数字信号处理习题解答1
数字信号处理习题及答案1

数字信号处理习题及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( )A. y (n-2)B.3y (n-2)C.3y (n )D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n)D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0B.∞C. -∞D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
聊大《数字信号处理》复习题及参考答案

一、选择题1. 数字信号处理主要研究的是哪种信号?A. 模拟信号B. 数字信号C. 光信号D. 声信号答案:B解析:数字信号处理主要研究的是数字信号,它通过将模拟信号转换为数字信号,然后对数字信号进行各种处理和分析。
2. 下列哪个不是数字信号处理的基本步骤?A. 采样B. 量化C. 编码D. 传输答案:D解析:数字信号处理的基本步骤包括采样、量化和编码,而传输不属于数字信号处理的基本步骤。
3. 在数字信号处理中,采样率是指什么?A. 每秒钟采样的次数B. 每秒钟传输的比特数C. 每秒钟处理的信号数D. 每秒钟的样本数答案:A解析:在数字信号处理中,采样率是指每秒钟采样的次数,它决定了数字信号的时间分辨率。
4. 下列哪种类型的滤波器在数字信号处理中最为常用?A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 带阻滤波器答案:A解析:在数字信号处理中,低通滤波器是最为常用的滤波器类型,它用于去除信号中的高频成分。
5. 下列哪种类型的变换在数字信号处理中最为常用?A. 傅里叶变换B. 拉普拉斯变换C. Z变换D. 小波变换答案:A解析:在数字信号处理中,傅里叶变换是最为常用的变换类型,它用于将信号从时域转换到频域,以便进行频域分析和处理。
二、填空题1. 数字信号处理(DSP)是将连续的模拟信号转换为离散的数字信号,然后对其进行一系列的操作和分析的过程。
2. 在数字信号处理中,采样是将连续信号在时间上离散化的过程,量化是将采样得到的幅度值离散化的过程。
3. 数字信号处理中的滤波器是一种用于改变信号频谱特性的系统,它可以通过保留或去除特定频率范围内的信号成分来实现。
4. 快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT),它可以将信号从时域转换到频域。
5. 数字信号处理中的Z变换是一种将离散时间信号转换为Z域(复频域)的数学工具,它用于分析和设计离散时间系统。
三、简答题1. 简述数字信号处理的基本步骤。
数字信号处理习题与答案

==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理试题和答案 (1)

一. 填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。
6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。
8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。
9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。
10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。
12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)=x((n-m))N R N(n)。
13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。
14.线性移不变系统的性质有交换率、结合率和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。
16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。
17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2 FFT需要10 级蝶形运算,总的运算时间是______μs。
数字信号处理习题及解答

只有在如上周期延拓序列中无混叠的点上, 才满足f(n)=fl(n),所以 f(n)=fl(n)=x(n)*y(n) 7≤n≤19
令
数字信号处理习题及解答
第二章Z变换及离散时间系统分析
3 解答
n≥0时, 因为c内无极点,x(n)=0; n≤-1时, c内有极点0 , 但z=0是一个n阶极点, 改为求
圆外极点留数, 圆外极点有z1=0.5, z2=2, 那么
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 3 解答 (2) 收敛域0.5<|z|<2:
数字信号处理习题及解答
第三章信号的傅里叶变换 1 解答
(1) (2) (3)
数字信号处理习题及解答
第三章信号的傅里叶变换 2 试求如下序列的傅里叶变换:
(1) x1(n)=δ(n-3)
(2)
数字信号处理习题及解答
第三章信号的傅里叶变换 2 解答
(1) (2)
数字信号处理习题及解答
第三章信号的傅里叶变换
第一章离散时间信号与离散时间系统
4 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 1
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 1 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 1 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 2
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 2 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 2 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 3 已知
求出对应X(z)的各种可能的序列表达式。
数字信号处理(吴镇扬)第一章习题解答

提示:与理想采样信号的频谱进行比较。上述过程是物理采样后的频谱。
1.6解:
(1) (性质1)
(2) (性质4)
(3)
(4)1.7(1)Fra bibliotek:(2)解:
(3)解:
(4)解:
(5)解:
1.8 (1)解:令
由题意可知,所求序列等效为 。
而
故:
(2)解:
因为:
所以,
1.10 (1)解:
,为双边序列
本小题采用部分分式法求逆Z变换,可以使用“留数法”…..
所以
(3)解:
1.18y(n)=1,n=0
y(n)=3*2-n,n≥1
解:
1.19
(1)解:
无论 还是 ,右边序列的围线C内包含 两个极点。
当 时
当 时
因此
思考:1、为何讨论当 时的情况;2、为何不用讨论 的情况
解答过程如下:
(2)解:
右边序列的围线C内包含 一个极点。故
当 时
因此,
思考:1、为何只讨论当 时的情况
(3) 当n0>0时,该系统是因果系统;当n0<0时,该系统是非因果系统;系统稳定。
(4)因果、稳定。
(5)因果、稳定。
(6)因果、稳定。
(7)因果,但由于 。
(8) 在 时刻有值,故非因果。由于 的值都在 的时刻内,那么 ,故系统稳定。
1.17解:由图可知:
所以
(1)解:
(2)解:
通解
特解
带入方程得:
(3)解:
当 时,右边序列的围线C内包含 两个极点。故
因此
第1章
1.解:由题意可知
则周期为: 其中 为整数,且满足使N为最小整数。
(完整word版)数字信号处理习题及答案

==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理试题及答案

数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章第二章1122-=--m/2m=-m -/212m=--/2-/212m=-m=-()121.7DTFT[x(2n)]=(2n)e m=2n DTFT[x(2n)]=(m)e =[()(1)()]e [()e e ()e ][()()]j nn j mj m j m j mj m j j x x x m x m x m x m X eX eωωωωπωωωπ∞∞∞∞∞∞∞∞∞∞-+-=+=+∑∑∑∑∑,为偶数求下列序列的傅里叶变换()x(2n)令,于是-n 111212z (1) 2u(n)()2()21,|(2)|11(2),||nnn nnn X z u n z z z z z z z +∞--=-∞+∞--=-∞--===<-=>-∑∑14.求出下列序列的变换及收敛域3.3(1).()cos(),781()8(2).()5.25n 640()(5)()x n A n A j n x n e x n y n eπππω=--==判断下面的序列是否周期的是常数试判断系统是否为线性时不变的()y(n)=x (n)(7) y(n)=x(n)sin().试判断系统是否为因果稳定系统()y(n)=x(n-n )-1-1-2-1-1121212-317.X(z)=,2-5+2105< | z | < 2x(n)(2) | z | > 2x(n) 11X(z)=-1-z1-2z 05< | z | < 2(n)=2(-n-1)+()(n)| z | > 2(n)=()(n)-2(n)n nn n z z zu u u u 已知分别求:()收敛域.对应的原序列收敛域对应的原序列解:收敛域.时:x 收敛域时:x-1-1-1-1-1-121.(n)=0.9y(n-1)+x(n)+0.9x(n-1)(1)h(n)(2)H(e )1+0.9(1)H(z)=,|z|>0.91-0.91+0.9F(z)=H(z)z =z 1-0.9n 1z=0.9(n j n n z z z zh ω≥已知线性因果网络用下面差分方程表示: y 求网络的系统函数及单位脉冲响应写出网络频率响应函数的表达式,并定性画出其幅频特性曲线解:令当时,有极点-1-1=0.9-112-1-1-1-1=0=0.9-1-1)=Res[F(z),0.9]1+0.9=z (z-0.9)|1-0.9=20.9(n)=0,n<0n=0z =0,=0.9(n)=Res[F(z),0]+Res[F(z),0.9]1+0.91+0.9=z z|+z (z-0.9)|1-0.91-0.9=-1+2=1h(n)=n z nz z z z z h z z z z ⨯∴因为系统是因果系统,所以有h 当时,有极点00000000=0n-m =0n -m=0n n20.9(n-1)+(n)+0.9(2)H(e )=-0.9(3)y(n)=h(n)*x(n)=(m)x(n-m)=(m)e =(m)e e =e H(e )+0.9=e-0.9n j j j m j m j j m j j j j j u e e h h h e e ωωωωωωωωωωωδ∞∞∞⨯∑∑∑()第三章6.设下列x(n)长度为N ,求下列x(n)的DFT(1))()(n n x δ= (2))()(0n n n x -=δ100-<<N n (3)na n x =)((4)()n R en x N nj 0)(ω=(5)()()()n R n n x N •=0cos ω(6)()()()n R n n x N •=0sin ω (7)()()n R n n x N •=解:(1)⎩⎨⎧-≤≤=其他1001)(N k k X(2)⎪⎩⎪⎨⎧-≤≤=-其他100)(02N k ek X kn Nj π(3)⎪⎩⎪⎨⎧-≤≤--==--=-∑其他10011)(21020N k ae a e k X k Nj NN n kn N j ππ(4)∑∑-=--=-===1)2(1200)()(N n n k Nj N n kn Njnj nk NeeeWn x k X πωπω(5))()(21)()cos()(000n R e e n R n n x N n j nj N ωωω-+=•=()()()()()()()[]kNk N kN kN j k N j kN j N j k Nj N j k Nj N j k N j N j W W W N N W e W e W e e W e e W e e W e e k X 20000cos 21cos 1cos cos 111111*********)(0000000000+---+-=⎥⎦⎤⎢⎣⎡----+--=⎥⎦⎤⎢⎣⎡--+--=-----ωωωωωωωωωωωωωω (6))()(21)()sin()(000n R e e n R n n x N nj n j N ωωω--=•=()()()()()()()[]kNk N kN k N j k N j kN j N j k Nj N j k N j N j k N j N j W W N W N W e W e W e e W e e j W e e W e e j k X 20000cos 21sin sin 1sin 11111121111121)(0000000000+--+-=⎥⎦⎤⎢⎣⎡-------=⎥⎦⎤⎢⎣⎡-----=-----ωωωωωωωωωωωωωω (7)设)()(1n R n x N =,则1111)(----=z z z X N)()(1n x n n x •=,则⎪⎪⎭⎫⎝⎛---=--111)(z z dz d z z X N()()()()()()211121211111111)(----------------=-----=z z z z Nz z z z z Nz zz X N N N N()()()1111)()(2-=-----==-=k Nk NkN Nk N k NkNNW z W NW W W W NW z X k X kN因为1=kNNW ,01=-kNN W2)1()1(321)(10-=-++++==∑-==N N N n k X N n k 21.(1)模拟数据以10.24KHz 速率取样,若已知1024个取样的离散傅立叶变换。
求频谱取样之间的频率间隔。
(2)以上数字数据经处理以后又进行了离散傅立叶反变换,求离散傅立叶反变换后抽样点的间隔为多少?整个1024点的时宽为多少?解:(1)频率间隔 Hz Hz 10102410240F ==∆ (2)抽样点的间隔 s s T μμ66.971024.1013=⨯=∆ 整个1024点的时宽 6.697T =ms 100ms 1024=⨯第四章1.如果一台通用计算机的速度为平均每次复数乘法需要50us ,每次复数加法需要5us 。
用它来计算N=512点DFT ,问直接计算需要多少时间,用FFT 计算需要多少时间?照这样计算,用FFT 进行快速卷积对信号进行处理时,估算可实现实时处理的信号最高频率。
解:(1)512点直接DFT 计算的时间: 复数乘法:2N =512x512x50us=13.1072s复数加法:N (N-1)=512x511x5us=1.308s512点直接DFT 计算的时间=13.1072s+1.308s=14.4152s (2)用FFT 计算的时间:复数乘法:N 22log N=0.5x512x9x50us=0.1152s 复数加法:2N log N=512x9x5us =0.023s用FFT 计算的时间=0.1152s+0.023s=0.1382s (3)用FFT 进行快速卷积对信号处理时间: 假设IFFT 也用FFT 程序计算,则在实时计算中使用的时间是两次FFT 时间(h(n)的FFT 计算按照事先计算好存储备用),外加一次512点的复数乘法:用FFT 进行快速卷积对信号处理时间=2 x 0.1382s +512x50us = 0.302s 实时处理时,信号采样的最高采样频率:0.3025121=1695.36Hz信号的最高频率=1695.36/2=847.68Hz 7.某运算流图如图所示,问:(1)图示是按时间还是按频率抽取的FFT ? (2)把图示中未完成的系数和线条补充完整。
解:(1) 分析图示的流图结构,发现其中基本的蝶形运算单元是先加减后乘系数的,因此是按频率抽取的基2FFT(2)第五章6.用脉冲响应不变法及双线性变换法将模拟传递函数()()()313a H s s s =++转变为数字传递函数()H z ,采样周期5.0=T 。
分母系数;分子系数双线性变换法分母系数;分子系数脉冲不变法换法;脉冲不变法、双线性变程序及运算结果如下:)(双线性变换代入解:2az 2bz )%2,,(]22[1az 1bz )%2,,var(]11[];341[a ];300[b %0857.07429.010857.01714.00875.0326353633631616163216)21(3)1(3)1)(1(16)1(16)1(331116)11(163343)(z H (2)135.0829.012876.0)(1)(43)1)(1()1()1(43)1111(43)()()(435.0T ),()(23)()()(23)();311s 1(23)(212121212122121211121211121111421122112212321123112312112112312312132331111s a b bilinear az bz a b impin az bz MATLAB z z z z z z z z z z z z z z z z z z z z zz z z s s s H z z z z e z e e z e e z e z e z e z e z e z e z H n u e e n u e e T n h t u e e s h s s H z z s z zT s a n n nT nT t t a a ====+-++=+-++=+++-++-++=++-++-+=++-++-=++==+-=++--•=-----=---=-==-=-=+-+=------------------------+-=+-=---------------------------------结果:bz1=0 0.2876 0az1=1.0000 -0.8297 0.1353 bz2=0.0857 0.1714 0.0857 az2=1.0000 -0.7429 0.0857x(0) x(2)x(1)x(3)-1-104W14W04W 04W-1-1X(0) X (1)X (2)X (3)7. 用脉冲响应不变法及双线性变换法将模拟传递函数()231a H s s s =++转变为数字传递函数()H z ,采样周期2=T 。