答案第1 章
•% • n=0: length(yn)-1; • subplot(2, 1, 1); stem(n, yn, ′.′) • xlabel(′n′); ylabel(′y(n)′) • 程序运行结果如图1.3.2所示。 由图形可以看出, 5项滑 动平均滤波器对输入波形起平滑滤波作用, 将信号的第4、 8、 12、 16的序列值平滑去掉。
得到封闭解。 解析法适合于用公式表示序列的线性卷积, 得
到的是封闭解, 考试中会出现简单情况的解析法求解。 解析
法求解过程中, 关键问题是确定求和限, 求和限可以借助于
画图确定。 第三种方法适合于用计算机求解一些复杂的较难的
线性卷积, 实验中常用。
西安电子数字信号处理课后答案第1 章
• 解线性卷积也可用Z变换法, 以及离散傅里叶变换求解, 这是后面几章的内容。 下面通过例题说明。
西安电子数字信号处理课后答案第1 章
图1.2.1
西安电子数字信号处理课后答案第1 章

1.3 例
• [例1.3.1] 线性时不变系统的单位脉冲响应用h(n)表示,
输入x(n)是以N为周期的周期序列, 试证明输出y(n)亦是以N为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档