4湘教版2020年春八年级数学下册:优秀教案.1.1 变量与函数

合集下载

湘教版八年级数学下册《4章 一次函数 4.1 函数和它的表示法 4.1.1变量与函数》公开课教案_0

湘教版八年级数学下册《4章 一次函数  4.1 函数和它的表示法  4.1.1变量与函数》公开课教案_0

4.1.1变量与函数一.教学目标知识与技能:认识变量、常量,学会用含一个变量的代数式表示另一个变量.过程与方法:逐步感受变量间的关系.情感态度与价值观:对数学产生好奇心和求知欲.二.教学重点和难点思考:1.图4-1是某地气象站用自动温度记录仪描出的某一天的温度曲线,它反映了该地某一天的温度曲线,它反映了该地某一天的气温T是如何随时间t的变化而变化的.(1)这一天中,4时的温度是.14是时的气温是.(2)随着的变化而变化.(气温、时间)(3)当时间t取定一个值时,温度T有唯一的值与它对应.2.当正方形的边长x分别取1、2、3、4、5…时,正方形的面积S分别是多少?试填写下表. 观察思考:(1)正方形的边长越,面积就越大.(2)当边长x取定一个值时,面积S有唯一的值与它对应.(3)说明在这一过程中,随着边长x的变化,相应的面积S也随之.(4)在这一过程中,面积S与边长X之间满足的关系是.3.某城市居民用的天然气,1m3收费2.88元,使用x(m3)天然气应缴纳的费用y(元)为y=2.88x,当x=10时,缴纳的费用为多少?思考:(1)随着的变化而变化.(2)当x=10时,y= (元),当x=20时,y= (元)(3)当所用天然气的体积x取定一个值时,使用天然气缴纳的费用y有的值与它对应.结论:在某一变化过程中,取值会发生变化的量称为变量,取值固定不变的量称为常量.在上述问题中:变量有:,常量有:;随堂练习:(1)球的表面积S与球的半径r的关系式是S=4R2.(2)圆柱的表面半径R不变,圆柱的体积V与圆柱的高度h的关系式,是V=R2h.(3)以固定的速度V0向上抛一个小球,小球的高度h与小球运动时间t的关系是h=v0-4.9t2根据以上三个问题思考:(1)以上每个变化过程中都有几个变量?(2)变量之间是怎样变化的?(3)给其中一个变量取定一个值,另一个变量有几个值与之相对应?定义:一般地,在一个变化过程中有两个变量,例如x和y,对于x的每一个值,y都有唯一的一个值与它对应,我们就说x是自变量,y是因变量,此时y是x的函数。

2020八年级数学下册教案:变量与函数

2020八年级数学下册教案:变量与函数

变量与函数第一课时变量与函数教学目标使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义,能应用方程思想列出实例中的等量关系。

教学过程一、由下列问题导入新课问题l、右图(一)是某日的气温的变化图看图回答:1.这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗?2.这一天中,最高气温是多少?最低气温是多少?3.这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看出,随着时间t(时)的变化,相应的气温T(℃)也随之变化。

问题2 一辆汽车以30千米/时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关系呢?问题3 设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系.问题4 收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数:同学们是否会从表格中找出波长l与频率f的关系呢?二、讲解新课1.常量和变量在上述两个问题中有几个量?分别指出两个问题中的各个量?第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化.第2个问题中有路程s,时间t和速度v,这三个量中s 和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量.路程随着时间的变化而变化。

第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化.第4个问题中的l与频率f是变量.而它们的积等于300000,是常量.常量:在某一变化过程中始终保持不变的量,称为常量.变量:在某一变化过程中可以取不同数值的量叫做变量.2.函数的概念上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数).在上述的2个问题中,s=30t,给出变量t的一个值,就可以得到变量s惟一值与之对应,t是自变量,s因变量(s 是t的函数)。

最新湘教版八年级下册数学精品学案4.1.1 变量与函数

最新湘教版八年级下册数学精品学案4.1.1 变量与函数

教学思路(纠错栏)教学思路(纠错栏)第4章一次函数4.1 函数和它的表示法4.1.1 变量与函数学习目标:1.联系自己的学习、生活实际,通过具体情境领悟函数的概念,了解常量、变量,知道自变量与函数,能写出简单的函数表达式.2.探究变量的发现和函数概念的形成,提高学生分析、解决问题的能力.学习重点:函数概念的形成过程.学习难点:正确理解函数的概念.☆自主学习☆一、导读:预习课本,完成以下题目:问题1:①这个问题中有哪几个量?②观察表中数据,热气球在升空的过程中平均每分上升多少米?③你能用关系式表示高度h与时间t的关系吗?④想一想:热气球在升空过程中哪些量发生变化?哪些量没有发生变化?总结:①是变量;是常量.②是自变量;是因变量.③一般地,设在一个变化过程中有两个变量x、y,如果对于x在它的每一个值,y都有与它对应,那么就说x是自变量,y是x的函数.④是函数值.☆合作探究☆1.汽车行驶的路程S、行驶时间t和行驶速度v之间有下列关系:S=vt.(1)如果汽车以60km/h的速度行驶,那么在S=vt中,变量是,常量是(2)如果汽车行驶的时间t规定为1小时,那么在S=vt中,变量是,常量是;(3)如果甲乙两地的路程S为200km,汽车从甲地开往乙地,那么在S=vt中,变量是,常量是 .2.小明去文具店买某种笔,已知该笔2元/支,小明买了该种笔n支,应付钱为m元.(1) 请写出m、n满足的关系;(2) 填写下表:练习本n(本) 1 2 5 8 …付钱m(元)…(3) 在计算上述买了不同支数的笔应付的钱的过程. 哪些量在改变,哪些量不变?☆归纳反思☆通过本节课的学习,我有以下收获:______________________________________________________________________________________________________________________________☆达标检测☆1.指出下列关系式中的变量与常量:(1)球的表面积Scm2与球的半径Rcm的关系式:S=4πR2;(2)在一定温度范围内,一种金属棒长度l(cm)与温度t(0C)之间有关系式:l=0.002t+200.2.某校有宿舍x间,学校规定每间宿舍可住6名学生,宿舍恰好住满,请你写出住校生总数y(人)与宿舍间数x之间的关系,指出本题中的变量、常量、自变量和函数.3.父亲告诉小明:“距离地面越高,温度越低”,并且出示了下面的表格:距离地面高度/千米0 1 2 3 4 5 温度/℃20 14 8 2 -4 -10 根据上表,父亲还给小明出了下面几个问题,你和小明一起回答:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是函数?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t如何变化?(3)你知道距离地面5千米高空的温度是多少吗?。

八年级数学下册变量与函数教案新版湘教版

八年级数学下册变量与函数教案新版湘教版

第4章 一次函数4.1 函数和它的表示法4.1.1 变量与函数1.了解常量、变量的概念;(重点)2.了解函数的概念;(重点)3.确定简单问题的函数关系.(难点)一、情境导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定.在上述例子中,每个变化过程中的两个变量:当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?二、合作探究探究点一:常量与变量分析并指出下列关系中的变量与常量:(1)球的表面积S cm 2与球的半径R cm 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h m 与它下落的时间t s 的关系式是h =12gt 2(其中g 取9.8m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量w 千克与所付款x 元之间的关系式是x =1.8w .解析:在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.解:(1)球的表面积S cm 2与球的半径R cm 的关系式是S =4πR 2,其中,常量是4π,变量是S ,R ;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t ;(3)一物体自高处自由落下,这个物体运动的距离h m 与它下落的时间t s 的关系式是h =12gt 2(其中g 取9.8m/s 2),其中常量是12g ,变量是h ,t ; (4)已知橙子每千克的售价是1.8元,则购买数量w 千克与所付款x 元之间的关系式是x =1.8w ,常量是1.8,变量是x ,w .方法总结:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.变式训练::见《学练优》本课时练习“课后巩固提升”第2题探究点二:函数的定义下列说法中正确的是( )A .变量x ,y 满足x +3y =1,则y 是x 的函数B .变量x ,y 满足y =-x 2-1,则y 可以是x 的函数C .变量x ,y 满足|y |=x ,则y 可以是x 的函数D .变量x ,y 满足y 2=x ,则y 可以是x 的函数解析:A 中x +3y =1,y 可以看作x 的函数,因为y =1-x 3;B 中y =-x 2-1,因为-x 2-1<0,等式无意义,即对于变量x 的任何一个取值,变量y 都没有唯一确定的值,故y不是x 的函数;C 、D 中的|y |=x 和y 2=x ,对于变量x 的任意一个正数值,变量y 都有两个(不唯一)值与其对应,故y 不是x 的函数.故选A.方法总结:判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定好哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应的关系.变式训练:见《学练优》本课时练习“课后巩固提升”第1题探究点三:确定自变量的取值范围【类型一】 确定函数解析式中自变量的取值范围写出下列函数中自变量x 的取值范围.(1)y =2x -3; (2)y =31-x; (3)y =4-x ; (4)y =x -1x -2. 解析:当表达式的分母不含有自变量时,自变量取全体实数;当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.解:(1)全体实数;(2)分母1-x ≠0,即x ≠1;(3)被开方数4-x ≥0,即x ≤4;(4)由题意得⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.方法总结:本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.【类型二】 实际问题中自变量的取值范围水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经过t 分钟后,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱内的水恰好放完?解析:(1)根据水箱内还有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y =200-2t .∵y ≥0,∴200-2t ≥0,解得t ≤100,∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100);(2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y =0时,200-2t =0,解得t =100,而100分钟=1小时40分钟,7点30分+1小时40分钟=9点10分,故9点10分水箱内的水恰好放完.探究点四:简单问题的函数关系一个弹簧秤最大能称不超过10kg 的物体,它的原长为10cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1kg 物体,弹簧伸长0.5cm ;(1)求弹簧的长度y (cm)与所挂重物质量x (kg)之间的函数表达式;(2)当挂5kg 重物时,求弹簧的长度.解析:根据弹簧的长度等于原长加上伸长的长度,列式即可;解:(1)y =10+12x ,其中x 是自变量,y 是自变量的函数; (2)将x =5代入y =10+12x ,得y =10+12×5=12.5(cm). 答:当挂5kg 重物是,弹簧的长度为12.5厘米.方法总结:根据题意,找出等量关系,列出相应的函数表达式.求函数值时,将自变量代入函数表达式中,求出即可.变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点五:函数值根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值为( )A.32B.25C.425D.254解析:∵x =52时,在2≤x ≤4之间,∴将x =52代入函数y =1x ,得y =25.故选B. 方法总结:根据所给的自变量的值,结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计1.常量和变量的概念2.函数的概念3.函数关系式4.自变量的取值范围5.函数值通过本课时的教学,学生对于常量、变量以及函数关系式掌握较好,但是对于有些实际问题中自变量的取值范围还存在一些困难.在以后的教学中要通过实例让学生不断加以强化,达到整体进步。

湘教版八年级数学下册《4章 一次函数 4.1 函数和它的表示法 4.1.1变量与函数》公开课教案_3

湘教版八年级数学下册《4章 一次函数  4.1 函数和它的表示法  4.1.1变量与函数》公开课教案_3

《变量与函数》教学设计教学目标知识与技能(1)基于生活经验,学生初步感知用常量和变量来刻画一些简单的数学问题,能指出具体问题中的常量和变量。

(2)借助简单实例,初步理解变量与函数的关系,知道存在一类变量可以用函数方式来刻画,能举出涉及含有两个变量的实例,并指出哪一个变量确定另一个变量,这两个变量是否具有函数关系。

(3)借助简单实例,初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量之间是否具有函数关系。

过程与方法借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手。

情感、态度与价值观从学生熟悉、感兴趣的实例引入课题,学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用的、有趣的学科。

教学重点难点重点:借助简单实例,从两个变量间的特殊对应关系抽象出函数概念难点:怎样理解“唯一对应”教学过程(一)创设情境,导入新课1.如图,是某地气象站用自动温度记录仪描出的某一天的温度曲线,它反映了该地某一天的气温T(℃)是如何随时间t的变化而变化的,你能从图中得到哪些信息?(1)这天的4时、14时气温分别是多少?10℃ 20℃(2)问题中有几个量在发生着变化?2个2.当正方形的边长x分别取1,2,3,4,5,…时,正方形面积s 分别是多少?试填写下表:正方形的面积随着它的边长变化而变化3.某城市居民用的天然气,1m3 收费2.88元,使用x(m3)天然气应缴纳的费用y(元)为y=2.88x. 当x=10时,缴纳的费用为多少?28.8元(二)探究新知第1个问题中,某地一天中的气温(T)随着时间(t)的变化而变化.第2个问题中,正方形的面积(S)随着它的边长(x)的变化而变化.第3个问题中,使用天然气缴纳的费用(y)随所用天然气的体积(x)的变化而变化.像上述问题这样,在某一变化过程中会发生变化的量称为变量,取值固定不变的量称为常量。

湘教版八年级数学下册《4章 一次函数 4.1 函数和它的表示法 4.1.1变量与函数》公开课教案_2

湘教版八年级数学下册《4章 一次函数  4.1 函数和它的表示法  4.1.1变量与函数》公开课教案_2

第1 课时§ 4.1 变量与函数教学目标:借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。

初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。

教学重点借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念教学难点怎样理解“唯一对应”教学过程一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的,例如:地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。

再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。

这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。

二、合作交流、解读探究第1个问题中,某地一天中的气温随着时间的变化而变化,从图中可看出,4时的气温是10℃,14时的气温是17℃第2个问题中,正方形的面积随着它的边长的变化而变化。

3、某城市居民的生活用电,1kw/h收费0.63元,使用xkw/h应交纳的费用为y(元),怎样用含x的式子表示y呢?思考:上述三个问题中,分别涉及哪些量的关系?那些量是变化的?那些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?三、应用迁移、巩固提高例1 :已知圆柱的高是4cm,底面半径是rcm,当圆柱的底面半径r由小变大时,圆柱的体积Vcm3是r的函数。

(1)用含r的代数式来表示圆柱的体积V,指出自变量r的取值范围;(2)当r=5,10时,V是多少(结果保留)?解:(1)、圆柱的体积V=4πr2,自变量r的取值范围是r>0.(2)、当r = 5时V=4π×25=100π(cm3)当r =10时,V=4π×100=400π(cm3)四、课堂练习:教材P112页练习1、2题五、小结1 、通过一些具体问题感受到现实世界中存在着变化但互相依赖的量,并且知道了变量及常量。

八年级数学下册-4.1.1-变量与函数教案-(新版)湘教版

天然气费用--------天然气体积
22、光的传播速度是每秒钟30万千米,光年就是光在一年中所走过的距离,它是用来计量恒星间距离的单位。学生们会得出:
师生对上述三个问题进行分析,找出它们的共性,归纳出函数的概念。
在某一变化过程中有两个变量x和y,如果对于x的每一个值,y总有唯一的值与它对应,我们就说x是自变量,y是x的函数。
重点
借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念
难点
怎样理解“唯一对应”
教学方法
课型
教具
教学过程:
1、创设情境、导入新课
我们生活在一个运动的世界中,周围的事物都是运动的,例如:地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。
解:(1)常量是3000,-300;变量是x,y;自变量是x;y是x的函数。(2)常量是1;变量是x,y;自变量是x;y是x的函数。(3)常量是π;变量是r,s;自变量是r;s是r的函数。
2.根据所给的条件,写出y与x的函数关系式:
①y比x的1/3少2。②y是x的倒数的4倍。
③矩形的周长是18 cm,它的长是ycm,宽是x cm。
3、某城市居民用的天然气,1m3收费2.88元,使用x(m3)天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?
10、由于煤、石油等化石燃料消耗的急剧增加,产生了大量的二氧化碳,使空气中的二氧化碳含量不断增加,导致全球气候变暖、土壤沙漠化、大陆和两极冰川融化,给全球环境造成了巨大的压力。思考:上述三个问题中,分别涉及哪些量的关系?那些量是变化的?那些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?

湘教版2019-2020年八年级数学下册学案:4.1.1 变量与函数


(3)你知道距离地面 5 千米高空的温度是多少吗?
☆ 达标检测 ☆
1.指出下列关系式中的变量与常量: (1)球的表面积 Scm2 与球的半径 Rcm 的关系式:S=4π R2; (2)在一定温度范围内,一种金属棒长度 l(cm)与温度 t(0C)之间有关系式:
l=0.002t+200.
2.某校有宿舍 x 间,学校规定每间宿舍可住 6 名学生,宿舍恰好住满,请你写出住校 生总数 y(人)与宿舍间数 x 之间的关系,指出本题中的变量、常量、自变量和函 数.
③一般地,设在一个变化过程中有两个变量 x、y,如果对于 x 在它
的每一个值,y 都有
与它对应,那么就说 x 是自变量,y 是 x
的函数.

是函数值.
☆ 合作探究 ☆
1.汽车行驶的路程 S、行驶时间 t 和行驶速度 v 之间有下列关系:S=vt.
(1)如果汽车以 60km/h 的速度行驶,那么在 S=vt 中,变量是
3.父亲告诉小明:“距离地面越高,温度越低”,并且出示了下面的表格:
Байду номын сангаас
距离地面高度/千米
0
1
2
3
4
温度/℃
20
14
8
2
-4
根据上表,父亲还给小明出了下面几个问题,你和小明一起回答:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是函数?
5 -10
(2)如果用 h 表示距离地面的高度,用 t 表示温度,那么随着 h 的变化,t 如何变化?
第 4 章 一次函数
4.1 函数和它的表示法
教学思路 (纠错栏)
4.1.1 变量与函数 学习目标:
1.联系自己的学习、生活实际,通过具体情境领悟函数的概念,了解常量、变量,知 道自变量与函数,能写出简单的函数表达式.

湘教版数学八年级下册4.1.1《变量与函数》说课稿

湘教版数学八年级下册4.1.1《变量与函数》说课稿一. 教材分析《变量与函数》是湘教版数学八年级下册4.1.1的内容,本节内容是在学生已经掌握了代数式的知识基础上进行讲述的,旨在让学生了解变量的概念,并引入函数的概念。

教材通过生活中的实例,引导学生理解变量和函数的关系,从而为后续的函数学习打下基础。

二. 学情分析八年级的学生已经具备了一定的代数基础,对于代数式、方程等概念有一定的了解。

但是,对于变量和函数的概念,学生可能还比较陌生。

因此,在教学过程中,需要通过生动的实例和生活情境,帮助学生理解变量和函数的概念,并建立它们之间的关系。

三. 说教学目标1.知识与技能:让学生理解变量和函数的概念,并掌握它们之间的关系。

2.过程与方法:通过实例分析,让学生学会如何用变量和函数来描述实际问题。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。

四. 说教学重难点1.重点:变量和函数的概念及其关系。

2.难点:如何用变量和函数来描述实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等。

2.教学手段:多媒体课件、实例分析、小组讨论等。

六. 说教学过程1.导入:通过生活中的实例,如气温变化、物体运动等,引导学生思考变量和函数的关系。

2.新课导入:介绍变量的概念,让学生理解变量是如何表示事物的变化。

3.案例分析:分析生活中的实例,引导学生理解函数的概念。

4.知识讲解:讲解变量和函数之间的关系,让学生掌握它们的基本概念。

5.练习巩固:让学生通过练习题,巩固所学知识。

6.课堂小结:对本节课的内容进行总结,帮助学生形成知识体系。

7.课后作业:布置相关作业,让学生进一步巩固所学知识。

七. 说板书设计板书设计如下:1.变量与函数2.变量的概念3.函数的概念4.变量与函数的关系八. 说教学评价教学评价主要从学生的学习效果、课堂表现、作业完成情况等方面进行。

教师应及时关注学生的学习进度,针对不同学生进行差异化指导,提高教学效果。

湘教版八年级数学下册《4章 一次函数 4.1 函数和它的表示法 4.1.1变量与函数》公开课教案_5

《变量与函数》教案教学目标知识与技能:借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。

初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。

过程与方法:借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。

情感态度与价值观:从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。

学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。

教学重点与难点1.借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念2.怎样理解“唯一对应”教学过程:一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的,例如:地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化。

再例如,气温随着高度的升高而降低,汽车行驶的路程随着行驶的时间而变化。

这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,路程与时间。

二、合作交流、解读探究问题1 下图是某地一天内的气温变化图.1.这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能说出这一时刻的气温是多少吗?2.这一天中,最髙气温是多少?最低气温是多少?3.这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看出,随着时间t(时)的变化,相应的气温T℃也随之变化.问题2 圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积,则S与r之间满足下列关系:S=πr2,你能算出半径为1cm、l.5cm、2cm、2.6cm时圆的面积吗?1.常量和变量思考:在上述问题中分别有几个量?那些量是变化的?那些量是不变的?哪个量的变化导致另一个量的变化而变化?第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化.第2个问题中,S和r是变量,而π、2是常量.常量:在某一变化过程中始终保持不变的量称为常量.变量:在某一变化过程中可以取不同数值的量叫做变量.2.函数的概念思考:在上述问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有唯一的温度与之对应,t是自变量,T是因变量(T是t的函数).在上述第2个问题中,S=πr2,给出变量r的一个值,便可以得到变量S唯一值和它对应,r是自变量,S是因变量(S是r的函数).函数的概念:如果在一个变化过程中,有两个变量,假设x与y,对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是因变量,此时也称y是x的函数.要引导学生在以下几个方面加强对于函数概念的理解.变化过程中有两个变量,不研究多个变量;对于x的每一个值,y都有唯一的值与它对应,如果y有两个值与它对应,那么y就不是x的函数.例如y2=x.三、应用迁移、巩固提高例1 已知圆柱的高是4cm,底面半径是rcm,当圆柱的底面半径r由小变大时,圆柱的体积V是r的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 一次函数
4.1 函数和它的表示法

4.1.1 变量与函数

1.了解常量、变量的概念;(重点) 2.了解函数的概念;(重点) 3.确定简单问题的函数关系.(难点) 一、情境导入 如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定. 在上述例子中,每个变化过程中的两个变量:当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定. 你能举出一些类似的实例吗? 二、合作探究 探究点一:常量与变量
分析并指出下列关系中的变
量与常量:
(1)球的表面积Scm2与球的半径
Rcm的关系式是S=4πR2;
(2)以固定的速度v0米/秒向上抛
一个小球,小球的高度h米与小球运
动的时间t秒之间的关系式是h=v0t
-4.9t2;
(3)一物体自高处自由落下,这个
物体运动的距离hm与它下落的时间

ts的关系式是h=12gt2(其中g取
9.8m/s2);
(4)已知橙子每千克的售价是1.8
元,则购买数量w千克与所付款x元
之间的关系式是x=1.8w.
解析:在一个变化的过程中,数
值发生变化的量称为变量,数值始终不变的量称为常量. 解:(1)球的表面积Scm2与球的半径Rcm的关系式是S=4πR2,其中,常量是4π,变量是S,R; (2)以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t-4.9t2,常量是v0,4.9,变量是h,t; (3)一物体自高处自由落下,这个物体运动的距离hm与它下落的时间ts的关系式是h=12gt2(其中g取9.8m/s2),其中常量是12g,变量是h,t; (4)已知橙子每千克的售价是1.8元,则购买数量w千克与所付款x元之间的关系式是x=1.8w,常量是1.8,变量是x,w. 方法总结:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看
它在这个变化过程中的取值情况是否
发生变化.
探究点二:函数的定义
下列说法中正确的是( )
A.变量x,y满足x+3y=1,则
y是x的函数
B.变量x,y满足y=-x2-1,
则y可以是x的函数
C.变量x,y满足|y|=x,则y可
以是x的函数
D.变量x,y满足y2=x,则y
可以是x的函数
解析:A中x+3y=1,y可以看

作x的函数,因为y=1-x3;B中y=
-x2-1,因为-x2-1<0,等式无
意义,即对于变量x的任何一个取值,
变量y都没有唯一确定的值,故y不
是x的函数;C、D中的|y|=x和y2=
x,对于变量x的任意一个正数值,变
量y都有两个(不唯一)值与其对应,故
y不是x的函数.故选A.

相关文档
最新文档