基于Matlab的图像去噪算法的研究
如何在Matlab中进行图像去噪与复原

如何在Matlab中进行图像去噪与复原图像去噪与复原在计算机视觉和图像处理领域有着重要的应用价值。
当图像受到噪声污染或损坏时,我们需要采取适当的方法来还原图像的清晰度和准确性。
在这方面,Matlab作为一种强大的数值计算软件,提供了丰富的图像处理工具和函数,能够帮助我们有效地进行图像去噪和复原。
一、图像去噪方法介绍在进行图像去噪之前,我们需要了解一些常见的图像噪声类型和去噪方法。
常见的图像噪声类型包括高斯噪声、椒盐噪声和泊松噪声等。
对于这些噪声,我们可以采用滤波方法进行去噪处理。
Matlab提供了多种滤波函数,包括均值滤波、中值滤波、高斯滤波等。
这些函数能够基于不同的滤波算法,去除图像中的噪声,提高图像质量。
1.1 均值滤波均值滤波是一种简单的滤波方法,通过计算像素周围邻域的平均灰度值来减小噪声的影响。
在Matlab中,可以使用imfilter函数实现均值滤波。
该函数可以指定滤波器的大小和形状,对图像进行滤波处理。
均值滤波适用于高斯噪声的去除,但对于椒盐噪声等其他类型的噪声效果不佳。
1.2 中值滤波中值滤波是一种非线性滤波方法,通过在像素周围邻域中选择中间灰度值来减小噪声的影响。
在Matlab中,可以使用medfilt2函数实现中值滤波。
该函数可以指定滤波器的大小和形状,对图像进行滤波处理。
中值滤波适用于椒盐噪声的去除,对于高斯噪声等其他类型的噪声有效果不佳。
1.3 高斯滤波高斯滤波是一种线性滤波方法,通过根据像素周围邻域的权重来减小噪声的影响。
在Matlab中,可以使用imgaussfilt函数实现高斯滤波。
该函数可以指定滤波器的大小和标准差,对图像进行滤波处理。
高斯滤波适用于高斯噪声的去除,对于椒盐噪声等其他类型的噪声效果较好。
二、图像复原方法介绍除了去噪,图像复原也是图像处理中常见的任务之一。
图像复原主要是指恢复图像中的缺失或破损的信息,使得图像在视觉上更加清晰和准确。
在Matlab中,可以使用多种方法进行图像复原,包括图像插值、图像修复和图像增强等。
MATLAB中多种图像去噪算法的比较分析

MATLAB中多种图像去噪算法的比较分析在MATLAB中,有多种图像去噪算法可供选择。
这些算法各有优势和劣势,适用于不同的噪声类型和图像特征。
本文将对几种常见的图像去噪算法进行比较分析,包括均值滤波、中值滤波、高斯滤波和小波去噪。
1. 均值滤波均值滤波是最简单的图像去噪算法之一。
它通过计算像素周围邻域的平均值来减少图像中的噪声。
然而,均值滤波在去除噪声的同时也会模糊图像的细节,特别是对于边缘部分的处理效果不佳。
2. 中值滤波中值滤波是一种非线性滤波算法,它通过将像素点邻域内的像素值排序并选择其中的中值来进行去噪。
相比于均值滤波,中值滤波能够更好地保留图像的细节,并且对于椒盐噪声等脉冲噪声具有较好的去除效果。
然而,中值滤波对于高斯噪声等噪声类型的去除效果较差。
3. 高斯滤波高斯滤波是一种基于高斯函数的平滑滤波算法。
它通过将像素点邻域内的像素值与对应的高斯权重进行加权平均来进行去噪。
高斯滤波能够较好地去除高斯噪声,并且保持图像的细节信息。
然而,对于椒盐噪声等脉冲噪声,高斯滤波的效果较差。
4. 小波去噪小波去噪是一种基于小波变换的图像去噪算法。
它通过将图像进行小波分解,对低频分量和高频分量进行独立的去噪处理,然后再进行小波重构。
小波去噪能够同时去除图像中的噪声和保持图像细节,对于各种噪声类型都有较好的去除效果。
然而,小波去噪算法的计算复杂度较高,运行时间较长。
综合比较以上四种图像去噪算法,我们可以根据噪声类型和图像特征选择合适的算法。
如果图像中存在高斯噪声,可以使用高斯滤波进行去噪;如果图像中存在椒盐噪声,可以使用中值滤波进行去噪;如果需要同时去除多种噪声类型并保持图像细节,可以考虑使用小波去噪算法。
此外,在实际应用中,我们还可以通过调整算法参数来进一步优化去噪效果。
例如,对于滤波算法,可以调整滤波器的大小来控制去噪力度;对于小波去噪算法,可以选择不同的小波基函数以适应不同图像特征。
总之,MATLAB中提供了多种图像去噪算法,每种算法都有其适用的场景和优势。
基于Matlab的数字图像典型去噪算法_丁永胜 (1)

2010年 11月 Journal of Science of Teachers′College and University Nov. 2010文章编号:1007-9831(2010)06-0010-04基于Matlab 的数字图像典型去噪算法丁永胜1,李朝红2,张水胜1(1. 齐齐哈尔大学 理学院, 黑龙江 齐齐哈尔 161006;2. 齐齐哈尔高等师范专科学校 数学系, 黑龙江 齐齐哈尔 161005) 摘要:针对数字图像处理中的典型去噪算法,利用Matlab 进行分析处理,并从主观和客观2个角度对数字图像的去噪效果进行分析.在分析过程中可以看出,针对不同类型的噪声需要相应的滤波去噪算法才能取得较好的效果.关键词:Matlab ;去噪;滤波中图分类号:TP391.72 文献标识码:A doi:10.3969/j.issn.1007-9831.2010.06.0041 图像中的噪声与图像去噪噪声可以理解为妨碍人们感觉器官对所接收的信源信息理解的因素.例如:一幅黑白图片,其平面亮度分布假定为) ,(y x f ,那么对其接收起干扰作用的亮度分布) ,(y x h 即可称为图像噪声[1].图像去噪是数字图像处理中的重要环节和步骤.去噪效果的好坏直接影响到后续的图像处理工作,如图像分割、边缘检测等.一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成.在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的.将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等.在Matlab 中常用的去噪函数有filter2( ), wiener2( ), medfilt2( ), ordfilt2( )以及小波分析工具箱提供的wrcoef2( )和wpdencmp( )等[2].本文基于Matlab 提供的去噪函数,针对数字图像处理中的典型去噪算法,利用Matlab 进行分析处理,并从主观和客观2个角度对数字图像的去噪效果进行分析.2 图像质量的评价方法图像质量的评价方法有主观评价和客观评价2种.图像的主观评价就是通过人来观察图像,对图像的优劣作主观评定,然后对评分进行统计平均,就得出评价的结果.这时评价出的图像质量与观察者的特性及观察条件等因素有关.由于主观评价带有较强的个人因素特征,并且在一些研究场合,或者由于实验条件的限制,也希望对图像质量有一个定量的客观评价.最常用的客观评价有均方误差(MSE)、峰值信噪比(PSNR)和信噪比(SNR)等.本文主要以信噪比(SNR)进行客观评价. 信噪比主要由公式⎟⎟⎠⎞⎜⎜⎝⎛××=∑∑==M i N j j i g MSE N M SNR 112) ,(1log 10定义,其中:N M ×为图像矩阵的大小;) ,(j i g 为小波变换后的图像在) ,(j i 位置处的像素值;) ,(j i f 为原始图像在) ,(j i 位置处的像素值;收稿日期:2010-04-20作者简介:丁永胜(1974-),男,黑龙江讷河人,副教授,硕士,从事计算机图形学、计算机辅助几何设计研究.E-mail:dysnwpu@()∑∑==−××=M i N j j i f j i g M N MSE 112) ,() ,(11. 根据以上所述,在Matlab 仿真过程中,可以利用SNR 函数得到各去噪方法作用过的图像的信噪比,程序如下:[m n]=size(I1);for i=1:m;for j=1:n;s=s+double(I2(i,j))^2;n=n+(double(I1(i,j))-double(I2 (i,j)))^2;endendSNR=10*log10((s/n))3 Matlab 仿真去噪及分析3.1 均值滤波去噪首先加入均值为0、方差为0.005的高斯白噪声,然后采用函数fspecial(type, parameters)且type='average',创建均值滤波算子并进行滤波去噪,通过改变模板尺寸,得到不同去噪效果(见图1).部分Matlab代码如下:I=imread('qqhru.bmp');I2=imnoise(I,'gaussian',0,0.005);K1=filter2(fspecial('average',3), I2)/255;K2=filter2(fspecial('average',5), I2)/255;K3=filter2(fspecial('average',7), I2)/255;K4= filter2(fspecial('average',9),J)/255;图1 均值滤波去噪从图1中可以看出,使用均值滤波去噪(高斯噪声)时选用的模板尺寸(邻域半径)越大效果越好.3.2 3种去噪算法对比分析对图像qqhru.bmp分别加入高斯噪声、椒盐噪声,然后对加入2类噪声的图像分别作二维统计、中值和维纳滤波,并对去噪后图像(见图2)进行对比分析.部分Matlab代码如下:I=imread('qqhru.bmp');J1=imnoise(I,'gaussian',0,0.02);J2=imnoise(I,'salt & pepper',0.02) ;K1=filter2(fspecial('average',3),J1)/255;K2= medfilt2(J1);K3=wiener2(J1,[3 3]);Ks1=filter2(fspecial('average',3),J2)/255;Ks2=medfilt2(J2);Ks3=wiener2(J2,[3 3]);图2 3种去噪算法对比通过图2可以看出,在处理服从高斯分布的一类噪声时,维纳滤波与中值滤波去除效果较好一些,而二维统计滤波去除效果较差.二维统计滤波与中值滤波对于去除椒盐噪声效果好,而维纳滤波去除效果差,中值滤波对于去除椒盐噪声效果明显,是因为椒盐噪声只在画面上的部分点随机出现,而中值滤波根据数据排序,将未被污染的点代替噪声点的值的概率较大,所以抑制效果好.对点、线和尖顶较多的图像不宜采用中值滤波,因为一些细节点可能被当成噪声点.通过SNR 函数得到3种去噪方法的信噪比(见表1),也可以说明以上的结论是正确的.3.3 小波分析工具图像去噪Matlab 小波分析工具箱提供于图像去噪的有wrcoef 2和wpdencmp 等函数.X=wrcoef 2('type ',C,S, 'wname ')返回基于小波分解结构[C,S]的小波重构图像X(见图3).[xd,treed,datad,perf0,perfl2]=wpdencmp(x,sorh,N, 'wname ',crit,par,keepapp)是通过小波包定限(阈值化),返回输入信号或图像X 的除噪结果xd(见图4).部分Matlab 代码如下:I=imread(' qqhru.bmp');J=imnoise(I,'gaussian',0,0.005);[c,l]=wavedec2(J,2,'sym4');J1= wrcoef2('a',c,l,'sym4',1);J2= wrcoef2('a',c,l,'sym4',2);[thr,sorh,keepapp] = ddencmp('den','wv',J);J3=wdencmp('gbl',J,'sym4',2,thr,sorh,keepapp);J4=medfilt2(J3);表1 3种去噪方法的信噪比 噪声类型二维统计滤波 中值滤波 维纳滤波高斯噪声16.504 8 19.184 3 19.574 4椒盐噪声22.238 3 26.492 8 19.158 3图3 wrcoef2函数去噪小波分解可以把图像分层次按照小波基展开,并且可以根据图像的性质及给定的处理标准确定展开到哪一级为止,还可以把细节分量和近似分量分开[3]. 从图3、图4可以看出,wrcoef 2和wpdencmp等函数可以有效地进行去噪处理.基于Matlab 给出qqhru.bmp 图像来考察各种去噪模型的去噪效果,同时从主观和客观2个角度对数字图像的去噪效果进行分析.在分析过程中可以看出,针对不同类型的噪声需要相应的滤波去噪算法才能取得较好的效果,才能使后续的图像处理工作得以更加优质的进行.参考文献:[1] Rafael C,Gonzalez,Richard E.数字图像处理[M].2版.阮秋琦,译.北京:电子工业出版社,2007:276-303.[2] 高成.Matlab 图像处理与应用[M].北京:国防工业出版社,2007:81-127.[3] 王登位,李炜.基于小波变换的图像去噪研究[J].计算机与数字工程,2007,35(9):131-132.The typical de-noising algorithms for digital image by MatlabDING Yong-sheng 1,LI Zhao-hong 2,ZHANG Shui-sheng 1(1. School of Science,Qiqihar University,Qiqihar 161006,China;2. Department of Mathematics,Qiqihar Normal Technological Academy,Qiqihar 161005,China) Abstract:According to the typical de-noising algorithm for the digital image processing researched de-noising results in Matlab,and analyzed digital image de-noising effect from two angles of the subjective and the objective.Through the analysis of the results can be known, choosing corresponding filtering de-noising algorithm can obtain better result according to different types of noise.Key words:Matlab;de-noising;filtering 图4 wpdencmp 函数去噪。
Matlab中的图像降噪算法与技术

Matlab中的图像降噪算法与技术摘要随着数字图像处理的快速发展,图像降噪成为实际应用中一个重要的问题。
在本文中,我们将探讨Matlab中的图像降噪算法与技术。
首先,我们将介绍图像降噪的基本原理和方法。
然后,我们将深入研究Matlab中常用的图像降噪算法,包括均值滤波、中值滤波、高斯滤波等。
最后,我们将讨论图像降噪的一些进一步扩展和应用。
一、图像降噪的基本原理和方法图像降噪是指通过一系列算法和技术,减少或去除数字图像中的噪声信号,以使图像更清晰、更易于识别和分析。
图像噪声主要来自于图片采集过程中的环境噪声、传感器噪声以及信号传输中的干扰等。
图像降噪的基本原理是通过对图像进行滤波处理,使噪声信号受到抑制,同时尽量保留图像的有用信息。
常用的图像降噪方法包括空域滤波和频域滤波。
空域滤波是指对图像的像素直接进行操作的滤波方法,例如均值滤波、中值滤波等。
频域滤波是指将图像转换到频域进行处理的滤波方法,例如傅里叶变换和小波变换。
二、Matlab中常用的图像降噪算法1. 均值滤波均值滤波是一种最简单、最常用的图像降噪方法。
它通过计算像素周围邻域内像素的平均值,将当前像素的值替换为该平均值。
在Matlab中,我们可以使用imfilter函数来实现均值滤波。
具体步骤如下:(1)读取图像,并将其转换为灰度图像。
(2)选择适当的滤波器大小和模板类型。
(3)使用imfilter函数进行滤波处理。
(4)显示并保存结果图像。
2. 中值滤波中值滤波是一种非线性图像滤波方法,它通过将像素周围邻域内像素的灰度值进行排序,然后选择中间值作为当前像素的灰度值。
这种方法对于椒盐噪声等脉冲性噪声有很好的抑制效果。
在Matlab中,我们可以使用medfilt2函数来实现中值滤波。
3. 高斯滤波高斯滤波是一种线性平滑滤波方法,它通过将像素周围邻域内的像素值与高斯函数进行加权平均来实现图像降噪。
在Matlab中,我们可以使用fspecial和imfilter函数来实现高斯滤波。
基于MATLAB的图像去噪研究

中图分类号 : T P 3 9 1
文献标 志码 : A
文章编号 : 1 0 0 6 — 8 2 2 8 ( 2 0 1 5 ) o 6 — 1 0 — 0 3
Re s e a r c h on i ma ge de no i s i ng wi t h M ATLAB
Y0 We n
法——平均值法 、 二值 形态滤波器法、 中值滤 波器法和果得到 ,
小波 图像 去 噪 法 是 较 为 理 想 的 处 理 随 机 噪 声 的 方 法 。 关 键 词 :去 噪 ;Ma t l a b ; 小波 ;仿 真
松 分布 的随机变 量作为光 电噪声 的模 型 , 在光 照较强 时 , 泊松 分布趋 向于更 易描述 的高斯分布 ; ③感 光片 颗粒噪 声 , 曝光过 人 类获取外 界信息 约有 8 0 %是 来 自视 觉所接 收的 图像信 颗粒 息, 因此图像信息加工处理 技术 的广泛研究和应 用是必然的趋 程 中曝光颗粒 的分 布呈现一种随机性 。在大多数情况下 , 势 。在分 析和 使用 图像信 息之 前 , 需 要对 图像 进行 一系 列处 噪声可 用高斯 白噪声作为有效模 型。 由此可 以看 出 , 绝大 多数 的常 见 图像噪 声 都可用 均值 为 理 。图像处理 是针对性很强 的技术 , 所采 用的方法综合了各学 零、 方差不 同的高斯 白噪声 作为其模 型 , 因而为 了简便和 一般 科 的先进成果 , 各学科 的相 互渗透促使 了图像处理 技术的快速 采用零均值 的高斯 白噪声作为噪声源 。 发展 。其 中 , 为 了提高 图像 的质量 以及后续 更高层 次的处理 , 化,
0 引言
对 图像进行去噪处理是不可或缺的重要环节 。
1 . 2 图 像 质 量 的 评 价
基于MATLAB的数字图像噪声去除技术研究

[5] 焦李 成,谭 山.图 像 的 多 尺 度 几 何 分 析:回 顾 和 展 望 [J]. 电 子 学 报 ,2003(增 刊 1):1975-1981.
Digital Image Noise Removal Technology Based on MATLAB
WANG Dong-dБайду номын сангаасng,WANG Fu-ming
均值滤波的方法是对待处理的当前像素选择一个 模 板 ,该 模 板 由 其 近 邻 的 若 干 像 素 组 成 ,用 模 板 中 像 素 的均值来替代原像素值。用 MATLAB 实现的代码如下:
I=imread('01.bmp');% 读 入 原 图 J1=imnoise(‘噪 声 类 型 ’);% 加 噪 图 像 H=ones(3,3)/9;% 选 择 3×3 的 模 板 B1=conv2(J1,H);% 均 值 滤 波
分 别 添 加 高 斯 白 噪 声 、椒 盐 噪 声 ,然 后 分 别 采 取 均 值 滤
波 、中 值 滤 波 、维 纳 滤 波 方 法 对 图 像 去 噪 复 原 。 图 像 质
量 的 评 价 标 准 (均 方 误 差 S)公 式 为 :
∑ {‖f(x,y)-g(x,y)‖2}
S=
.
∑ {‖f(x,y)‖2}
3.2.3 维 纳 滤 波 前面提到的两种降噪方法实质是通过对图像变换
实现,维纳滤波是 要 对 图 像 进 行 恢 复 实 现。 图 像 恢 复 技术以获取视觉质量 某 种 程 度 的 改 善 为 目 的,所 不 同 的是图像恢复过程实 际 上 是 一 种 估 计 过 程,需 要 根 据 指定图像退化的模型 对 退 化 图 像 进 行 恢 复,以 取 得 未 经过退化的原始图 像。 与 中 值 滤 波 不 同,维 纳 滤 波 作 为一种经典的线性滤 波 方 法,在 信 号 和 图 像 处 理 领 域 中具有广泛的应用。其设计原理依据的是最小均方误 差准则(MSE),即从含 噪 信 号 运 用 滤 波 变 换 所 得 到 恢 复后估计的信号,使 得 与 原 信 号 相 比 较 它 们 之 间 的 均 方误差最小。用 MATLAB 实现的代码如下:
基于matlab的图像去噪论文开题报告 论文

基于小波变换的图像去噪技术开题报告一、综述小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。
正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家grange,place以及A.M.Legendre的认可一样。
幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法枣多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。
它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。
二、研究内容图像在生成和传输过程中常常因受到各种噪声的干扰和影响而使图像降质,这对后续图像的处理(如分割、压缩和图像理解等)将产生不利影响。
噪声种类很多,如:电噪声、机械噪声、信道噪声和其他噪声。
在图像处理中,图像去噪是一个永恒的主题,为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行去噪预处理。
近年来,小波理论得到了非常迅速的发展,而且由于其具备良好的时频特性,实际应用也非常广泛。
在matlab环境下对图像的噪声滤除的研究

本科毕业设计题 目 基于MATLAB 的图像去噪的研究学生姓名专业名称 通信工程指导教师2015年 5月 14 日基于MATLAB的图像去噪的研究摘要在智能手机越发普及的今天,信息已经从简单的文字变为更直观的图像。
但是数字化的图像也面临诸多问题,因生成、传输时产生的噪声就是图像致命的杀手。
怎样去除噪声成为了当今数字图像领域中一个重要的研究课题。
其处理程度的优劣直接决定了后续的图像处理工作的好坏。
在本文中,第一部分介绍了图像处理的意义和现状。
第二部分介绍了MATLAB这款软件和本文用到的几种算法的原理。
第三部分着重研究并分析了三种常用的去噪方法并对一张图片进行了去噪仿真,得出了线性滤波中的均值滤波可用来抑制高斯噪声,非线性滤波中的中值滤波可用来处理椒盐噪声,维纳滤波也同样可用来处理高斯噪声的结论。
第四部分对结论的分析看出此三种方法滤噪的弊端,因此对新兴技术小波滤噪中的阈值和极大值两种算法做了研究。
得出极大值滤噪虽有较好效果但其算法较复杂,小波阈值法算法简单,选基灵活实用性广,对高斯和椒盐噪声效果均比较理想的结论。
最后再对全文做出总结,对比几种仿真结果。
关键词:图像去噪,维纳滤波,小波阈值。
The study of the image denoising based on MATLABAbstractIn today's smartphones is increasingly, from simple text information has became more intuitive image. But the digital image is also facing many problems, because of the noise emitted by generation and transmission is the image of deadly killer. How to get rid of the noise has become a current in the field of digital image is an important research topic. The degree of its processing directly determines the subsequent image processing work of good or bad. In this article, the first part introduces the significance and status quo of image processing. The second part introduces the software MATLAB and the principle of several kinds of algorithm used in this paper. The third part of this paper studies and analyzes three kinds of common denoising method and the image denoising simulation, concluded that the average filtering can be used in the linear filter to suppress gaussian noise, median filtering of nonlinear filtering can be used to deal with salt and pepper noise, wiener filtering is also available to deal with the conclusion of gaussian noise. The fourth part analysis of the conclusion that the disadvantages of the three ways to filter the noise, so for the emerging technology of wavelet denoising threshold and the maximum two algorithm to do the research. Although it is concluded that the maximum noise has better effect is relatively complex, but the algorithm of wavelet threshold method is simple, choose flexible base wider practicability, the gauss noise and salt and pepper effect are ideal conclusion. Finally, give a summary to full text, compared several kinds of simulation results.Key words:Image denoising,wiener filtering,wavelet threshold.目录1绪论 (1)1.1本文研究背景 (1)1.2 本文研究目的 (1)1.3 本文的研究意义 (2)2 Matlab及相关去噪原理 (3)2.1 Matlab (3)2.1.1 MATLAB相关简介 (3)2.1.2 Matlab发展史 (4)2.1.3 Matlab的优势 (4)2.2图像去噪算法 (6)2.2.1 均值滤波法 (6)2.2.2 中值滤波法 (7)2.2.3 维纳滤波法 (8)2.3 小波变换基本理论 (9)2.3.1 小波的基本分类 (9)2.3.2 小波去噪基本原理 (10)3 常用滤波法仿真 (11)3.1均值滤波法去噪仿真 (11)3.2 中值滤波法去噪仿真 (15)3.3 维纳滤波去噪仿真 (17)4 新一代小波变换法去噪 (19)4.1 基于小波变换的自适应模糊阈值法 (19)4.1.1 基本原理 (19)4.1.2 自适应模糊阈值滤波法仿真 (20)4.2 小波变换模极大值去噪法 (22)4.2.1 极大值的基本原理 (22)4.2.2 模极大值基本算法 (23)4.3 两种小波去噪算法的比较 (24)5 总结 (25)5.1 对本文的总结 (25)5.2 对今后工作的展望 (26)参考文献 (28)致谢 (29)附录 (34)1绪论1.1本文研究背景视觉作为人类最重要的五感之一,对人类的影响至关重要。