浙教版七下第四章因式分解解答题精选及答案

合集下载

浙教版七年级下册数学第四章 因式分解含答案(考点梳理)

浙教版七年级下册数学第四章 因式分解含答案(考点梳理)

浙教版七年级下册数学第四章因式分解含答案一、单选题(共15题,共计45分)1、多项式12abc﹣6bc2各项的公因式为()A.2abcB.3bc 2C.4bD.6bc2、下列等式从左到右的变形,属于因式分解的是()A.x 2+2x﹣1=(x﹣1)2B.x 2+4x+4=(x+2)2C.(a+b)(a﹣b)=a 2﹣b 2D.ax 2﹣a=a(x 2﹣1)3、把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是()A.(x﹣y)(﹣a﹣b+c)B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c)D.﹣(y﹣x)(a+b﹣c)4、下列运算正确的是()A. B. C. D.5、下列因式分解正确的是()A. B. C.D.6、若(x+m)2=x2+kx+16,则m的值为()A.4B.±4C.8D.±87、下列各式中,去括号或添括号正确的是()A.a 2-(2a-b+c)=a 2-2a-b+cB.a-3x+2y-1=a+(-3x+2y-1)C.3x-[5x-(2x-1)]=3x-5x-2x+1D.-2x-y-a+1=-(2x-y)+(a-1)8、下列多项式在实数范围内不能因式分解的是()A.x3+2xB.a2+b2C.D.m2-4n29、分解因式结果正确的是()A. B. C. D.10、下列因式分解正确的是()A.3ax 2﹣6ax=3 (ax 2﹣2ax)B.x 2+y 2=(﹣x+y)(﹣x﹣y) C.a 2+2ab﹣4b 2=(a+2b)2 D.ax 2﹣2ax+a=a (x﹣1)211、下列各式从左到右的变形是因式分解因式分解的是( )A.2x-2y=2(x-y)B.(x+y)(x-y)=x 2-y 2C.x 2+2x+3=(x+1)2+2D.a(x+y)=ax+ay12、把下列各式分解因式结果为(x-2y)(x+2y)的多项式是()A. -4B. +4C.- +4D.- -413、把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)14、下列等式由左边向右边的变形中,属于因式分解的是()A.x 2+5x-1=x(x+5)-1B.x 2-4+3x=(x+2)(x-2)+3xC.x 2-9=(x+3)(x-3) D.(x+2)(x-2)=x 2-415、将多项式x﹣x3因式分解正确的是( )A.x(1﹣x 2)B.x(x 2﹣1)C.x(1+x)(1﹣x)D.x(x+1)(x﹣1)二、填空题(共10题,共计30分)16、因式分解:=________.17、因式分解:mn(n﹣m)﹣n(m﹣n)=________.18、分解因式:4a2-16=________.19、分解因式:________.20、分解因式:x3﹣4x2+4x=________.21、已知a+b=3,a-b=5,则代数式a2-b2的值是________.22、分解因式:2x2﹣12x+18=________.23、分解因式:x2﹣4=________ .24、因式分解:________.25、因式分解:=________.三、解答题(共5题,共计25分)26、已知:方程组,求:x2-y2的值。

最新浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案解析)

最新浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案解析)

初中数学七年级下册第四章因式分解综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、若x 2+mx +n 分解因式的结果是(x ﹣2)(x +1),则m +n 的值为( )A.﹣3B.3C.1D.﹣1 2、下列各式中,不能用完全平方公式分解因式的是( )A.x 2+2x +1B.16x 2+1C.a 2+4ab +4b 2D.214x x -+ 3、下列多项式中有因式x ﹣1的是( )①x 2+x ﹣2;②x 2+3x +2;③x 2﹣x ﹣2;④x 2﹣3x +2A.①②B.②③C.②④D.①④ 4、在下列从左到右的变形中,不是因式分解的是( )A.x 2﹣x =x (x ﹣1)B.x 2+3x ﹣1=x (x +3)﹣1 C.x 2﹣y 2=(x +y )(x ﹣y ) D.x 2+2x +1=(x +1)2 5、已知c <a <b <0,若M =|a (a ﹣c )|,N =|b (a ﹣c )|,则M 与N 的大小关系是( )A.M <NB.M =NC.M >ND.不能确定6、下列等式从左到右的变形中,属于因式分解的是( )A.2222()a ab b a b -+=-B.2(1)(2)2x x x x -+=+-C.()11ma mb m a b +-=+-D.3232824x y x y =⋅ 7、下列因式分解正确的是( )A.x 2﹣4=(x +4)(x ﹣4)B.4a 2﹣8a =a (4a ﹣8) C.a 2+2a +2=(a +1)2+1 D.x 2﹣2x +1=(x ﹣1)2 8、下列各式中,因式分解正确的是( )A.()22121x x x x ++=++B.()()22a b a b a b +=+-C.()222412923a ab b a b ++=+D.()231x x x x -=- 9、多项式3254812x y x y -的公因式是( )A.x 2y 3B.x 4y 5C.4x 4y 5D.4x 2y 310、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:-a b ,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:勤,博,奋,学,自,主,现将()()222222x y a x y b ---因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主11、下列各式从左到右的变形是因式分解的是( )A.ax +bx +c =(a +b )x +cB.(a +b )(a ﹣b )=a 2﹣b 2C.(a +b )2=a 2+2ab +b 2D.a 2﹣5a ﹣6=(a ﹣6)(a +1) 12、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a +1)(a -1)=a 2-1B.ab +ac +1=a (b +c )+1C. a 2-2a -3=(a -1)(a -3)D.a 2-8a +16=(a -4)213、若()()223x x x a x b --=-+,则-a b 的值为( )A.3B.3-C.2D.2-14、下列因式分解正确的是()A.2p+2q+1=2(p+q)+1B.m2﹣4m+4=(m﹣2)2C.3p2﹣3q2=(3p+3q)(p﹣q)D.m4﹣1=(m²+1)(m²﹣1)15、已知3+=,则22ab=-,2a b+的值是()a b abA.6B.﹣6C.1D.﹣1二、填空题(10小题,每小题4分,共计40分)1、若220x x x+-+=_________.22020+-=,则32x x2、因式分解:x2﹣6x=_________;(3m﹣n)2﹣3m+n=_________.3、若a<b<0,则a2﹣b2___0.(填“>”,“<”或“=”)y-=______.4、分解因式:2165、小明将(2020x+2021)2展开后得到a1x2+b1x+c1;小红将(2021x﹣2020)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值是__________.6、已知x2﹣y2=21,x﹣y=3,则x+y=___.7、分解因式:228m m--=______.8、若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为______.9、分解因式:236-=___________.ab a10、若代数式x2﹣a在有理数范围内可以因式分解,则整数a的值可以为__.(写出一个即可)三、解答题(3小题,每小题5分,共计15分)1、分解因式(1)24-;a a(2)()24-+.x y xy2、因式分解:(1)325x y x - (2)21934x x ++ 3、分解因式:(1)2mn n -(2)2436x -(3)22222()4a b a b +----------参考答案-----------一、单选题1、A【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m 、n 的值,最后求出答案即可.【详解】解:(x ﹣2)(x +1)=x 2+x ﹣2x ﹣2=x 2﹣x ﹣2,∵二次三项式x 2+mx +n 可分解为(x ﹣2)(x +1),∴m =﹣1,n =﹣2,∴m +n =﹣1+(﹣2)=﹣3,故选:A .【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.2、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x 2+2x +1=(x +1)2,因此选项A 不符合题意;B.16x 2+1在实数范围内不能进行因式分解,因此选项B 符合题意;C.a 2+4ab +4b 2=(a +2b )2,因此选项C 不符合题意;D.x 2﹣x +14=(x ﹣12)2,因此选项D 不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.3、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x 2+x ﹣2=()()21x x +-; ②x 2+3x +2=()()21x x ++; ③x 2﹣x ﹣2=()()12x x +-; ④x 2﹣3x +2=()()21x x --. ∴有因式x ﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如2x px q ++的二次三项式,若能找到两数a b 、,使a b q ⋅=,且a b p +=,那么2x px q ++就可以进行如下的因式分解,即()()()22x px q x a b x ab x a x b ++=+++=++.4、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x 2﹣x =x (x ﹣1),是因式分解,故该选项不符合题意;B. x 2+3x ﹣1=x (x +3)﹣1,不是因式分解,故该选项符合题意;C. x 2﹣y 2=(x +y )(x ﹣y ),是因式分解,故该选项不符合题意;D. x 2+2x +1=(x +1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.5、C【分析】方法一:根据整式的乘法与绝对值化简,得到M -N =(a ﹣c )(b ﹣a )>0,故可求解;方法二:根据题意可设c =-3,a =-2,b =-1,再求出M ,N ,故可比较求解.【详解】方法一:∵c <a <b <0,∴a -c >0,∴M =|a (a ﹣c )|=- a (a ﹣c )N =|b (a ﹣c )|=- b (a ﹣c )∴M -N =- a (a ﹣c )-[- b (a ﹣c )]= - a (a ﹣c )+ b (a ﹣c )=(a ﹣c )(b ﹣a )∵b -a >0,∴(a ﹣c )(b ﹣a )>0∴M >N方法二: ∵c <a <b <0,∴可设c =-3,a =-2,b =-1,∴M =|-2×(-2+3)|=2,N =|-1×(-2+3)|=1∴M >N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M -N =(a ﹣c )(b ﹣a )>0,再进行判断.6、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A . 2222()a ab b a b -+=-是因式分解,故选项A 正确;B . 2(1)(2)2x x x x -+=+-是多项式乘法,故选项B 不正确;C . ()11ma mb m a b +-=+-不是因式分解,故选项C 不正确;D . 3232824x y x y =⋅是单项式乘的逆运算,不是因式分解,故选项D 不正确.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.7、D【分析】各式分解得到结果,即可作出判断.【详解】解:A 、原式=(x +2)(x ﹣2),不符合题意;B 、原式=4a (a ﹣2),不符合题意;C 、原式不能分解,不符合题意;D 、原式=(x ﹣1)2,符合题意.故选:D .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2221(1)x x x ++=+,故此选项不合题意;B .22a b +,无法分解因式,故此选项不合题意;222.4129(23)C a ab b a b ++=+,故此选项符合题意;D .32(1)(1)(1)x x x x x x x -=-=-+,故此选项不合题意;【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.9、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为32542322328124243x y x y x y y x y x -=⋅-⋅,所以3254812x y x y -的公因式为234x y ,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.10、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解.【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),由已知可得:勤奋博学,【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.11、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C 、a 2-2a -3=(a +1)(a -3)分解时出现符号错误,原变形错误,故此选项不符合题意;D 、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.13、C【分析】根据十字相乘法可直接进行求解a 、b 的值,然后问题可求解.【详解】解:()()22331x x x x --=-+, ∴3,1a b ==,∴2a b -=;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.14、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A 、2p +2q +1不能进行因式分解,不符合题意;B 、m 2-4m +4=(m -2)2,符合题意;C 、3p 2-3q 2=3(p 2-q 2)=3(p +q )(p -q ),不符合题意;D 、m 4-1=(m 2+1)(m 2-1)=m 4-1=(m 2+1)(m +1)(m -1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15、B【分析】首先将22a b ab + 变形为()ab a b +,再代入计算即可.【详解】解:∵32ab a b =-+=,,∴22a b ab +()ab a b =+ 32=-⨯6=- ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.二、填空题1、2022【分析】根据220x x +-=,得22x x +=,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】∵220+-=x x∴22x x+=∴32x x x+-+220203222020=++-+x x x x()222020=++-+x x x x x2x x x=+-+2202022020=++x x=+220202022=故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.2、x(x﹣6)(3m﹣n)(3m﹣n﹣1)【分析】把x2﹣6x 中x提取出来即可,给(3m﹣n)2﹣3m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x2﹣6x=x(x﹣6);(3m﹣n)2﹣3m+n=(3m﹣n)2﹣(3m﹣n)=(3m﹣n)(3m﹣n﹣1).故答案为:x(x﹣6),(3m﹣n)(3m﹣n﹣1).本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.3、>【分析】将a 2-b 2因式分解为(a +b )(a -b ),再讨论正负,和积的正负,得出结果.【详解】解:∵a <b <0,∴a +b <0,a -b <0,∴a 2-b 2=(a +b )(a -b )>0.故答案为:>.【点睛】本题考查了因式分解,解题的关键是先把整式a 2-b 2因式分解,再利用a <b <0得到a -b 和a +b 的正负,利用负负得正判断大小.4、()()44y y +-【分析】根据平方差公式——22()()a b a b a b -=+- 进行因式分解,即可.【详解】解:222164(4)(4)-=-=+-y y y y ,故答案为:()()44y y +-【点睛】本题主要考查了因式分解的方法,解题的关键是根据多项式的特点选合适的方法进行因式分解.【分析】根据(2020x+2021)2=(2020x)2+2×2021×2020x+20212得到c1=20212,同理可得c2=20202,所以c1-c2=20212-20202,进而得出结论.【详解】解:∵(2020x+2021)2=(2020x)2+2×2021×2020x+20212,∴c1=20212,∵(2021x-2020)2=(2021x)2-2×2020×2021x+20202,∴c2=20202,∴c1-c2=20212-20202=(2021+2020)×(2021-2020)=4041,故答案为:4041.【点睛】本题主要考查了完全平方公式,平方差公式,解决本题的关键是要熟悉公式的结构特点.6、7【分析】根据平方差公式分解因式解答即可.【详解】解:∵x2﹣y2=(x﹣y)(x+y)=21,x﹣y=3,∴3(x+y)=21,∴x+y=7.故答案为:7.【点睛】此题考查平方差公式分解因式,关键是根据平方差公式展开解答.7、(2)(4)m m +-【分析】根据十字相乘法分解因式,即可得到答案.【详解】228m m --=(2)(4)m m +-故答案为:(2)(4)m m +-.【点睛】本题考查了分解因式的知识;解题的关键是熟练掌握十字相乘法分解因式的性质,从而完成求解.8、-12【分析】根据a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2)=ab (a +b )2,结合已知数据即可求出代数式a 3b +2a 2b 2+ab 3的值.【详解】解:∵a +b =2,ab =﹣3,∴a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2),=ab (a +b )2,=﹣3×4,=﹣12.故答案为:﹣12.【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.9、()()66a b b +-【分析】先提出公因式a ,再利用平方差公式进行因式分解即可.【详解】解:2236(36)(6)(6)-=-=+-ab a a b a b b ,故答案为:()()66a b b +-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法——提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.10、1【分析】直接利用平方差公式分解因式得出答案.【详解】解:当a =1时,x 2﹣a =x 2﹣1=(x +1)(x ﹣1),故a 的值可以为1(答案不唯一).故答案为:1(答案不唯一).【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.三、解答题1、(1)a (a -4);(2)(x +y )2【分析】(1)提取公因式a ,即可得出答案;(2)原式可化为x 2-2xy +y 2+4xy ,再合并同类项,再根据完全平分公式进行因式分解即可得出答案.【详解】解:(1)原式=a (a -4);(2)原式=x 2-2xy +y 2+4xy=x 2+2xy +y 2=(x +y )2.【点睛】本题主要考查了提公因式及公式法因式分解,熟练应用提取公因式及公式法进行因式分解是解决本题的关键.2、(1)3()()x y x y x +-;(2)21(3)2x + 【分析】(1)先提公因式x ,再利用平方差公式进行分解即可;(2)利用完全平方公式进行分解即可;【详解】解:(1)325x y x -=322()x y x -=()()3x y x y x +-;(2)221193=(3)42x x x +++; 【点睛】考查提公因式法、公式法分解因式,正确的找出公因式、掌握平方差、完全平方公式的结构特征是应用的前提.3、(1)()2n m -;(2)()()2626x x +-;(3)()()22a b a b +-【分析】(1)直接提公因式n 即可分解;(2)直接利用平方差公式分解;(3)先利用平方差公式分解,再利用完全平方公式分解.【详解】解:(1)2mn n -=()2n m -;(2)2436x -=()()2626x x +-;(3)22222()4a b a b +-=2222(2)(2)a b ab a b ab +++-=()()22a b a b +-【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.。

浙教版七年级下册数学第四章 因式分解含答案(往年考题)

浙教版七年级下册数学第四章 因式分解含答案(往年考题)

浙教版七年级下册数学第四章因式分解含答案一、单选题(共15题,共计45分)1、如果多项式4a2+ma+25是完全平方式,那么m的值是( )A.10B.20C.-20D.+202、下列等式由左边至右边的变形中,属于因式分解的是()A.x 2+5x﹣1=x(x+5)﹣1B.x 2﹣4+3x=(x+2)(x﹣2)+3xC.x 2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x 2﹣43、下列从左到右的变形中,属于因式分解的是()A.(x+y)(x-2y)=x 2-xy+y 2B.3x 2-x=x(3x-1)C.(a-b)2=(a-b)(a-b)D.25(x-2y)2-4(2y-x)24、下列各式中能用平方差公式因式分解的是()A.x 2+y 2B.-x 2+y 2C.–x 2-y 2D.x 2-3y5、设P=a2(﹣a+b﹣c),Q=﹣a(a2﹣ab+ac),则P与Q的关系是()A.P=QB.P>QC.P<QD.互为相反数6、下列等式中,从左到右的变形是因式分解的是()A.(x+1)(x﹣2)=x 2﹣x﹣2B.4a 2b 3=4a 2•b 3C.x 2﹣2x+1=(x ﹣1)2D.7、若多项式x2+mx+4能用完全平方公式分解因式,则m的值可以是()A.4B.-4C.±2D.±48、下列各式中,从左到右的变形是因式分解的是()A. B. C.D.9、下列因式分解正确的是()A.x 2﹣4=(x+4)(x﹣4)B.x 2+2x+1=x(x+2)+1C.3mx﹣6my=3m (x﹣6y)D.2x+4=2(x+2)10、一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数之和都相等,如图是这个立方体的平面展开图,若20、0、9的对面分别写的是a、b、c,则a2+b2+c2-ab-bc-ca的值为()A.481B.301C.602D.96211、下列等式中,从左到右的变形为因式分解的是 ( )A.x(a-b)=ax-bxB.x 2-y 2+1=(x+y)(x-y)+1C.ax 2-9a=a(x+3)(x-3) D.-6a 2b=-2a 2·3b12、下列因式分解结果正确的是().A. B. C.D.13、下列因式分解错误的是()A.3x 2-6xy=3x(x-2y)B. x2-9 y2=( x-3 y)( x+3 y)C.4 x2+4 x+1=(2 x+1) 2D. x2-y2+2 y-1=( x+ y+1)( x-y-1)14、下列因式分解变形中,正确的是()A.ab(a﹣b)﹣a(b﹣a)=﹣a(b﹣a)(b+1)B.6(m+n)2﹣2(m+n)=(2m+n)(3m+n+1) C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y ﹣3x+2) D.3x(x+y)2﹣(x+y)=(x+y)2(2x+y)15、下列变形中,属因式分解的是()A.2x﹣2y=2(x﹣y)B.(x+y)2=x 2+2xy+y 2C.(x+2y)(x﹣2y)=x 2﹣2y 2 D.x 2﹣4x+5=(x﹣2)2+1二、填空题(共10题,共计30分)16、把多项式分解因式的结果是________.17、分解因式________.18、因式分解:a3-9ab2=________.19、若x2-14x+m2是完全平方式,则m=________.20、分解因式6xy2-9x2y-y3 = ________.21、分解因式:3x2﹣6xy=________.22、因式分解:x2﹣4=________.23、分解因式:x2﹣4y2=________.24、分解因式:6xy2-8x2y3=________。

【新浙教版】七年级数学下册第四章因式分解4.3《用乘法公式分解因式二》练习(含答案)

【新浙教版】七年级数学下册第四章因式分解4.3《用乘法公式分解因式二》练习(含答案)

4.3 用乘法公式分解因式(二)A 组1.填空:(1)分解因式:x 2-4x +4=(x -2)2.(2)分解因式:4a 2-4a +1=(2a -1)2.(3)若4x 2+mx +25是一个完全平方式,则实数m =±20.(4)分解因式:2x 2-4x +2=2(x -1)2.(5)分解因式:x 3+2x 2+x =x(x +1)2.2.下列多项式中,不能用完全平方公式分解因式的是(C )A. m +1+m 24B. -x 2+2xy -y 2C. -a 2+14ab +49b 2D. n 29-23n +1 3.把多项式x 2-6x +9分解因式,结果正确的是(A )A. (x -3)2B. (x -9)2C. (x +3)(x -3)D. (x +9)(x -9)4.分解因式:(1)x 2-x +14. 【解】原式=x 2-2·x ·12+⎝ ⎛⎭⎪⎫122 =⎝⎛⎭⎪⎫x -122. (2)a 2-12ab +116b 2.【解】原式=a 2-2·a ·14b +⎝ ⎛⎭⎪⎫14b 2 =⎝⎛⎭⎪⎫a -14b 2. (3)9m 2-6mn +n 2.【解】原式=(3m )2-2·(3m )·n +n 2=(3m -n )2.5.把下列各式分解因式:(1)3x 2-12xy +12y 2.【解】原式=3(x 2-4xy +4y 2)=3(x -2y )2.(2)-2x 3+24x 2-72x .【解】原式=-2x (x 2-12x +36)=-2x (x -6)2.(3)(a +b )2-12(a +b )-36.【解】原式=[(a +b )-6]2=(a +b -6)2.(4)2m 2+2m +12. 【解】原式=2⎝⎛⎭⎪⎫m 2+m +14 =2⎝⎛⎭⎪⎫m +122. 6.用简便方法计算:(1)9992+2×999+1.【解】原式=9992+2×999×1+12=(999+1)2=10002=1000000.(2)552-110×45+452.【解】原式=552-2×55×45+452=(55-45)2=102=100.B组7.若(x2+y2)(x2+y2-2)=8,则x2+y2的值为__4__.【解】∵(x2+y2)(x2+y2-2)=8,∴(x2+y2)2-2(x2+y2)=8,(x2+y2)2-2(x2+y2)+1=9,∴(x2+y2-1)2=9,∴x2+y2-1=3或x2+y2-1=-3,∴x2+y2=4或x2+y2=-2.∵x2+y2≥0,∴x2+y2=4.8.分解因式:(1)(a2+1)2-4a2.【解】原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a-1)2.(2)81+x4-18x2.【解】原式=x4-18x2+81=(x 2)2-2·x 2·9+92=(x 2-9)2=[(x +3)(x -3)]2=(x +3)2(x -3)2.9.(1)已知x 2+4x +y 2+2y +5=0,求x y 的值.【解】x 2+4x +y 2+2y +5=0,x 2+4x +4+y 2+2y +1=0,(x +2)2+(y +1)2=0,∴x +2=0且y +1=0,∴x =-2,y =-1,∴x y =(-2)-1=-12. (2)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值.【解】a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2)=ab (a +b )2=2×32=18.10.阅读材料,并回答问题:分解因式:x 2-120x +3456.分析:由于常数项数值较大,可以把x 2-120x +3456变为平方差的形式进行分解,这样就简便易行.解:x 2-120x +3456=x 2-2×60x +3600-3600+3456=(x -60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).请按照上面方法分解因式:x2-16x-561.【解】x2-16x-561=x2-16x+64-64-561=(x-8)2-625=(x-8)2-252=(x-8+25)(x-8-25)=(x+17)(x-33).11.已知(a+2b)2-2a-4b+1=0,求(a+2b)2018的值.【解】∵(a+2b)2-2a-4b+1=0,∴(a+2b)2-2(a+2b)+1=0,∴(a+2b-1)2=0,∴a+2b-1=0,∴a+2b=1,∴(a+2b)2018=12018=1.数学乐园12.阅读材料,并回答问题:分解因式:x4+4.分析:这个二项式既无公因式可提,也不能直接利用乘法公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,且都是数或式的平方和的形式的特点,添加了一项4x2组成完全平方公式,然后将4x2减去,即可得x4+4=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)·(x2-2x+2).人们为了纪念苏菲·热门给出的这一解法,就把它叫做“热门定理”.请你依照苏菲·热门的做法,将下面各式分解因式:(1)x4+4y4. (2)x2-2ax-b2-2ab.【解】(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2y2+2xy)(x2+2y2-2xy).(2)x2-2ax-b2-2ab=x2-2ax+a2-a2-2ab-b2=(x-a)2-(a+b)2=[(x-a)+(a+b)][(x-a)-(a+b)]=(x+b)(x-2a-b).。

最新浙教版初中数学七年级下册第四章因式分解专题训练试题(含答案解析)

最新浙教版初中数学七年级下册第四章因式分解专题训练试题(含答案解析)

初中数学七年级下册第四章因式分解专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、把代数式ax 2﹣8ax +16a 分解因式,下列结果中正确的是( )A.a (x +4)2B.a (x ﹣4)2C.a (x ﹣8)2D.a (x +4)(x ﹣4) 2、下列从左边到右边的变形,属于因式分解的是( )A.()()2224x x x +-=-B.()2444x x x x ++=+C.()22211x x x -+=-D.()m x y mx my -=-3、下列各式由左到右的变形中,属于因式分解的是( )A.﹣a 2﹣ab ﹣ac =﹣a (a +b +c )B.x 2+x +1=(x +1)2﹣xC.(x +2)(x ﹣1)=x 2+x ﹣2D.a 2+b 2=(a +b )2﹣2ab 4、多项式x 2y (a ﹣b )﹣y (b ﹣a )提公因式后,余下的部分是( )A.x 2+1B.x +1C.x 2﹣1D.x 2y +y 5、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a +1)(a -1)=a 2-1B.ab +ac +1=a (b +c )+1C. a 2-2a -3=(a -1)(a -3)D.a 2-8a +16=(a -4)26、下列各式中,不能用完全平方公式分解的个数为( )①21025x x -+;②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+.A.1个B.2个C.3个D.4个7、若多项式236x kx -+能因式分解为()2x a -,则k 的值是( )A.±12B.12C.6±D.68、下列因式分解正确的是( )A.()()2999x x x -=-+B.()322a a a a a a -+=-C.()()()2212111x x x ---+=-D.()22228822x xy y x y -+=-9、下列因式分解结果正确的是( )A.24(4)x x x x -+=-+B.224(4)(4)x y x y x y -=+-C.2221(1)x x x ---=-+D.256(2)(3)x x x x --=--10、下列等式从左到右的变形中,属于因式分解的是( )A.2222()a ab b a b -+=-B.2(1)(2)2x x x x -+=+-C.()11ma mb m a b +-=+-D.3232824x y x y =⋅11、如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是()A.2B.3C.4D.512、把多项式x 2+ax +b 分解因式,得(x +3)(x ﹣4),则a ,b 的值分别是( )A.a =﹣1,b =﹣12B.a =1,b =12C.a =﹣1,b =12D.a =1,b =﹣1213、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A.6858B.6860C.9260D.9262 14、下列各式由左边到右边的变形,是因式分解的是( )A.x 2+xy ﹣4=x (x +y )﹣4B.2(1)y x x y x x x ++=++C.(x +2)(x ﹣2)=x 2﹣4D.x 2﹣2x +1=(x ﹣1)215、已知23m m -的值为5,那么代数式2203026m m -+的值是( )A.2030B.2020C.2010D.2000二、填空题(10小题,每小题4分,共计40分)1、边长为a 、b 的长方形,它的周长为14,面积为10,则22a b ab +的值为__.2、因式分解x 2+ax +b 时,李明看错了a 的值,分解的结果是(x +6)(x ﹣2),王勇看错了b 的值,分解的结果是(x +2)(x ﹣3),那么x 2+ax +b 因式分解正确的结果是_______.3、因式分解:22421x y y ---=__________.4、因式分解:4224100x x y -=________.5、若m 2=n +2021,n 2=m +2021(m ≠n ),那么代数式m 3-2mn +n 3的值 _________.6、因式分解:x 3y 2-x =________7、分解因式:22a b -=_________;322x y x y xy ++=______________.8、分解因式:﹣x 2y +6xy ﹣9y =___.9、若ab =2,a -b =3,则代数式ab 2-a 2b =_________.10、将多项式因式分解39x x -=______.三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)5a a -; (2)22363ax axy ay ---.2、因式分解:22496m n mn ---.3、因式分解:(1)x 3﹣16x ;(2)﹣2x 3y +4x 2y 2﹣2xy 3.---------参考答案-----------一、单选题1、B【分析】直接提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:ax 2﹣8ax +16a=a (x 2﹣8x +16)=a (x ﹣4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.2、C根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.3、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;B、没把一个多项式转化成几个整式积,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积,故D不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.4、A直接提取公因式y(a﹣b)分解因式即可.【解答】解:x2y(a﹣b)﹣y(b﹣a)=x2y(a﹣b)+y(a﹣b)=y(a﹣b)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.6、C分别利用完全平方公式分解因式得出即可.【详解】解:①x 2-10x +25=(x -5)2,不符合题意;②4a 2+4a -1不能用完全平方公式分解;③x 2-2x -1不能用完全平方公式分解;④−m 2+m −14=-(m 2-m +14)=-(m -12)2,不符合题意;⑤4x 4−x 2+14不能用完全平方公式分解. 故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.7、A【分析】根据完全平方公式先确定a ,再确定k 即可.【详解】解:解:因为多项式236x kx -+能因式分解为()2x a -,所以a =±6.当a =6时,k =12;当a =-6时,k =-12.故选:A.【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k=-12.8、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x2-9=(x-3)(x+3),故此选项不合题意;B.a3-a2+a=a(a2-a+1),故此选项不合题意;C.(x-1)2-2(x-1)+1=(x-2)2,故此选项不合题意;D.2x2-8xy+8y2=2(x-2y)2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.9、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式=﹣x(x﹣4),故本选项不符合题意;B、原式=(2x+y)(2x﹣y),故本选项不符合题意;C、原式=﹣(x+1)2,故本选项符合题意;D、原式=(x+1)(x﹣6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.10、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A . 2222()a ab b a b -+=-是因式分解,故选项A 正确;B . 2(1)(2)2x x x x -+=+-是多项式乘法,故选项B 不正确;C . ()11ma mb m a b +-=+-不是因式分解,故选项C 不正确;D . 3232824x y x y =⋅是单项式乘的逆运算,不是因式分解,故选项D 不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.11、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x -+,不能用十字相乘法进行因式分解,不符合题意;B 、253x x -+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x -+=--,能用十字相乘法进行因式分解,符合题意;D、255x x,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.12、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:∵多项式x2+ax+b分解因式的结果为(x+3)(x-4),∴x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.13、B【分析】根据“和谐数”的概念找出公式:(2k+1)3﹣(2k﹣1)3=2(12k2+1)(其中k为非负整数),然后再分析计算即可.【详解】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12 k2+1)(其中k 为非负整数),由2(12k2+1)≤2019得,k≤9,∴k=0,1,2,…,8,9,即得所有不超过2019的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.14、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A .从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B .等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C .从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D .从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.15、B【分析】将2203026m m -+化简为220302(3)m m --,再将235m m -=代入即可得.【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.二、填空题1、70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.【详解】解:依题意:2a+2b=14,ab=10,则a+b=7∴a2b+ab2=ab(a+b)=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键.2、(x﹣4)(x+3)【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字相乘法分解因式即可. 【详解】解:因式分解x2+ax+b时,∵李明看错了a的值,分解的结果是(x+6)(x﹣2),∴b=6×(﹣2)=﹣12,又∵王勇看错了b的值,分解的结果为(x+2)(x﹣3),∴a =﹣3+2=﹣1,∴原二次三项式为x 2﹣x ﹣12,因此,x 2﹣x ﹣12=(x ﹣4)(x +3),故答案为:(x ﹣4)(x +3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法.3、(21)(21)x y x y ++--【分析】先分组,然后根据公式法因式分解.【详解】22421x y y --- 224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--.故答案为:(21)(21)x y x y ++--.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.4、24(5)(5)x x y x y +-【分析】先提公因式,再用平方差公式分解即可.【详解】422222241004(25)4(5)(5)x x y x x y x x y x y -=-=+-故答案为:24(5)(5)x x y x y +-【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.5、-2021【分析】将两式m 2=n +2021,n 2=m +2021相减得出m +n =-1,将m 2=n +2021两边乘以m ,n 2=m +2021两边乘以n 再相加便可得出.【详解】解:将两式m 2=n +2021,n 2=m +2021相减,得m 2-n 2=n -m ,(m +n )(m -n )=n -m ,(因为m ≠n ,所以m -n ≠0), m +n =-1,将m 2=n +2021两边乘以m ,得m ³=mn +2021m ①,将n 2=m +2021两边乘以n ,得n ³=mn +2021n ②,由①+②得:m ³+n ³=2mn +2021(m +n ), m ³+n ³-2mn =2021(m +n ),m ³+n ³-2mn =2021×(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m 3-2mn +n 3的降次处理是解题关键.6、x (xy +1)(xy -1)【分析】先提公因式x ,再根据平方差公式进行分解,即可得出答案.【详解】解: x 3y 2-x =x (x 2y 2-1)=x (xy +1)(xy -1)故答案为x (xy +1)(xy -1).【点睛】此题考查了因式分解的方法,涉及了平方差公式,熟练掌握因式分解的方法是解题的关键. 7、()()a b a b +- 2(1)xy x +【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:22()()a b a b a b -=+-; 32222(21)(1)x y x y xy xy x x xy x ++=++=+;故答案为:()()a b a b +-;2(1)xy x +.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8、()23y x --【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:﹣x 2y +6xy ﹣9y()()22=693y x x y x --+=--故答案为:()23y x --.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.9、6【分析】用提公因式法将ab 2-a 2b 分解为含有ab ,a -b 的形式,代入即可.【详解】解:∵ab =2,a -b =3,∴ab 2-a 2b =-ab (a -b )=2×3=6,故答案为:6.【点睛】本题考查了用提公因式法因式分解,解题的关键是将ab 2-a 2b 分解为含有ab ,a -b 的形式,用整体代入即可.10、()()33x x x +-【分析】先提取公因式,x 再利用平方差公式分解因式即可得到答案.【详解】解:()()()329933.x x x x x x x -=-=+-故答案为:()()33x x x +-【点睛】本题考查的是综合提公因式与公式法分解因式,熟练“一提二套三交叉四分组”的分解因式的方法与顺序是解题的关键.三、解答题1、(1)2(1)(1)(1)a a a a ++-;(2)23()a x y -+.【分析】(1)先提公因式a ,然后再利用平方差公式分解即可;(2)先提公因式-3a ,然后再利用完全平方公式进行分解即可.【详解】解:(1)5a a -=4(1)a a -=22(1)(1)a a a +-=()2(1)(1)1a a a a ++-;(2)22363ax axy ay ---=223(2)a x xy y -++=23()a x y -+.【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握并灵活运用提公因式法和公式法.2、(23)(23)++--m n m n【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可.【详解】解:原式22=-++4(96)m n mn22=-+2(3)m n=++--.m n m n(23)(23)【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.3、(1)x(x+4)(x﹣4);(2)﹣2xy(x﹣y)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=﹣2xy(x2﹣2xy+y2)=﹣2xy(x﹣y)2.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.。

浙教版七年级下册数学第四章 因式分解含答案(高分练习)

浙教版七年级下册数学第四章 因式分解含答案(高分练习)
3、下列因式分解中,结果正确的是( )
A.x2﹣4=(x+2)(x﹣2) B.1﹣(x+2)2=(x+1)(x+3) C.2m2n﹣8n3=2n(m2﹣4n2) D.
4、下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1) D.2x+y=2(x+y)
一、单选题(共15题,共计45分)
1、B
2、D
3、A
4、C
5、D
6、A
7、B
8、B
9、C
10、C
11、B
12、
13、B
14、D
15、D
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
22、
23、
24、
25、
三、解答题(共5题,共计25分)
26、
27、
28、
29、
30、
28、已知实数 满足 且 ,求 的值.
29、分解因式:
(1)2a(y﹣z)﹣3b(z﹣y)
(2)﹣a4+16
(3)(a+b)2﹣12(a+b)+36
(4)(a+5)(a﹣5)+7(a+1)
30、化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.
Hale Waihona Puke 参考答案浙教版七年级下册数学第四章 因式分解含答案
一、单选题(共15题,共计45分)
1、下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2B.﹣a+a2=﹣a(1﹣a) C.4x2﹣4x+1=4x(x﹣1)+1 D.a2﹣4b2=(a+4b)(a﹣4b)

浙教版 七年级下册 第4章 《因式分解》单元练习题 解析版

浙教版 七年级下册 第4章 《因式分解》单元练习题    解析版

第4章 因式分解 单元训练一、选择题(共10小题).1.下列因式分解正确的是( )A .x 2﹣3x +1=x (x ﹣3)B .x 2﹣6=(x ﹣2)(x +3)C .(x +1)(x ﹣1)=x 2﹣1D .a 2﹣4ab +4b 2=(a ﹣2b )2 2.下列各式中,从左到右的变形是因式分解的是( )A .x 2+2x +3=(x +1)2+2B .(x +y )(x -2y )=x 2 - xy - 2y 2C .-3x 2+ 12y 2= -3(x + 2y )(x -2y )D .2(x +y )=2x +2y3.下列多项式中,在实数范围不能分解因式的是( )A .2222x y x y +++ B .2222x y xy ++- C .2244x y x y -++ D .2244x y y -+- 4.下列各式:①﹣x 2﹣y 2;②﹣14a 2b 2+1; ③a 2+ab +b 2; ④﹣x 2+2xy ﹣y 2;⑤14﹣mn +m 2n 2,用公式法分解因式的有( )A .2个B .3个C .4个D .5个 5.多项式24ax a -与多项式244x x ++的公因式是( )A .2x +B .2x -C .22x -D .()22x - 6.下列各式是完全平方式的是( )A .x 2-x +14B .1-x 2C .x 2+2xy +1D .x 2+2xy -y 2 7.计算20202021(2)(2)-+-所得的结果是( ).A .20202-B .20212-C .20202D .-2 8.若因式分解()()231x ax x x b +-=-+,则a 的值是( )A .3-B .2-C .2D .49.若3m n +=,则222425m mn n ++-的值为( )A .13B .18C .5D .110.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此 4,12,20 都是“神秘数”,则下面哪个数是“神秘数”( )A .56B .60C .62D .88二、填空题(共4小题).11.分解因式:2164x _________.12.分解因式:2x 2﹣2x +12=_____. 13.已知12xy =,3x y -=-,则22x y xy -=______. 14.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.三、解答题15.因式分解(1)29x - (2)2(1)22x x --+16.将下列各式因式分解:(1)24()()x x y y x -+- (2)2215x x +-17.把下列多项式分解因式:(1)22442a ab b ac bc ++-- (2)222ax bx bx ax cx cx +++++(3)222222a b x y ay bx --+-+ (4)()()()222241211y x y x y +--+-18.已知221x x ++是多项式32x x ax b -++的一个因式,求a ,b 的值,并将该多项式因式分解.19.如图,用一张如图甲的正方形纸片、三张如图乙的长方形纸片、两张如图丙的正方形纸片拼成一个长方形(如图丁).(1)请用不同的式子表示图丁的面积(写出两种即可);(2)根据(1)所得结果,写出一个表示因式分解的等式.20.若一个正整数a 可以表示为(1)(2)a b b =+-,其中b 为大于2的正整数,则称a 为“十字数”,b 为a 的“十字点”.例如28(61)(62)74=+⨯-=⨯.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b 是a 的“十字点”,且a 能被(1)b -整除,其中b 为大于2的正整数,求a 的值; (3)m 的“十字点”为p ,n 的“十字点”为q ,当18m n -=时,求p q +的值.参考答案1.D【详解】解:A 、原式不能分解,不符合题意;B 、原式=(x )(x ),不符合题意;C 、原式=x 2﹣1,不是分解因式,不符合题意;D 、原式=(a ﹣2b )2,符合题意.故选:D .2.C【详解】解:A 、该选项等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意; B 、该选项是整式乘法,不是因式分解,故此选项不符合题意;C 、是因式分解,故此选项符合题意;D 、该选项是整式乘法,不是因式分解,故此选项不符合题意.故选C .【点睛】本题主要考查了因式分解的定义,掌握因式分解的定义即:等式的左边是一个多项式,等式的右边是几个整式的积.3.A【分析】根据因式分解的方法与步骤进行判断即可【详解】解:A .原式不能分解,符合题意;B .原式2()2(x y x y x y =+-=++-,不符合题意;C .原式()()4()()(4)x y x y x y x y x y =+-++=+-+,不符合题意;D .原式22(2)(2)(2)x y x y x y =--=+--+,不符合题意;故选:A .【点睛】本题考查因式分解、平方差公式、完全平方公式,熟练掌握提公因式法和公式法分解因式是解答的关键,注意实数范围内分解因式时2要写成2.4.B【分析】根据每个多项式的特征,结合平方差公式、完全平方公式的结构特征,综合进行判断即可.【详解】解:①-x 2-y 2=-(x 2+y 2),因此①不能用公式法分解因式;②-14a 2b 2+1=1-(12ab )2=(1+12ab )(1-12ab ),因此②能用公式法分解因式; ③a 2+ab +b 2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x 2+2xy ﹣y 2=-(x 2﹣2xy +y 2)=-(x -y )2,因此④能用公式法分解因式; ⑤14-mn +m 2n 2=(12-mn )2,因此⑤能用公式法分解因式; 综上所述,能用公式法分解因式的有②④⑤,故选:B .5.A【分析】分别将多项式24ax a -与多项式244x x ++进行因式分解,再寻找他们的公因式是2x +.【详解】解:∵()()224(4)22ax a a x a x x -=-=+- 又∵()22442x x x ++=+∴多项式24ax a -与多项式244x x ++的公因式是2x +.故选A .【点睛】本题主要考查的是公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公因式.6.A【分析】根据完全平方公式:(a ±b )2=a 2±2ab +b 2,对比公式逆用即可. 【详解】 解:A 选项中x 2-x +211=42x ⎛⎫- ⎪⎝⎭,B ,C ,D 选项中的多项式均不符合完全平方公式的结构故选:A【点睛】本题考查利用完全平方公式进行因式分解,关键是对完全平方公式的熟练掌握. 7.A【分析】直接找出公因式进而提取公因式再计算即可.【详解】(−2)2020+(−2)2021=(−2)2020×(1−2) =−22020 .故选:A .【点睛】本题主要考查了因式分解的应用,正确找出公因式、提取公因式是解题关键.8.C【分析】根据因式分解的定义可直接进行求解.【详解】解:由()()231x ax x x b +-=-+可得:()2231x ax x b x b +-=+--, ∴1,3a b b =-=,∴2a =;故选C .【点睛】本题主要考查因式分解的定义,熟练掌握因式分解是解题的关键.9.A【分析】先将代数式前三项利用完全平方公式适当变形,然后将3m n +=代入计算即可.【详解】解:222425m mn n ++-()22=225m mn n ++-()2=2+5m n -∵3m n +=∴原式223-5=13=⨯【点睛】本题考查代数式求值,完全平方公式.做此类题,首先必须做到心中牢记公式的“模型”,在此前提下认真地对具体题目进行观察,想方设法通过调整项的位置和添括号等变形技巧,把式子凑成公式的“模型”,然后就可以应用公式进行计算了.10.B【分析】设这两个连续偶数分别2m、2m+2(m为自然数),则“神秘数”=(2m+2)2-(2m)2=(2m+2+2m)(2m+2-2m)=4(2m+1),因为m是自然数,要判断一个数是否是“神秘数”,只需根据该数=4(2m+1)列方程求解即可,若解出m是自然数就符合,否则不符合.【详解】解:设这两个连续偶数分别2m、2m+2(m为自然数),∴“神秘数”=(2m+2)2-(2m)2=(2m+2+2m)(2m+2-2m)=4(2m+1),A、若4(2m+1)=56,解得m=132,错误;B、若4(2m+1)=60,解得m=7,正确;C、若4(2m+1)=62,解得m=294,错误;D、若4(2m+1)=88,解得m=212,错误;故选:B.【点睛】此题考查了利用平方差公式进行因式分解,熟练掌握平方差公式以及对题中新定义的理解是解题的关键.11.4(2x+1)(2x-1).【分析】首先提取公因式,再根据平方差公式分解.【详解】解:原式=4(4x2-1)=4(2x+1)(2x-1),故答案为4(2x+1)(2x-1).本题考查因式分解的应用,熟练掌握各种因式分解的方法并灵活运用是解题关键. 12.2(x ﹣12)2. 【分析】直接提取公因式2,再利用公式法分解因式即可.【详解】解:2x 2﹣2x +12 =2(x 2﹣x +14) =2(x ﹣12)2. 故答案为:2(x ﹣12)2. 【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 13.32- 【分析】提取22x y xy -的公因式因式分解,再代入求值即可.【详解】解:22()x y xy xy x y -=-, 将12xy =,3x y -=-代入()xy x y -, ∴13()=(3)22xy x y -⨯-=-, 故答案为:32-. 【点睛】本题考查了整式的化简求值;能提取公因式将整式化简是解决本题的关键.14.()()2a b a b ++.【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.15.(1)()()33x x +-;(2)()()13x x --【分析】(1)直接利用平方差分解因式得出答案;(2)将括号展开,合并同类项,再利用十字相乘法分解因式得出答案.【详解】解:(1)29x -=()()33x x +-;(2)2(1)22x x --+=21222x x x +--+=243x x -+=()()13x x --【点睛】此题主要考查了公式法以及十字相乘法分解因式,正确应用公式是解题关键. 16.(1)()(21)(21)x y x x -+-;(2)(5)(3)x x +-【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用十字相乘法分解即可.【详解】解:(1)24()()x x y y x -+-24()()x x y x y =---2()41x y x ⎡⎤=--⎣⎦()(21)(21)x y x x =-+-;(2)2215x x +-(5)(3)x x =+-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.(1)()()22a b c a b +-+;(2)()()1x x a b c +++;(3)()()x a b y x a b y ---++--;(4)()2221x y x y -++【分析】(1)(2)(3)利用分组分解法分解即可;(4)利用完全平方公式分解即可.【详解】解:(1)22442a ab b ac bc ++--=()()222a b c a b +-+=()()22a b c a b +-+;(2)222ax bx bx ax cx cx +++++=()()222ax bx cxax bx cx +++++ =()()2a b c x a b c x +++++=()()1x x a b c +++;(3)222222a b x y ay bx --+-+=()222222a ay y b x bx -+-+-=()()22a y b x ---=()()()()a y b x a y b x -+----⎡⎤⎡⎤⎣⎦⎣⎦=()()x a b y x a b y ---++--;(4)()()()222241211y x y x y +--+-=()()()()222412111y x y y x y +-+-+-=()()2211y x y ⎡⎤+--⎣⎦ =()2221x y x y -++【点睛】本题考查了因式分解,解题的关键是根据所给代数式的形式灵活选择方法.18.5a =-,3b =-,()()213x x +- 【分析】由题意可假设多项式x 3−x 2+ax +b =(x 2+2x +1)(x +m ),则将其展开、合并同类项,并与x 3− x 2+ax +b 式子中x 的各次项系数对应相等,依次求出m 、b 、a 的值,那么另外一个因式即可确定.【详解】解:设()()32221x x ax b x x x m -++=+++, 则()()3232221x x ax b x m x m x m -++=+++++, 所以21m +=-,21m a +=,m b =,解得3m =-,5a =-,3b =-.所以 ()()()()23225321313x x x x x x x x ---=++-=+-.【点睛】本题考查了因式分解的应用,用待定系数法来解较好.19.(1)①2232S x xy y ++=,②()2()S x x y y x y +++=;(2)2232(2)()x xy y x y x y ++=++或()2()(2)()x x y y x y x y x y +++=++..【分析】(1)①图丁是由1个甲,3个乙,2个丙组成,把面积相加即可得出答案;②图丁可以看作由长为()x y +,宽为x 的长方形和长为()x y +,宽为2y 的长方形组成,把两个长方形面积相加即可得出答案;(2)由(1)中2232x xy y ++十字相乘或()2()x x y y x y +++提取公因式()x y +即可得出答案.解:(1)①2232S x xy y ++=,②()2()S x x y y x y =+++;(2)2232(2)()x xy y x y x y ++=++或()2()(2)()x x y y x y x y x y +++=++.【点睛】本题考查列代数式以及因式分解,掌握正方形和长方形的面积公式以及灵活运用因式分解是解答本题的关键.20.(1)40,12;(2)4;(3)10【分析】(1)根据十字点的定义(1)(2)a b b =+-计算即可;(2)先根据(1)(2)a b b =+-得出()()2(12)(11)=b 1+b 12=-+-----a b b ,再根据a 能被(1)b -整除,得出b 的值,即可求出a 的值;(3)根据已知得出m (p 1)(p 2)=+-(p >2且为正整数),n (q 1)(q 2)=+-(q >2且为正整数),再根据18m n -=得出()()p q-1p q =18+-,从而得出163p q p q +-=⎧⎨-=⎩ 或192p q p q +-=⎧⎨-=⎩,解之即可得出a 、b ,继而得出答案. 【详解】解:(1)“十字点”为7的“十字数”(71)(72)=85=40=+-⨯a ,∵130(121)(122)=1310=+-⨯,∴130的“十字点”为12;(2)∵b 是a 的“十字点”,∴(1)(2)a b b =+-(b >2且为正整数),∴()()2(12)(11)=b 1+b 12=-+-----a b b ,∵a 能被(1)b -整除,∴(1)b -能整除2,∴b -1=1或b -1=2,∴b =3,∴(31)(32)=4=+-a ; (3)∵m 的“十字点”为p , ∴m (p 1)(p 2)=+-(p >2且为正整数), ∵n 的“十字点”为q ,∴n (q 1)(q 2)=+-(q >2且为正整数), ∵18m n -=,∴(p 1)(p 2)(q 1)(q 2)=18+--+-, ∴22p -p-2-q +q+2=18, ∴(p q)(p q)(p-q)=18+--, ∴()()p q-1p q =18+-, ∵180>-=m n ,p >2,q >2且p 、q 为正整数; ∴p >q ,p+q >4;∴p+q -1>3;∵18=3×6=2×9,∴163p q p q +-=⎧⎨-=⎩ 或192p q p q +-=⎧⎨-=⎩; 解得:52p q =⎧⎨=⎩(不合题意舍去),64p q =⎧⎨=⎩; ∴=10+p q。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七下第四章因式分解解答题精选题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分解答题(共40小题)1.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y32.因式分解(1)2x3﹣8x(2)x2﹣2x﹣3(3)4a2+4ab+b2﹣13.因式分解:(1)4m3n﹣16mn3(2)3x2﹣18x+274.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y ﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.5.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?6.两名同学将关于x的二次三根式x2+ax+b分解因式,一名同学因看错了一次项系数而分解成(x﹣1)(x﹣9),另一名同学因看错了常数项而分解成(x﹣2)(x﹣4),请将原多项式分解因式.7.分解因式:(1)(x2+y2)2﹣4x2y2(2)25(x﹣y)2+10(y﹣x)+1.8.我们可以用几何图形来解决一些代数问题,如图(甲)可以来解释(a+b)2=a2+2ab+b2,(1)图(乙)是四张全等的矩形纸片拼成的图形,请利用图中阴影部分面积的不同表示方法,写出一个关于a,b代数恒等式表示;(2)请构图解释:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)请通过构图因式分解:a2+3ab+2b2.9.因式分解(1)4a3﹣9a(2)(x2+y2)2﹣4x2y2.10.已知两实数a与b,M=a2+b2,N=2ab(1)请判断M与N的大小,并说明理由.(2)请根据(1)的结论,求的最小值(其中x,y均为正数)(3)请判断a2+b2+c2﹣ab﹣ac﹣bc的正负性(a,b,c为互不相等的实数)11.把下列各式分解因式:(1)9x2+6x+1(2)16(m﹣n)2﹣9(m+n)2.12.已知P=2x2+4y+13,Q=x2﹣y2+6x﹣1,比较代数式P,Q的大小.13.阅读下列材料,你能得到什么结论?并利用(1)的结论分解因式.(1)形如x2+(p+q)x+pq型的二次三项式,有以下特点:①二次项系数是1;②常数项是两个数之积;③一次项系数是常数项的两个因数之和,把这个二次三项式进行分解因式,可以这样来解:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+p)(x+q).因此,可以得x2+(p+q)x+pq=.利用上面的结论,可以直接将某些二次项系数为1的二次三项式分解因式.(2)利用(1)的结论分解因式:①m2+7m﹣18;②x2﹣2x﹣15.14.分解因式①a2﹣2a(b+c)+(b+c)2;②(x2﹣5)2+8(x2﹣5)+1615.已知n是正整数,则所有大于1的奇数可以用代数式2n+1来表示.(1)分解因式:(2n+1)2﹣1;(2)我们把所有“大于1的奇数的平方减去1”所得的数叫”白银数”,则所有”白银数”的最大公约数是多少?请简要说明理由.16.(1)当a=﹣2,b=1时,(a﹣b)2=,a2﹣2ab+b2=;(2)当a=2,b=﹣3时,(a﹣b)2=,a2﹣2ab+b2=;(3)你能从上面的计算结果中,发现上面有什么结论?结论是:;(4)利用你发现的结论,求:20102﹣4020×2009+20092的值.17.代数基本定理告诉我们对于形如x n++…+a n﹣1x+a n=0(其中a1,a2,…a n为整数)这样的方程,如果有整数根的话,那么整数根必定是a n的约数.例如方程x3+8x2﹣11x+2=0的整数根只可能为±1,±2代入检验得x=1时等式成立.故x3+8x2﹣11x+2含有因式x﹣1,所以原方程可转化为:(x﹣1)(x2+9x﹣2)=0,进而可求得方程的所有解.根据以上阅读材料请你解方程:x3+x2﹣11x﹣3=0.18.分解因式①ax2﹣16ay2②﹣2a3+12a2﹣18a③a2﹣2ab+b2﹣919.给出三个多项式:,请你选择其中两个进行加法运算,并把结果因式分解.20.宁海中学高一段组织了围棋比赛,共有10名选手进入了决赛,决赛阶段实行单循环赛(即每两名参赛选手都要赛一局,且每局比赛都决出胜负),若一号选手胜a1局,输b1局;二号选手胜a2局,输b2局,…,十号选手胜a10局,输b10局.试比较a12+a22+…+a102与b12+b22+…+b102的大小,并叙述理由.21.把下列各式分解因式:(1)12a3b2﹣9a2b+3ab;(2)16x2﹣9y2;(3)2x3+8x2y+8xy2;(4)(3x+y)2﹣(x﹣3y)2.22.利用因式分解计算:(1)416×4.2+4.16×370+41.6×21(2).23.将下列各式分解因式:(1)3x﹣12x3(2)2a(x2+1)2﹣2ax2(3)(4)a2﹣b2﹣4a+4b(5)20a2bx﹣45bxy2(6)x2+y2﹣1﹣2xy(7)2m(a﹣b)﹣3n(b﹣a)(8)(a﹣b)(3a+b)2+(a+3b)2(b﹣a)24.计算:若x2+x﹣1=0,求代数式x3+2x2﹣7的值.25.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.(1)如图1所示,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为.(2)若图1中每块小长方形的面积为12cm2,四个正方形的面积和为50cm2,试求图中所有裁剪线(虚线部分)长之和.(3)将图2中边长为a和b的正方形拼在一起,B,C,G三点在同一条直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=16,请求出阴影部分的面积.26.已知m,n满足m﹣n=4,mn=k﹣7,设y=(m+n)2.(1)当k被3整除时,求证:y能被12整除;(2)若m,n都为非负数,y是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.27.已知(19x﹣31)(13x﹣17)﹣(17﹣13x)(11x﹣23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.28.已知(10x﹣31)(13x﹣17)﹣(13x﹣17)(3x﹣23)可因式分解成(ax+b)(7x+c),其中a、b、c均为整数,求a+b+c的值.29.已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值;30.先阅读材料,再回答问题:分解因式:(a﹣b)2﹣2(a﹣b)+1解:设a﹣b=M,则原式=M2﹣2M+1=(M﹣1)2再将a﹣b=M还原,得到:原式=(a﹣b﹣1)2上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:(1)分解因式:(x+y)(x+y﹣4)+4(2)若a为正整数,则(a﹣1)(a﹣2)(a﹣3)(a﹣4)+1为整数的平方,试说明理由.31.阅读理解并填空:(1)为了求代数式x2+2x+3的值,我们必须知道x的值.若x=1,则这个代数式的值为;若x=2,则这个代数式的值为,…可见,这个代数式的值因的取值不同而变化.尽管如此,我们还是有办法来考虑这个代数式的值的范围.(2)把一个多项式进行部分因式分解可以解决求代数式的最大(或最小)值问题.例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,因为(x+1)2是非负数,所以,这个代数式x2+2x+3的最小值是,这时相应的平方是.尝试探究并解答:(3)求代数式x2﹣12x+37的最小值,并写出相应x的值.(4)求代数式﹣x2﹣6x+11的最大值,并写出相应x的值.(5)已知y=﹣x2+6x﹣3,且x的值在数1~4(包含1和4)之间变化,试探求此时y的不同变化范围(直接写出当x在哪个范围变化时,对应y的变化范围).32.题目:“分解因式:x2﹣120x+3456.”分析:由于常数项数值较大,则常采用将x2﹣120x变形为差的平方的形式进行分解,这样简便易行.解:x2﹣120x+3456=x2﹣2×60x+602﹣602+3456=(x﹣60)2﹣144=(x﹣60)2﹣122=(x﹣60+12)(x﹣60﹣12)=(x﹣48)(x﹣72)通过阅读上述题目,请你按照上面的方法分解因式:(1)x2﹣140x+4875(2)4x2﹣4x﹣575.33.阅读下列材料,然后解答问题:问题:分解因式:x3+3x2﹣4.解答:把x=1代入多项式x3+3x2﹣4,发现此多项式的值为0,由此确定多项式x3+3x2﹣4中有因式(x﹣1),于是可设x3+3x2﹣4=(x﹣1)(x2+mx+n),分别求出m,n的值,再代入x3+3x2﹣4=(x﹣1)(x2+mx+n),就容易分解多项式x3+3x2﹣4.这种分解因式的方法叫“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:x3+x2﹣16x﹣16.34.【知识拓展】(1)你能对a3+b3因式分解吗?(2)求最大正整数n,使得n3+2017,能被n+13整除.35.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.36.利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美;(1)请你检验说明这个等式的正确性.(2)若a=2011,b=2012,c=2013,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值吗?(3)若a﹣b=,b﹣c=,a2+b2+c2=1,求ab+bc+ac的值.37.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需应用上述方法次,结果是.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).38.先阅读下列材料,然后解题:材料:因为(x﹣2)(x+3)=x2+x﹣6,所以(x2+x﹣6)÷(x﹣2)=x+3,即x2+x﹣6能被x﹣2整除.所以x﹣2是x2+x﹣6的一个因式,且当x=2时,x2+x﹣6=0.(1)类比思考(x+2)(x+3)=x2+5x+6,所以(x2+5x+6)÷(x+2)=x+3,即x2+5x+6能被整除,所以是x2+5x+6的一个因式,且当x=时,x2+5x+6=0;(2)拓展探究:根据以上材料,已知多项式x2+mx﹣14能被x+2整除,试求m的值.39.阅读理解并填空:(1)为了求代数式x2+2x+3的值,我们必须知道x的值,若x=1,则这个代数式的值为;若x=2,则这个代数式的值为,…,可见,这个代数式的值因x的取值不同而变化,尽管如此,我们还是有办法来考虑这个代数式的值的范围.(2)把一个多项式进行部分因式分解可以来解决代数式值的最大(或最小)值问题,例如:x2+2x+3的最小值是,这时相应的x的平方是.尝试探究并解答:(3)求代数式x2﹣10x+35的最小值,并写出相应x的值.(4)求代数式﹣x2﹣8x+15的最大值,并写出相应的x的值.(5)改成已知y=﹣x2+6x﹣3,且x的值在数1﹣4(包含1和4)之间变化,试探求此时y的不同变化范围.(直接写出当x在哪个范围变化时,对应y的变化范围).40.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).参考答案与试题解析一.解答题(共40小题)1.解:(1)2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2);(2)3x2y﹣6xy2+3y3=3y(x2﹣2xy+y2)=3y(x﹣y)2.2.解:(1)2x3﹣8x=2x(x2﹣4)=2x(x+2)(x﹣2);(2)x2﹣2x﹣3=(x﹣3)(x+1);(3)4a2+4ab+b2﹣1=(2a+b)2﹣1=(2a+b﹣1)(2a+b+1).3.解:(1)原式=4mn(m2﹣4n2)=4mn(m+2n)(m﹣2n);(2)原式=3(x2﹣6x+9)=3(x﹣3)2.4.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.5.解:(1)28=4×7=82﹣62;2012=4×503=5042﹣5022,所以是神秘数;(2)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的神秘数是4的倍数.(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k,由(2)可知:神秘数是4的奇数倍,不是偶数倍,∴两个连续奇数的平方差不是神秘数.6.解:∵一名同学因看错了一次项系数而分解成(x﹣1)(x﹣9),另一名同学因看错了常数项而分解成(x﹣2)(x﹣4),∴常数项为:﹣1×(﹣9)=9,一次项系数为:﹣4﹣2=﹣6,故原多项式为:x2﹣6x+9,分解因式可得:x2﹣6x+9=(x﹣3)2.7.解:(1)(x2+y2)2﹣4x2y2=(x2+2xy+y2)(x2﹣2xy+y2)=(x+y)2(x﹣y)2;(2)25(x﹣y)2+10(y﹣x)+1=25(x﹣y)2﹣10(x﹣y)+1=(5x﹣5y﹣1)2.8.解:(1)阴影部分的边长为(a﹣b),∴(a﹣b)2=(a+b)2﹣4ab.(2)(a+b+c)2=a(a+b+c)+b(a+b+c)+c(a+b+c)=a2+b2+c2+2ab+2bc+2ac.(3)(a+2b)(a+b)=a(a+b)+2b(a+b),∴可得a2+3ab+2b2=(a+2b)(a+b).9.解:(1)原式=a(4a2﹣9)=a(2a+3)(2a﹣3);(2)原式=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.解:(1)M≥N;理由如下:∵M﹣N=a2+b2﹣2ab=(a﹣b)2≥0,∴M≥N;(2)∵∴最小值为5;(3)a2+b2+c2﹣ab﹣ac﹣bc>0,理由如下:∵a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2],∵a,b,c为互不相等的实数,∴a2+b2+c2﹣ab﹣ac﹣bc>0.11.解:(1)9x2+6x+1=(3x+1)2;(2)16(m﹣n)2﹣9(m+n)2=[4(m﹣n)+3(m+n)][4(m﹣n)﹣3(m+n)]=(7m﹣n)(m﹣7n).12.解:P﹣Q=(2x2+4y+13)﹣(x2﹣y2+6x﹣1)=x2﹣6x+y2+4y+14=x2﹣6x+9+y2+4y+4+1=(x﹣3)2+(y+2)2+1∵(x﹣3)2≥0,(y+2)2≥0,∴P﹣Q=(x﹣3)2+(y+2)2+1≥1,∴P>Q.13.解:(1)x2+(p+q)x+pq=(x+p)(x+q),故答案为:(x+p)(x+q);(2)①m2+7m﹣18=m2+(9﹣2)m+(﹣2)×9=(m+9)(m﹣2);②x2﹣2x﹣15=x2+(﹣5+3)x+(﹣5)×3=(x﹣5)(x+3).14.解:①a2﹣2a(b+c)+(b+c)2=(a﹣b﹣c)2;②(x2﹣5)2+8(x2﹣5)+16,=(x2﹣5+4)2,=(x2﹣1)2,=(x+1)2(x﹣1)2.15.解:(1)(2n+1)2﹣1=(2n+1+1)(2n+1﹣1)=4n(n+1);(3分)(2)所有”白银数”的最大公约数是8;(1分)理由:∵n正整数,则n与n+1必有一个偶数,∴n(n+1)必是2的倍数,则4n(n+1)必是8的倍数,∴所有”白银数”的最大公约数是8.(2分)16.解:(1)当a=﹣2,b=1时,(a﹣b)2=9,a2﹣2ab+b2=9;(2)当a=2,b=﹣3时,(a﹣b)2=25,a2﹣2ab+b2=25;(3)结论是(a﹣b)2=a2﹣2ab+b2;(4)20102﹣4020×2009+20092=(2010﹣2009)2=1.故答案为:9,9,25,25,(a﹣b)2=a2﹣2ab+b2.17.解:取x=±1,±3代入方程,得x=3适合方程,则原方程可以分解为:(x﹣3)(x2+4x+1)=0,解得x=3或x=﹣2+或x=﹣2﹣.18.解:①ax2﹣16ay2,=a(x2﹣16y2),=a(x+4y)(x﹣4y);②﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;③a2﹣2ab+b2﹣9,=(a﹣b)2﹣9,=(a﹣b+3)(a﹣b﹣3).19.解:如选择:则:=x2+4x=x(x+4).如选择:则:.如选择:则:.20.解:依题意可知,a1+b1=9,a2+b2=9,a3+b3=9…,且a1+a2+…+a10=b1+b2+…+b10=45,∴(a12+a22+…+a102)﹣(b12+b22+…b102)=(a12﹣b12)+(a22﹣b22)+…+(a102﹣b102)=(a1+b1)(a1﹣b1)+(a2+b2)(a2﹣b2)+…+(a10+b10)(a10﹣b10)=9[(a1+a2+…+a10)﹣(b1+b2+…+b10)]=0,∴a12+a22+...+a102=b12+b22+ (102)21.解:(1)12a3b2﹣9a2b+3ab=3ab(4a2b﹣3a+1);(2)16x2﹣9y2=(4x+3y)(4x﹣3y);(3)2x3+8x2y+8xy2=2x(x2+4xy+4y2)=2x(x+2y)2;(4)(3x+y)2﹣(x﹣3y)2=(3x+y+x﹣3y)(3x+y﹣x+3y)=(4x﹣2y)(2x+4y)=4(2x﹣y)(x+2y).22.解:(1)416×4.2+4.16×370+41.6×21=416×(4.2+3.7+2.1)=416×10=4160(2).=(2+)(2﹣)+(49+50)(49﹣50)=3×+99×(﹣2)=﹣198=﹣19123.解:(1)原式=3x(1﹣4x2)=3x(1﹣2x)(1+2x);(2)原式=2a[(x2+1)2﹣x2]=2x(x+12(x﹣1)2;(3)原式=2(x2+x+)=2(x+)2.(4)原式=(a2﹣b2)﹣(4a﹣4b)=(a+b)(a﹣b)﹣4(a﹣b)=(a﹣b)(a+b﹣4);(5)原式=5bx(4a2﹣9y2)=5bx(2a﹣3y)(2a+3y);(6)原式=(x2+y2﹣2xy)﹣1=(x﹣y)2﹣1=(x﹣y﹣1)(x﹣y+1);(7)原式=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n);(8)原式=(a﹣b)(3a+b)2﹣(a+3b)2(a﹣b)=(a﹣b)[(3a+b)2﹣(a+3b)2]=(a﹣b)(3a+b﹣a﹣3b)(3a+b+a+3b)=(a﹣b)(2a﹣2b)(4a+4b)=8(a﹣b)2(a+b).24.解:∵x2+x﹣1=0,∴x2+x=1,∴x3+2x2﹣7=x(x2+x)+x2﹣7=x+x2﹣7=1﹣7=﹣6.故答案为:﹣6.25.解:(1)∵大长方形的面积=2m2+5mn+2n2,大长方形的面积=(m+2n)(2m+n),∴2m2+5mn+2n2=(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(2)由题意得:mn=12,2n2+2m2=50,∴n2+m2=25,∴(m+n)2=n2+m2+2mn=49,∵m>n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和=6(m+n)=42(cm);(3)阴影部分的面积=a2+b2﹣0.5a2﹣0.5b(a+b)=0.5(a2+b2﹣ab)=0.5[(a+b)2﹣3ab]=0.5×(100﹣48)=26.26.(1)证明:当k被3整除时,设k=3t(t是整数),∵m﹣n=4,mn=k﹣7=3t﹣7,∴y=(m+n)2=(m﹣n)2+4mn=42+4(3t﹣7)=12t﹣12=12(t﹣1)∵12(t﹣1)÷12=t﹣1,∴y能被12整除.(2)∵m,n都为非负数,∴mn≥0,∴k﹣7≥0,解得k≥7;∵mn≤()2=4,∴k﹣7≤4,解得k≤11,∴7≤k≤11,∴y=(m+n)2=(m﹣n)2+4mn=42+4(k﹣7)=4k﹣12∵7≤k≤11,∴28≤4k≤44,∴16≤4k﹣12≤32,∴y存在最大值和最小值,最大值是32,最小值是16.27.解:(19x﹣31)(13x﹣17)﹣(17﹣13x)(11x﹣23)=(19x﹣31)(13x﹣17)+(13x﹣17)(11x﹣23)=(13x﹣17)(30x﹣54)∴a=13,b=﹣17,c=﹣54,∴a+b+c=﹣58.28.解:原式=(13x﹣17)(10x﹣31﹣3x+23)=(13x﹣17)(7x﹣8),=(ax+b)(7x+c),所以a=13,b=﹣17,c=﹣8,所以a+b+c=13﹣17﹣8=﹣12.29.解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴a2+b2=(a﹣b)2+2ab=72+2×(﹣12)=49+(﹣24)=25;(3)∵a﹣b=7,ab=﹣12,∴(a+b)2=(a﹣b)2+4ab=72+4×(﹣12)=49+(﹣48)=1,∴a+b=±1.30.解:(1)设M=x+y,则原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,将M=x+y代入还原可得原式=(x+y﹣2)2;(2)原式=(a﹣1)(a﹣4)(a﹣2)(a﹣3)+1=(a2﹣5a+4)(a2﹣5a+6)+1令N=a2﹣5a+4,∵a为正整数,∴N=(a﹣1)(a﹣4)=a2﹣5a+4也是整数,则原式=N(N+2)+1=N2+2N+1=(N+1)2,∵N为整数,∴原式=(N+1)2即为整数的平方.31.解:(1)把x=1代入x2+2x+3中,得:12+2+3=6;若x=2,则这个代数式的值为22+2×2+3=11;故答案为:6,11(2)根据题意可得:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,∵(x+1)2是非负数,∴这个代数式x2+2x+3的最小值是2,相应的x的值是﹣1;故答案为2;﹣1(3)∵x2﹣12x+37=(x﹣6)2+1,∴x2﹣12x+37的最小值是1,相应的x的值是6;(4)根据题意得:∴﹣x2﹣6x+11=﹣(x+3)2+20,∴代数式﹣x2﹣6x+11的最大值是20,相应的x的值是﹣3;(5)∵y=﹣x2+6x﹣3,∴y=﹣(x﹣3)2+6,∵x的值在数1~4(包含1和4)之间变化,∴这时y的变化范围是:2≤y≤6.32.解:(1)x2﹣140x+4875=x2﹣2×70x+702﹣702+4875=(x﹣70)2﹣25=(x﹣70)2﹣52=(x﹣70+5)(x﹣70﹣5)=(x﹣65)(x﹣75);(2)4x2﹣4x﹣575=(2x)2﹣2×2x×1+12﹣12﹣575=(2x﹣1)2﹣576=(2x﹣1)2﹣242=(2x﹣1+24)(2x﹣1﹣24)=(2x+23)(2x﹣25).33.解:(1)把x=1代入多项式x3+3x2﹣4,多项式的值为0,∴多项式x3+3x2﹣4中有因式(x﹣1),于是可设x3+3x2﹣4=(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n,∴m﹣1=3,n﹣m=0,∴m=4,n=4,(2)把x=﹣1代入x3+x2﹣16x﹣16,多项式的值为0,∴多项式x3+x2﹣16x﹣16中有因式(x+1),于是可设x3+x2﹣16x﹣16=(x+1)(x2+mx+n)=x3+(m+1)x2+(n+m)x﹣n,∴m+1=1,n+m=﹣16,∴m=0,n=﹣16,∴x3+x2﹣16x﹣16=(x+1)(x2﹣16)=(x+1)(x+4)(x﹣4)34.解:(1)能,a3+b3=(a+b)(a2﹣ab+b2);(2)要使(n3+2017)÷(n+13)===n2﹣13n+169﹣为整数,必须180能整除n+13,则n的最大值为167.35.解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=﹣1,∴2x+y=2×1+(﹣1)=1;(2)∵a﹣b=4,∴a=b+4,∴将a=b+4代入ab+c2﹣6c+13=0,得b2+4b+c2﹣6c+13=0,∴(b2+4b+4)+(c2﹣6c+9)=0,∴(b+2)2+(c﹣3)2=0,∴b+2=0,c﹣3=0,解得,b=﹣2,c=3,∴a=b+4=﹣2+4=2,∴a+b+c=2﹣2+3=3.36.解:(1)等式右边=(a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2)=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=a2+b2+c2﹣ab﹣bc﹣ac=左边,得证;(2)当a=2011,b=2012,c=2013时,a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a ﹣c)2]=3;(3)∵a﹣b=,b﹣c=,∴a﹣c=,∵a2+b2+c2=1,∴ab+bc+ac=a2+b2+c2﹣[(a﹣b)2+(b﹣c)2+(a﹣c)2]=1﹣(++)=﹣.37.解:(1)上述分解因式的方法是提公因式法,共应用了2次.(2)需应用上述方法2004次,结果是(1+x)2005.(3)解:原式=(1+x)[1+x+x(x+1)]+x(x+1)3+…+x(x+1)n,=(1+x)2(1+x)+x(x+1)3+…+x(x+1)n,=(1+x)3+x(x+1)3+…+x(x+1)n,=(x+1)n+x(x+1)n,=(x+1)n+1.38.解:(1)∵(x+2)(x+3)=x2+5x+6,∴x2+5x+6能被(x+2)整除,或者能被(x+3)整除;当x=﹣2,或x=﹣3时,x2+5x+6=0;故答案为:(x+2)或(x+3),(x+2)或(x+3),﹣2或﹣3;(2)∵(x+2)(x﹣7)=x2﹣5x﹣14,∴x2﹣5x﹣14能被x+2整除,∴m=﹣5.39.解:(1)把x=1代入x2+2x+3中,得:12+2+3=6;若x=2,则这个代数式的值为22+2×2+3=11;故答案为6;11;(2)根据题意可得:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,∵(x+1)2是非负数,∴这个代数式x2+2x+3的最小值是2,相应的x的平方是1.故答案为2;1;(3)∵x2﹣10x+35=(x﹣5)2+10,∴代数式x2﹣10x+35的最小值是10,相应的x的值是5;(4)∵﹣x2﹣8x+15=﹣(x+4)2+31,∴﹣x2﹣8x+15的最大值是31,相应的x的值是﹣4;(5)∵y=﹣x2+6x﹣3,∴y=﹣(x﹣3)2+6,∵x的值在数1~4(包含1和4)之间变化,∴这时y的变化范围是:2≤y≤6.40.解:(1)x3﹣xy2=x(x﹣y)(x+y),当x=15,y=5时,x﹣y=10,x+y=20,可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:解得xy=24,而x3y+xy3=xy(x2+y2),所以可得数字密码为24121.。

相关文档
最新文档