高中数学知识点:事件间的关系

合集下载

高中数学统计与概率知识点归纳

高中数学统计与概率知识点归纳

高中数学统计与概率知识点归纳高中数学中的统计与概率是两个非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。

本文将对这些知识点进行归纳和总结,以便读者更好地理解和掌握。

首先,让我们来看看统计。

统计是研究如何从数据中获取有用信息的学科。

在高中数学中,统计的主要内容包括以下三个方面:1、概率分布:这是统计的基础知识,它描述了各种可能结果出现的概率。

例如,投掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率为0.5。

2、参数估计:参数估计是通过样本数据来估计总体参数的方法。

例如,通过样本的平均值来估计总体的平均值。

3、假设检验:假设检验是用来检验一个假设是否成立的统计学方法。

例如,我们想要检验某种新药的疗效是否优于安慰剂,可以通过比较实验组和对照组的数据来进行假设检验。

接下来,让我们来看看概率。

概率是描述事件发生可能性大小的数学工具。

在高中数学中,概率的主要内容包括以下三个方面:1、事件的关系和运算:事件的关系包括互斥、独立、不独立等,事件之间的运算包括并、交、差等。

2、概率的性质和计算:概率的性质包括加法定理、乘法定理、全概率公式等,概率的计算方法包括直接计算、利用公式计算等。

3、概率分布:概率分布描述了随机变量的取值概率,例如伯努利分布、二项分布、正态分布等。

在应用方面,统计与概率的知识点可以应用于很多领域,例如金融、医学、工业、农业等。

例如,在金融领域,可以通过统计方法来分析股票数据的规律和趋势;在医学领域,可以通过概率方法来预测疾病的发病率和死亡率。

总之,统计与概率是高中数学中非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。

通过对这些知识点的归纳和总结,我们可以更好地理解和掌握它们,从而更好地应用于实际问题的解决中。

高中数学概率与统计知识点总结高中数学:概率与统计知识点总结一、前言在现实生活中,我们经常需要处理各种与概率和统计相关的问题。

例如,在掷骰子时计算点数、在班级中选取学生、或者在评估天气预报的准确性。

高中数学概率知识点总结

高中数学概率知识点总结

高中数学概率知识点总结一、概率的基本概念1.1 概率的定义在日常生活中,我们经常会遇到很多不确定的事件,比如掷骰子的结果、抽奖的中奖情况等等。

而概率就是用来描述这些不确定事件发生的可能性的。

概率可以理解为某件事情发生的可能性大小,通常用一个介于0和1之间的数值来表示,其中0表示不可能发生,1表示一定会发生。

1.2 样本空间和事件在进行概率计算时,通常需要确定一个样本空间,即所有可能发生的结果的集合。

比如掷一枚骰子,样本空间为{1,2,3,4,5,6}。

事件则是样本空间的一个子集,表示我们关心的那部分结果。

比如“出现奇数点数”的事件为{1,3,5}。

1.3 古典概率和频率概率古典概率是指在所有可能结果等可能时,事件发生的概率即为事件发生的次数与样本空间元素总数的比值。

而频率概率是指在实际观察中,某一事件发生的次数与总次数的比值。

古典概率适用于理论计算,而频率概率适用于实际观测。

1.4 概率的性质概率具有以下几个重要性质:(1)非负性:任何事件的概率都大于等于0;(2)规范性:全集事件的概率为1;(3)可列可加性:对于两个互不相容的事件,它们的概率之和等于这两个事件并起来的概率。

二、概率的计算方法2.1 古典概率的计算在古典概率中,当每个事件发生的可能性相等时,概率等于事件发生的次数除以总事件数,即P(A)=n(A)/n(S)。

2.2 几何概率的计算几何概率是通过几何模型中的面积、长度或体积来计算概率的方法。

比如说,在一个正方形的面积中,事件发生的可能性可以表示为事件的面积与总面积的比值。

2.3 频率概率的计算频率概率是通过实验次数和事件发生次数的比值来计算概率的方法,即P(A)=n(A)/n。

2.4 排列和组合排列是指从n个不同元素中取出m个元素,按一定的次序排成一列,不同元素的个数为n!/(n-m)!。

组合是指从n个不同元素中取出m个元素,不考虑次序的情况,不同元素的个数为n!/(m!(n-m)!)。

高中数学知识点:随机事件的概念

高中数学知识点:随机事件的概念

高中数学知识点:随机事件的概念
在一定的条件下所出现的某种结果叫做事件.
(1)必然事件:在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件;
(2)不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;
确定事件:必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件.
(3)随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件.
要点诠释:
1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究;
2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性.
第1 页共1 页。

人教版高中数学选修1-1课件:1.1.3 四种命题间的相互关系

人教版高中数学选修1-1课件:1.1.3 四种命题间的相互关系
第一章
常用逻辑用语
1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的相互关系
三维目标
1.知识与技能 (1)了解原命题、逆命题、否命题、逆否命题这四种命题的概念. (2)掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假. 2.过程与方法 多让学生举例,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能 力;培养学生的抽象概括能力和思维能力. 3.情感、态度与价值观 通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及分析 问题和解决问题的能力.
备课素材
对于含有大前提的命题,在改写时大前提不动.如“已知a,b为正数,若a>b,则 |a|>|b|”中,“已知a,b为正数”在四种命题中是相同的大前提,写其他命题时都 把它作为大前提. 在写一个命题的否命题时要将命题中的关键词语改写成否定词语,特别地,“且” 的否定是“或”,“都是”的否定是“不都是”等.
备课素材
[例]写出下列命题的逆命题、否 命题和逆否命题. (1)若 a+ 5是有理数,则 a 是无 理数; (2)若 ab=0,则 a,b 中至少有 一个为零; (3)垂直于同一平面的两条直线 平行.
解: (1)逆命题:若 a 是无理数,则 a+ 5是 有理数; 否命题:若 a+ 5不是有理数,则 a 不是无 理数; 逆否命题:若 a 不是无理数,则 a+ 5不是 有理数.
新课导入
[导入一] 情景引入 在商品大战中,广告成了电视节目中一道美丽的风景线.几乎所有的广告商都熟 谙这样的命题变换艺术,如宣传某种食品,其广告词为:“拥有的人们都幸福, 幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效 果相当大.哪个家庭不希望幸福呢,掏钱买一盒就得了.你能写出其广告词的一 个等价命题吗?

高中数学概率知识点总结

高中数学概率知识点总结

高中数学概率知识点总结概率是数学中的一个重要分支,主要研究随机事件的发生规律以及概率的计算方法。

在高中数学中,我们主要学习了概率的基本概念、概率的计算方法以及概率在实际问题中的应用。

本文将对这些知识点进行总结和归纳。

一、概率的基本概念1. 随机事件和样本空间:在概率中,我们把可能发生的事件称为随机事件,用字母表示。

样本空间是一组可能出现的结果的集合,用S表示。

2. 必然事件和不可能事件:必然事件是指在任何实验中一定会发生的事件,概率为1;不可能事件是指在任何实验中都不会发生的事件,概率为0。

3. 事件的互斥和对立事件:如果两个事件不能同时发生,我们称它们互斥事件;如果两个事件中一个发生,另一个一定不发生,我们称它们为对立事件。

二、概率的计算方法1. 频率法:频率是指某个事件在大量实验中发生的次数与总实验次数的比值。

当实验次数足够大时,频率可以逼近真实概率。

2. 几何法:几何法通过几何图形的面积比来计算概率。

对于等可能的随机事件,可以通过图形的面积比来求得概率。

3. 组合数学方法:对于有限个数的样本空间和等可能的随机事件,我们可以使用组合数学的知识来计算概率,如排列、组合等。

4. 事件的加法原理:如果A和B是两个随机事件,则事件A或事件B发生的概率等于事件A和事件B发生概率之和减去事件A和事件B同时发生的概率。

5. 事件的乘法原理:如果A和B是两个相互独立的随机事件,则事件A和B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

三、概率在实际问题中的应用1. 古典概率:古典概率是指当样本空间中各个结果发生的概率相等时,事件A发生的概率等于事件A包含的有利结果数除以样本空间中结果的总数。

2. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率通常用P(A|B)表示,其中P(A|B)表示在事件B发生的前提下事件A发生的概率。

3. 贝叶斯定理:贝叶斯定理是一种根据已知条件下的概率推算出另一事件发生的概率的方法。

2019人教A版 高中数学知识点梳理 ----第九章 统计与概率

2019人教A版  高中数学知识点梳理 ----第九章 统计与概率

第九章概率统计必修二统计、概率选择性必修三第六章计数原理第七章随机变量及其分布第八章成对数据的统计分析一. 两个计数原理、排列与组合1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n 步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3. 排列组合定义(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的的个数,叫做从n个不同元素中取出m个元素的排列数,用表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的的个数,叫做从n个不同元素中取出m个元素的组合数,用表示.4. 排列数与组合数的公式与性质公式(1)A m n==n!(n-m)!(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=性质(1)0!=;A n n=(2)C m n=C n-mn;C m n+1=(3) (不定系数转为定系数)kC n k==(0≤k≤n,k∈N)题组1.1. 有5个编了号的抽屉,要放进3本不同的书,不同的方法有种2.5人分到三家医院,每个医院至少一人,有___________种分法.3. 3名女生和4名男生排成一排,在下列情形中各有多少种?列式并写出结果.(1)如果女生全排在一起_________________(2)如果女生都不相邻_________________(3)如果女生不站两端_________________ (4)其中甲必须排在乙前面(可不邻) _________________(5)其中甲不站左端,乙不站右端_________________4.证明结论:kC n k=nC n−1k−10≤k≤n,k∈N二. 二项式定理1.二项式定理2.(1)C0n=,C n n=C m n+1=+ .(2)C m n=.(3)当n为偶数时,二项式系数中_____最大;当n为奇数时,二项式系数中以______和________最大.(4)二项系数和:C0n+C1n+…+C n n=.C1n+C3n+C5n+…=C0n+C2n+C4n+…=________.题组2. 回归课本1.(1+x)2+(1+x)3+⋯+(1+x)9的展开式中2x的系数是()A. 60B. 80C. 84D. 1202.求(9x3√x )n展开式中第3项与第5项的二项式系数相等,则展开式的常数项为;有理项有_______项。

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)高中数学是一门重要的学科,它不仅在高考中占据重要地位,也为我们的后续学习和生活提供了重要的思维工具。

以下是对高中数学知识点的全面总结归纳。

一、集合与常用逻辑用语1、集合集合是由一些确定的、不同的对象所组成的整体。

集合的表示方法有列举法、描述法和图示法。

集合的运算包括交集、并集和补集。

2、常用逻辑用语命题是可以判断真假的陈述句。

原命题、逆命题、否命题和逆否命题之间有着特定的关系。

充分条件、必要条件和充要条件在判断推理中经常用到。

二、函数1、函数的概念设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。

2、函数的性质函数的单调性是指函数在某个区间上的增减性;函数的奇偶性则是关于原点对称或 y 轴对称的性质。

3、常见函数一次函数、二次函数、反比例函数、指数函数、对数函数等,它们的图像和性质都需要熟练掌握。

三、三角函数1、任意角和弧度制了解角的概念的推广,以及弧度与角度的换算。

2、三角函数的定义通过角的终边上的点的坐标来定义三角函数。

3、三角函数的图像和性质正弦函数、余弦函数、正切函数的图像特点和周期性、单调性等性质。

4、三角恒等变换包括两角和与差的正弦、余弦、正切公式,二倍角公式等。

四、平面向量1、平面向量的概念既有大小又有方向的量叫向量。

2、平面向量的运算向量的加法、减法、数乘运算以及数量积运算。

3、平面向量的基本定理及坐标表示平面内任一向量都可以用两个不共线向量表示,向量也可以用坐标来表示,方便进行运算。

五、数列1、数列的概念按照一定顺序排列的一列数称为数列。

2、等差数列和等比数列等差数列的通项公式、前 n 项和公式;等比数列的通项公式、前 n 项和公式。

3、数列求和的方法如公式法、错位相减法、裂项相消法等。

六、不等式1、不等式的性质包括对称性、传递性、可加性、可乘性等。

2021新教材高中数学第10章概率 教学用书教案新人教A版必修第二册

第十章概率10.1 随机事件与概率10.1.1有限样本空间与随机事件素养目标·定方向素养目标学法指导1.理解样本点和有限样本空间的含义.(数学抽象)2.理解随机事件与样本点的关系.(逻辑推理)1.类比集合的有关概念来认识样本空间. 2.类比集合与集合之间的关系来认识随机事件.必备知识·探新知知识点1随机试验及样本空间1.随机试验的概念和特点(1)随机试验:我们把对__随机现象__的实现和对它的观察称为随机试验,简称试验,常用字母E来表示.(2)随机试验的特点:①试验可以在相同条件下__重复__进行;②试验的所有可能结果是__明确可知__的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的__每个可能的基本结果__称为样本点用__w__表示样本点样本空间全体__样本点__的集合称为试验E的样本空间用__Ω__表示样本空间有限样本空间如果一个随机试验有n个可能结果w1,w2,…,w n,则称样本空间Ω={w1,w2,…,w n}为有限样本空间Ω={w1,w2,…,w n}知识点2三种事件的定义随机事件我们将样本空间Ω的__子集__称为随机事件,简称事件,并把只包含__一个__样本点的事件称为基本事件,随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生必然事件Ω作为自身的子集,包含了__所有的__样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件不可能事件空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件[知识解读]1.随机试验的三个特点(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.关于样本点和样本空间(1)样本点是指随机试验的每个可能的基本结果,全体样本点的集合称为试验的样本空间;(2)只讨论样本空间为有限集的情况,即有限样本空间.3.事件与基本事件(1)随机事件是样本空间的子集.随机事件是由若干个基本事件构成的,当然,基本事件也是随机事件.(2)必然事件与不可能事件不具有随机性,是随机事件的两个极端情形.关键能力·攻重难题型探究题型一事件类型的判断典例1在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;(3)没有水分,种子发芽;(4)某电话总机在60秒内接到至少15个电话;(5)在标准大气压下,水的温度达到50 ℃时会沸腾;(6)同性电荷相互排斥.[分析]依据事件的分类及其定义,在给出的条件下,判断事件是否发生.[解析]结合必然事件、不可能事件、随机事件的定义可知.(1)对任意实数,都满足加法的交换律,故此事件是必然事件.(2)从6张号签中任取一张,得到4号签,此事件可能发生,也可能不发生,故此事件是随机事件.(3)适宜的温度和充足的水分,是种子萌发不可缺少的两个条件,没有水分,种子就不可能发芽,故此事件是不可能事件.(4)电话总机在60秒内接到至少15个电话,此事件可能发生,也可能不发生,故此事件是随机事件.(5)在标准大气压下,水的温度达到100 ℃时,开始沸腾,水温达到50 ℃,水不会沸腾,故此事件是不可能事件.(6)根据“同种电荷相互排斥,异种电荷相互吸引”的原理判断,该事件是必然事件.[归纳提升]判断一个事件是随机事件、必然事件还是不可能事件,首先一定要看条件,其次是看在该条件下所研究的事件是一定发生(必然事件)、不一定发生(随机事件),还是一定不发生(不可能事件).【对点练习】❶指出下列事件是必然事件、不可能事件,还是随机事件:(1)我国东南沿海某地明年将受到3次冷空气的侵袭;(2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标.[解析](1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件.(3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件.题型二确定试验的样本空间典例2下列随机事件中,一次试验各指什么?试写出试验的样本空间.(1)先后抛掷两枚质地均匀的硬币多次;(2)从集合A={a,b,c,d}中任取3个元素;(3)从集合A={a,b,c,d}中任取2个元素.[解析](1)一次试验是指“先后抛掷两枚质地均匀的硬币一次”,试验的样本空间为:{(正,反),(正,正),(反,反),(反,正)}.(2)一次试验是指“从集合A中一次选取3个元素组成集合”,试验的样本空间为:{(a,b,c),(a,b,d),(a,c,d),(b,c,d)}.(3)一次试验是指“从集合A中一次选取2个元素”,试验的样本空间为:{(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}.[归纳提升]不重不漏地列举试验的所有样本点的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验中的条件.(2)根据日常生活经验,按照一定的顺序列举出所有可能的结果,可应用画树状图、列表等方法解决.【对点练习】❷袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和样本空间.(1)从中任取1球;(2)从中任取2球.[解析](1)条件为:从袋中任取1球.样本空间为{红,白,黄,黑}.(2)条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,样本空间为{(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑)}.题型三随机事件的表示典例3一个口袋内装有除颜色外完全相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球.(1)一共有多少个样本点?(2)写出“2个球都是白球”这一事件的集合表示.[解析](1)分别记白球为1,2,3号,黑球为4,5号,则这个试验的样本点为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个[其中(1,2)表示摸到1号球和2号球].(2)记A表示“2个球都是白球”这一事件,则A={(1,2),(1,3),(2,3)}.[归纳提升]1.判随机事件的结果是相对于条件而言的,要确定样本空间,(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出所有样本点.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.2.试验中当试验的结果不唯一时,一定要将各种可能都要考虑到,尤其是有顺序和无顺序的情况最易出错.【对点练习】❸做抛掷红、蓝两枚骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数.写出:(1)这个试验的样本空间;(2)这个试验的结果的个数;(3)指出事件A={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}的含义;(4)写出“点数之和大于8”这一事件的集合表示.[解析](1)这个试验的样本空间Ω为{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}.(2)这个试验的结果的个数为36.(3)事件A的含义为抛掷红、蓝两枚骰子,掷出的点数之和为7.(4)记B=“点数之和大于8”,则B={(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)}.易错警示忽视试验结果与顺序的关系而致误典例4已知集合M={-2,3},N={-4,5,6},从这两个集合中各取一个元素分别作为点的横、纵坐标.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数.[错解](1)这个试验的基本事件空间Ω={(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6)}.(2)这个试验的基本事件的总数是6.[错因分析]题中要求从两个集合中各取一个元素分别作为点的横、纵坐标,所以集合N中的元素也可以作为横坐标,错解中少了以下基本事件:(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3).[正解](1)这个试验的基本事件空间Ω={(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6),(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3)}.(2)这个试验的基本事件的总数是12.【对点练习】❹同时抛掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是(D)A.3B.4C.5D.6[解析](1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.10.1.2 事件的关系和运算素养目标·定方向素养目标学法指导1.理解事件的关系与运算.(逻辑推理)2.理解互斥事件和对立事件的概念.(数学抽象)本部分内容要类比集合的关系和运算来理解事件的关系和运算.必备知识·探新知知识点1事件的运算定义表示法图示并事件__事件A与事件B至少有一个发生__,称这个事件为事件A与事件B的并事件(或和事件)__A∪B__(或__A+B__)交事件__事件A与事件B同时发生__,称这样一个事件为事件A与事件B的交事件(或积事件)__A∩B__(或__AB__)知识点2事件的关系定义表示法图示包含关系若事件A发生,事件B__一定发生__,称事件B包含事件A(或事件A包含于事件B)__B⊇A__(或__A⊆B__)互斥事件如果事件A与事件B__不能同时发生__,称事件A与事件B互斥(且互不相容)若__A∩B=∅__,则A与B互斥对立事件如果事件A和事件B在任何一次试验中__有且仅有一个发生__,称事件A与事件B互为对立,事件A的对立事件记为A-若__A∩B=∅__,且A∪B=Ω,则A与B对立(1)区别:两个事件A与B是互斥事件,包括如下三种情况:①若事件A发生,则事件B就不发生;②若事件B发生,则事件A就不发生;③事件A,B都不发生.而两个事件A,B是对立事件,仅有前两种情况,因此事件A与B是对立事件,则A∪B是必然事件,但若A与B是互斥事件,则不一定是必然事件,即事件A的对立事件只有一个,而事件A的互斥事件可以有多个.(2)联系:互斥事件和对立事件在一次试验中都不可能同时发生,而事件对立是互斥的特殊情况,即对立必互斥,但互斥不一定对立.2.从集合的角度理解互斥事件与对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.关键能力·攻重难题型探究题型一互斥事件、对立事件的判定典例1(1)(2020·河南省南阳市期中)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是(A)A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶(2)(2020·湖南省怀化市期末)一个人连续射击三次,则事件“至少击中两次”的对立事件是(D)A.恰有一次击中B.三次都没击中C.三次都击中D.至多击中一次[解析](1)事件“至多有一次中靶”包含“只有一次中靶”和“两次都不中靶”,因此不会与其同时发生的事件是“两次都中靶”.(2)根据题意,一个人连续射击三次,事件“至少击中两次”包括“击中两次”和“击中三次”两个事件,其对立事件为“一次都没有击中和击中一次”,即“至多击中一次”.[归纳提升]判断事件间关系的方法(1)要考虑试验的前提条件,无论是包含、相等,还是互斥、对立其发生的条件都是一样的.(2)考虑事件间的结果是否有交事件,可考虑利用Venn图分析,对较难判断关系的,也可列出全部结果,再进行分析.【对点练习】❶有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向,事件“甲向南”与事件“乙向南”是(A) A.互斥但非对立事件B.对立事件C.非互斥事件D.以上都不对[解析]由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.题型二事件的运算典例2在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断上述哪些事件是和事件.[解析](1)因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3.同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1=D1.(2)因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6(或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G =C1+C3+C5.[归纳提升]事件运算应注意的2个问题(1)进行事件的运算时,一是要紧扣运算的定义,二是要全面考查同一条件下的试验可能出现的全部结果,必要时可利用Venn图或列出全部的试验结果进行分析.(2)在一些比较简单的题目中,需要判断事件之间的关系时,可以根据常识来判断.但如果遇到比较复杂的题目,就得严格按照事件之间关系的定义来推理.【对点练习】❷盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.问:(1)事件D与A,B是什么样的运算关系?(2)事件C与A的交事件是什么事件?(3)设事件E={3个红球},事件F={3个球中至少有1个白球},那么事件C与B,E 是什么运算关系?C与F的交事件是什么?[解析](1)对于事件D,可能的结果为1个红球2个白球或2个红球1个白球,故D=A∪B.(2)对于事件C,可能的结果为1个红球2个白球或2个红球1个白球或3个均为红球,故C∩A=A.(3)由事件C包括的可能结果有1个红球2个白球,2个红球1个白球,3个红球三种情况,故B⊆C,E⊆C,而事件F包括的可能结果有1个白球2个红球,2个白球1个红球,3个白球,所以C∩F={1个红球2个白球,2个红球1个白球}=D.题型三用集合运算表示随机事件典例3设A,B,C表示三个随机事件,试将下列事件用A,B,C表示出来.(1)三个事件都发生;(2)三个事件至少有一个发生;(3)A发生,B,C不发生;(4)A,B都发生,C不发生;(5)A,B至少有一个发生,C不发生;(6)A,B,C中恰好有两个发生.[解析](1)ABC(2)A∪B∪C(3)A B-C-(4)AB C-(5)(A∪B)C-(6)AB C-∪A B-C∪A-BC[归纳提升]利用随机事件的运算与集合运算的对应关系,可以有效地解决此类问题.【对点练习】❸从某大学数学系图书室中任选一本书.设A表示事件“任选一本书,这本书为数学书”;B表示事件“任选一本书,这本书为中文版的书”;C表示事件“任选一本书,这本书为2000年后出版的书”.问:(1)AB C-表示什么事件?(2)在什么条件下有ABC=A?(3)C-⊆B表示什么意思?[解析](1)AB C-表示事件“任选一本书,这本书为2000年或2000年前出版的中文版的数学书”.(2)在“图书室中所有数学书都是2000年后出版的且为中文版”的条件下才有ABC=A.(3)C-⊆B表示2000年或2000年前出版的书全是中文版的.易错警示不能正确区分对立事件和互斥事件致错典例4进行抛掷一枚骰子的试验,有下列各组事件:(1)“出现1点”与“出现2点”;(2)“出现奇数点”与“出现偶数点”;(3)“出现大于3的点”与“出现大于4的点”.其中是对立事件的组数是(B)A.0B.1C.2D.3[错解]C[错因分析]错解混淆了互斥事件与对立事件,误将互斥事件当作了对立事件.只有(2)“出现奇数点”与“出现偶数点”是对立事件,而(1)中“出现1点”与“出现2点”是互斥事件,但不是对立事件,(3)中“出现大于3的点”与“出现大于4的点”不是互斥事件,所以也不是对立事件.[正解]B[误区警示]对立事件一定是互斥事件,而互斥事件却不一定是对立事件.忽略互斥事件与对立事件之间的区别与联系,对“恰”“至少”“都”等词语理解不透彻.判断两个事件是否互斥,就要看它们是否能同时发生;判断两个互斥事件是否对立,就要看它们是否有一个必然发生.【对点练习】❹(2020·广东省茂名市期末)若干人站成一排,其中为互斥事件的是(A)A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙站排尾”C.“甲站排头”与“乙不站排头”D.“甲不站排头”与“乙不站排头”[解析]根据互斥事件不能同时发生,判断A是互斥事件;B,C,D中两事件能同时发生,故不是互斥事件.10.1.3 古典概型素养目标·定方向素养目标学法指导1.古典概型的计算方法.(数学抽象)2.运用古典概型计算概率.(数学运算) 3.在实际问题中建立古典概型模型.(数学建模)1.明确古典概型的基本特征,根据实际问题构建概率模型,解决简单的实际问题.2.注意区分有放回抽取(每次抽取之后被抽取的物体总数不变)与无放回抽取(每次抽取之后被抽取的物体总数减少).必备知识·探新知知识点1随机事件的概率对随机事件发生__可能性大小__的度量(数值)称为事件的概率,事件A的概率用__P(A)__表示.知识点2古典概型一般地,若试验E具有以下特征:(1)有限性:样本空间的样本点只有__有限个__;(2)等可能性:每个样本点发生的可能性__相等__.称试验E为古典概型试验,其数学模型称为__古典概率__模型,简称__古典概型__.知识点3古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=__kn__=__n(A)n(Ω)__.[知识解读](1)随机试验E中的样本点①任何两个样本点都是互斥的;②任何事件(除不可能事件)都可以表示成某些样本点的和.(2)求解古典概型问题的一般思路①明确试验的条件及要观察的结果,用适当的符号(字母、数字、数组等)表示试验的样本点(借助图表可以帮助我们不重不漏地列出所有样本点);②根据实际问题情景判断样本点的等可能性;③计算样本点总个数及事件A包含的样本点个数,求出事件A的概率.关键能力·攻重难题型探究题型一古典概型的判断典例1下列试验是古典概型的是__①②④__.①从6名同学中选出4人参加数学竞赛,每人被选中可能性大小相等;②同时掷两颗骰子,点数和为6的概率;③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.[分析]紧扣古典概型的两大特征——有限性与等可能性进行判断.[解析]①②④是古典概型,因为符合古典概型的特征.③不是古典概型,因为不符合等可能性,降雨受多方面因素影响.[归纳提升]判断试验是不是古典概型,关键看是否符合两大特征——有限性和等可能性.【对点练习】❶下列是古典概型的是(C)A.任意掷两枚骰子,所得点数之和作为基本事件时B.求任意的一个正整数平方的个位数字是1的概率,将去除的正整数作为基本事件时C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止[解析]A项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;C项满足古典概型的有限性和等可能性,故C是;D项中基本事件可能会无限个,故D不是.题型二古典概型的概率计算典例2甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一所学校的概率.[分析](1)要求2名教师性别相同的概率,应先写出所有可能的结果,可以采用列举法求解.(2)要求选出的2名教师来自同一所学校的概率,应先求出2名教师来自同一所学校的基本事件.[解析] (1)甲校2名男教师分别用A ,B 表示,1名女教师用C 表示;乙校1名男教师用D 表示,2名女教师分别用E ,F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种.从中选出2名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种,所以选出的2名教师性别相同的概率为P =49. (2)从甲校和乙校报名的6名教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.从中选出2名教师来自同一所学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种,所以选出的2名教师来自同一所学校的概率为P =615=25. [归纳提升] 1.对于古典概型,任何事件A 的概率为:P (A )=A 包含的基本事件的个数m 基本事件的总数n. 2.求古典概型概率的步骤为:(1)判断是否为古典概型;(2)算出基本事件的总数n ;(3)算出事件A 中包含的基本事件个数m ;(4)算出事件A 的概率,即P (A )=m n. 在运用公式计算时,关键在于求出m 、n .在求n 时,应注意这n 种结果必须是等可能的,在这一点上比较容易出错.3.对于事件总数较多的情况,在解题时,没有必要一一列举出来,只将我们解题需要的列举出来分析即可.【对点练习】❷ 某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.[解析] (1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的样本点有: {(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)},共15个.所选两个国家都是亚洲国家的事件所包含的样本点有:{(A 1,A 2),(A 1,A 3),(A 2,A 3)},共3个,则所求事件的概率为p =315=15.(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的样本点有:{(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3)},共9个.包括A 1但不包括B 1的事件所包含的样本点有:{(A 1,B 2),(A 1,B 3)},共2个,则所求事件的概率为p =29. 题型三 较复杂的古典概型的概率计算典例3 某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个;②若xy ≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.[解析] 用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16,所以基本事件总数n =16.(1)记“xy ≤3”为事件A ,则事件A 包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P (A )=516,即小亮获得玩具的概率为516. (2)记“xy ≥8”为事件B ,“3<xy <8”为事件C .则事件B 包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P (B )=616=38. 事件C 包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1),所以P (C )=516, 因为38>516, 所以小亮获得水杯的概率大于获得饮料的概率.[归纳提升] 解古典概型问题时,要牢牢抓住它的两个特点和其计算公式.但是这类问题的解法多样,技巧性强,在解决此类题时需要注意以下两个问题:(1)试验必须具有古典概型的两大特征——有限性和等可能性.(2)计算基本事件的数目时,须做到不重不漏,常借助坐标系、表格及树状图等列出所有基本事件.【对点练习】❸ 甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )分别表示甲、乙抽到的牌的数字,写出试验的样本空间;(2)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.[解析] (1)方片4用4′表示,试验的样本空间为Ω={(2,3),(2,4),(2,4′),(3,2),(3,4), (3,4′), (4,2), (4,3), (4,4′),(4′,2),(4′,3),(4′,4)},则样本点的总数为12.(2)不公平.甲抽到牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3)5种,甲胜的概率为P 1=512,乙胜的概率为P 2=712,因为512<712,所以此游戏不公平.易错警示对“有序”与“无序”判断不准而致错典例4 甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中3道选择题,2道填空题,甲、乙两人依次抽取1道题.求甲抽到选择题、乙抽到填空题的概率.[错解] 因为通过列举法可得甲抽到选择题、乙抽到填空题的可能结果有6个,且甲、乙两人依次抽取1道题的可能结果有10个,所以甲抽到选择题、乙抽到填空题的概率为610=35. [错因分析] 错解中忽略了甲、乙两人依次抽取1道题与顺序有关,甲从5道题中任抽1道题有5种方法,乙从剩下的4道题中任抽1道题有4种方法,所以基本事件总数应为20.[正解] 因为通过列举法可得甲抽到选择题、乙抽到填空题的可能结果有6个,而甲、乙两人依次抽取1道题的可能结果有20个,所以甲抽到选择题、乙抽到填空题的概率为620=310.。

概率高中数学知识点

概率高中数学知识点
高中概率知识点如下:
1、确定事件:必然事件和不可能事件统称为相对于条件S的确定事件。

2、K(抽样距离)=N(总体规模)/n(样本规模)。

3、若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件。

4、必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1。

5、必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件。

6、对立事件:事件A和事件B必有一个发生的互斥事件. A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生这时P(A+B)=P(A)+P(B)=1 即P(A+A)=P(A)+P(A)=1。

当计算事件A的概率P(A)比较困难时,有时计算它的对立事件A的概率则要容易些,为此有P(A)=1-P(A)。

事件与集合:从集合角度来看,A、B两个事件互斥,则表示A、B这两个事件所含结果组成的集合的交集是空集。

事件A的对立事件A所含结果的集合正是全集U中由事件A所含结果组成集合的补集。

对立事件一定是互斥事件,但互斥事件不一定是对立事件。

注意
1、在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

2、通过实例,了解两个互斥事件的概率加法公式。

3、通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

4、了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义。

5、通过阅读材料,了解人类认识随机现象的过程。

高中数学概率与统计知识点总结

概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识点:事件间的关系
(1)互斥事件:不能同时发生的两个事件叫做互斥事件;
(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做对立事件;
(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A);
要点诠释:
从集合角度理解互斥事件为两事件交集为空,对立事件为两事件互补.
若两事件A与B对立,则A与B必为互斥事件,而若事件A与B 互斥,则不一定是对立事件.
“对立”只能是两个事件之间的关系,不会出现多个事件之间相互“对立”.
第1 页共1 页。

相关文档
最新文档