初一下册数学复习方法
人教版初一数学下册:2坐标方法的简单应用(基础)知识讲解

坐标方法的简单应用(基础)知识讲解【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】【高清课堂:第二讲平面直角坐标系2 369935用坐标系绘制地点分布图】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示地理位置1.(2015春•建昌县期末)课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B.【解析】解:如图,小慧的位置可表示为(4,4).【总结升华】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B 处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.【答案与解析】解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).若以A为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(0,0)、B(200,0)、C(1000,-600).若以C为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-1000,600)、B(-800,600)、C(0,0).【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B点为坐标原点更贴切一些.举一反三:【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.【答案】本题的答案不唯一,现给出三种答案:(1)如果以山峡会馆为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(-3,1),金风广场的位置是1 5,2⎛⎫--⎪⎝⎭,动物园的位置是(4,4);(2)如果以光岳楼为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(0,0),金风广场的位置是12,12⎛⎫--⎪⎝⎭,动物园的位置是(7,3);(3)若以动物园为坐标原点,水平方向为横轴.取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼(-7,-3),金风广场19,42⎛⎫--⎪⎝⎭,动物园(0,0).类型二、用坐标表示平移3.(2016•徐州模拟)在平面直角坐标系中,将点A向左平移1个单位长度,再向下平移4个单位长度得点B,点B的坐标是(2,﹣2),则A点的坐标是.【思路点拨】首先设点A的坐标是(x,y),根据平移方法可得A的对应点坐标为(x﹣1,y﹣4),进而可得x﹣1=2,y﹣4=﹣2,然后可得x、y的值,从而可得答案.【答案】(3,2).【解析】解:设点A的坐标是(x,y),∵将点A向左平移1个单位长度,再向下平移4个单位长度得点B,可得B的对应点坐标为(x﹣1,y﹣4),∵得到点B的坐标是(2,﹣2),∴x﹣1=2,y﹣4=﹣2,∴x=3,y=2,∴A的坐标是(3,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是.【答案】(2,4).解:原来点的横坐标是2,纵坐标是1,向上平移3个单位长度得到新点的横坐标不变,纵坐标为1+3=4.即该坐标为(2,4).4.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x名学生,根据题意,得:437611 4376132x xx x+>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。
七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根练习1的平方根为( )A.B.C.4D.4±2±练习2.(·辽宁初二期中)9的平方根是( )A.B.C.D.3813±81±例2.(2017·阜阳市第九中学初一期中)的算术平方根是( )14A.B.C.D.12±12-12116练习1_____.练习2.(·北京初二期中)16的算术平方根是。
例3.(·_________的算术平方根是_________.练习1.(·安徽初一月考)若2a-1和5-a是一个正数m的两个平方根,则m=_______练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.二. 立方根1.立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根.记作:.3x a=2.立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.3.求一个数a的立方根的运算叫开立方,其中a叫做被开方数.备注:①符号中的根指数“3”不能省略;②对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.例1.(·安徽初一期中)64的立方根是( )A .4B .±4C .8D .±8练习1.(·淮南初一期中)下列说法中,不正确的是( )A .8的立方根是2B .﹣8的立方根是﹣2C .0的立方根是0D .64的立方根是±4练习2.(·北京市昌平区阳坊中学初二期中)的立方根是__________.8-例2.(合肥市第四十五中学初一期中)已知a +3和2a ﹣15是某正数的两个平方根,b 的立方根是﹣2,c 算术平方根是其本身,求2a +b ﹣3c 的值.练习1.(·淮南初一期中)已知的立方根是3,的算术平方根是4,c 5a 2+3a b 1+-分.(1(求a ,b ,c 的值;(2)求的平方根.3a b c -+练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.例3.(安徽初一期中)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=0专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根A试题分析:A、B、C、D都可以根据平方根和算术平方根的定义判断即可.解:A、﹣5是25的平方根,故选项正确;B、25的平方根是±5,故选项错误;C、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误.故选A.练习1的平方根为( )A.B.C.4D.4±2±B,又∵(±2)2=4,∴4的平方根是±2±2,故选B.练习2.(·辽宁初二期中)9的平方根是( )A.B.C.D.3813±81±C解:9的平方根是.3±故选:C.例2.(2017·阜阳市第九中学初一期中)的算术平方根是( )14A .B .C .D .12±12-12116C 本题解析: ∵ ,211()24=∴的算术平方根为,1412+故选C.练习1 _____.2,的算术平方根是2,4 2.练习2.(·北京初二期中)16的算术平方根是。
初一数学下册:二元一次方程8大题型解题方法整理

初一数学下册:二元一次方程8大题型解题方法整理#初一数学二元一次方程——实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想:列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。
3.要点诠释:(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
1和差倍数问题知识梳理:和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
典型例题:思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
变式拓展:思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。
2产品配套问题典型例题:思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
变式拓展:思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。
3工作量问题知识梳理我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。
初一下册数学细解巧练

初一下册数学细解巧练
1.代数初步:复习巩固整式的加减乘除运算及幂的运算法则,可能涵盖合并同类项、去括号、因式分解等内容,并引入一元一次方程组及其解法。
细解巧练实例:求解如(3x+2)(2x-1)=5x+3这样的方程;或者求解两个未知数的一次方程组,如{3x+y=5,2x-y=1}。
2.几何图形:进一步研究线段、角、三角形等基本图形的性质,比如勾股定理及其应用,平行线的性质,全等三角形的判定与性质等。
巧练实例:利用SSS、SAS、ASA、AAS等判定两个三角形是否全等,然后根据全等关系求解未知边长或角度。
3.数据的收集、整理与描述:学习条形图、折线图、扇形图等统计图表的绘制与分析,平均数、中位数、众数的概念及计算,频数分布表和频数分布直方图的理解和运用。
练习实例:对某班级学生的考试成绩进行统计,画出频数分布直方图,并计算各项统计数据。
4.实数:引入负数、分数、小数等实数概念,进行实数的运算和比较。
细解巧练实例:如何将分数化为小数,或者将无限循环小数转化为分数等形式。
初一下册数学重难点

初一下册数学重难点初一下册数学重难点初一下册数学的重点难点主要包括:有理数的运算、比例与比例线、百分数、面积与体积、平面坐标系和图形的相似与几何变换等内容。
一、有理数的加减乘除运算1. 加法和减法运算:在初一下册数学中,有理数的加法和减法运算是一个重点难点。
要进行有理数的加减运算,首先要先确定有理数的相同指数,然后按照正数加正数、负数加负数的规则进行运算。
2. 乘法和除法运算:有理数的乘法和除法运算也是一个重点难点。
乘法运算时,可以按照正数乘正数、负数乘负数的规则进行运算;除法运算时,要注意除数不为0的限制,并且带负号的有理数,要进行符号规范化处理。
二、比例与比例线比例的计算是初一下册数学中的一个难点。
在比例的计算中,要注意比的含义、比例等于比的取值范围、比例变化的原因等,掌握比例的四种关系:比例恒等、比例反比例、比例变化和变化比例。
同时,还要了解比例中的常见问题,如长方形的长与宽的比例、速度与时间的比例等。
三、百分数百分数的计算是初一下册数学的另一个难点。
百分数表示一部分占整体的百分比,常见的百分数有:百分数的加减法、百分数的乘除法等。
在进行百分数计算时,要注意百分数与分数的关系,掌握百分数的转换。
四、面积与体积1. 面积:面积的计算是初一下册数学的一个重点。
要计算面积,首先要熟悉各种图形的计算公式,如矩形的面积、三角形的面积、圆的面积等,然后根据实际问题进行面积的计算。
2. 体积:体积的计算也是一个重点。
要计算体积,要熟悉各种立体图形的计算公式,如长方体的体积、正方体的体积、圆柱的体积等,掌握体积的计算方法。
五、平面坐标系和图形的相似与几何变换1. 平面坐标系:平面坐标系是初一下册数学的一个重点难点。
要理解平面坐标系的概念,掌握平面上点的坐标表示和距离计算,熟练运用斜率的概念。
2. 图形的相似与几何变换:图形的相似和几何变换也是一个难点。
要理解相似图形的特征和判定条件,掌握相似图形的计算方法,熟练运用平移、旋转、对称和放缩等几何变换的规律。
七年级数学下册知识归纳框架图

七年级数学下册知识归纳框架图【一】:新人教版七年级数学下册知识点框架总结第五章相交线与平行线知识框架:相交线垂线同位角、内错角、同旁内角平行线平行线的判定平行线的性质平行线的性质命题、定理平移基本概念:1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:6.同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠57.命题:判断一件事情的语句叫命题。
8.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
9.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
定理与性质:1.对顶角的性质:对顶角相等。
2.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
4.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
6.平行线的判定:判定1:同位角相等,两直线平行。
_七年级数学下册知识归纳框架图。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章实数知识框架:重难点聚焦:_七年级数学下册知识归纳框架图。
算术平方根和平方根的概念及其求法;平方根和实数的概念。
知识要点回顾:_七年级数学下册知识归纳框架图。
4、实数的三个非负性:|a|≥0,a≥0,2≥0(a≥0)5、实数的运算:∠加减法:类比合并同类项∠乘法:=(a≥0,b≥0)∠除法:(a≥0,b>0)6、算术平方根与平方根的区别与联系.区别: ① 定义不同;② 个数不同;③ 表示方法不同;④ 取值范围不同. 联系: ① 具有包含关系;②存在条件相同;③ 0的算术平方根与平方根是0.提示:1. 正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;零的平方根和算术平方根都是零;负数没有平方根.2. 实数都有立方根,且一个数的立方根只有一个,它的符号与被开方数的符号相同.3. 所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中,有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.4. 无理数分成三类:①开方开不尽的数,如,等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…5. 有理数和无理数统称实数,实数和数轴上的点一一对应.6. 实数的运算:实数运算的基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算.正确地确定运算结果的符号和灵活运用各种运算律来进行运算是掌握好实数运算的关键.第七章平面直角坐标系知识框架:有序数对平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移基本概念:1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
人教版初一数学下册全册复习资料

2014年暑假七年级数学复习班学习资料(01)理想文化教育培训中心 学生姓名:_________ 成绩____一、知识点梳理1、相交线:在同一平面内,如果两条直线只有一个公共点,那么这两条直线就相交;这个公共点就叫做交点。
2、两直线相交,邻补角互补,对顶角相等。
3、垂线:如果两条相交线有一个夹角是直角,那么这两条直线互相垂直。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
公理:垂线段最短。
4、三线八角:同位角、内错角、同旁内角。
二、典型例题例1、如图 , OC ⊥AB ,DO ⊥OE ,图中与∠COD 互余的角是 , 若∠COD=600,则∠AOE= 0。
例2、如图,直线AB 、CD 、EF 相交于点O ,则∠AOC 的对顶角是_____________, ∠AOD 的对顶角是_____________例3、如图∠B 与∠_____是直线______和直线_______被直线_________所截的同位角。
例4、已知:如图,AB ⊥CD ,垂足为O ,EF 经过点O ,∠2=4∠1,求∠2,∠3,∠BOE的度数。
O例1图E D CBAO 例2图FE D CBA例3图FCBAFEO DCBA321三、强化训练1.如图所示,∠1和∠2是对顶角的图形有( )12121221个 个 个 个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )° ° ° °OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. 个 个 个 个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) ° ° ° °5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30 C.∠1=∠3=90°,∠2=∠4=60°; D.∠1=∠3=90°,∠2=60°,∠4=30°6.如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.(4) (5) (6)7.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.8.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.9.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______. 10.对顶角的性质是______________________.11.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA(7) (8) (9)12.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________.13.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3, 则∠EOD=________.34D CBA 12OFED CB A OE D CBA(三)、训练平台:(每小题10分,共20分)1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.OF EDCBA 122. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.34l 3l 2l 112(四)、提高训练:(每小题6分,共18分)1. 如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.OE CBA2. 如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.ODCBA3. 如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.cba34122014年暑假七年级数学复习班学习资料(02)理想文化教育培训中心 学生姓名:_________ 成绩____一、知识点梳理1、平行线:在同一平面内,如果两条直线没有公共点,那么这两条直线就互相平行。
人教版七年级初一数学下册 第五章 相交线与平行线单元复习(二)及答案

第五章相交线与平行线单元复习巩固(2)班级姓名座号月日主要内容:掌握命题的概念及平行线的性质和判定的综合运用和利用平移设计图案一、课堂练习:1.已知命题:(1)对顶角的角平分线构成一条直线;(2)两条直线相交构成的两组对顶角的角平分线互相垂直;(3)邻补角的角平分线互相垂直;(4)如果两条直线平行,那么同位角的角平分线也互相平行.这四个命题中,真命题的个数是( )A.1个B.2个C.3个D.4个2.一个台球桌的桌面如图所示,一个球在桌面上的点A滚向桌边PQ,碰着PQ上的点B后便反弹而滚向桌边RS,碰着RS上的点C便反弹而滚向点D.如果PQ∥RS,AB、BC、CD都是直线,且∠ABC的平分线BN垂直于PQ,∠BCD的平分线CM垂直于RS,那么,球经过两次反弹后所滚的路径CD是否平行于原来的路径AB?C3.如图,MN ∥PQ ,∠M =∠P .试说明MQ ∥NP .(请用三种方法加以说明)4.在方格纸上,利用平移画出正方形ABCD 的立体图,其中点D '是D 的对应点.(要求在立体图中,看不到的线条用虚线表示)二、课后作业: 5.选择题(1)如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) A.∠3=∠4 B.∠1=∠2 C.∠D =∠DCE D.∠D +∠ACD =180 (2)如图,∠1+∠2=180,∠3=108,则∠4的度数是( ) A.72 B.80 C.82 D.1086.图中所示为一组护网的示意图,它可看成由两组平行线组成,你能通过检验一些角的大小来判断它们是否平行吗?说出你的理由.ABCDE1342abcd1234ABCDD '7.指出下列命题的题设和结论,并判断它们是真命题还是假命题.如果是假命题,请举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)相等的角是对顶角;(3)两条平行线被第三条直线所截,内错角相等.8.如图,∠1+∠2=180,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?AB CDE F1 2参考答案一、课堂练习:1.已知命题:(1)对顶角的角平分线构成一条直线;(2)两条直线相交构成的两组对顶角的角平分线互相垂直;(3)邻补角的角平分线互相垂直;(4)如果两条直线平行,那么同位角的角平分线也互相平行.这四个命题中,真命题的个数是( D )A.1个B.2个C.3个D.4个 2.一个台球桌的桌面如图所示,一个球在桌面上的点A 滚向桌边PQ ,碰着PQ 上的点B 后便反弹而滚向桌边RS ,碰着RS 上的点C 便反弹而滚向点D .如果PQ ∥RS ,AB 、BC 、CD 都是直线,且∠ABC 的平分线BN 垂直于PQ ,∠BCD 的平分线CM 垂直于RS ,那么,球经过两次反弹后所滚的路径CD 是否平行于原来的路径AB ? 解:球经过两次反弹后所滚的路径CD 平行于原来的路径AB. 理由:∵CM ⊥RS∴∠2+∠5=90° 同理∠3+∠6=90° ∵PQ ∥RS∴∠5=∠6(两直线平行,内错角相等)∴∠2=∠3(等角的余角相等)∵BN 是∠ABC 的平分线∴∠ABC =2∠3 同理∠BCD =2∠2 ∴∠ABC =∠BCD∴CD ∥AB3.如图,MN ∥PQ ,∠M =∠P .试说明MQ ∥NP .(请用三种方法加以说明)C解法一:∵MN ∥PQ∴∠M +∠Q =180 ∵∠M =∠P∴∠P +∠Q =180 ∴MQ ∥NP解法二:延长MQ∵MN ∥PQ ∴∠M =∠1∵∠M =∠P ∴∠P =∠1 ∴MQ ∥NP解法三:连接MP ∵MN ∥PQ ∴∠1=∠2 ∵∠NMQ =∠NPQ ∴∠3=∠4∴MQ ∥NP4.在方格纸上,利用平移画出正方形ABCD 的立体图,其中点D '是D 的对应点.(要求在立体图中,看不到的线条用虚线表示)二、课后作业: 5.选择题(1)如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( B ) A.∠3=∠4 B.∠1=∠2 C.∠D =∠DCE D.∠D +∠ACD =180(2)如图,∠1+∠2=180,∠3=108,则∠4的度数是( A ) A.72 B.80 C.82 D.1086.图中所示为一组护网的示意图,它可看成由两组平行线组成,你能通过检验一些角的大小来判断它们是否平行吗?说出你的理由.解:可检验它们的同旁内角是否互补,若同旁内角互补, 则两直线平行,否则两直线不平行.7.指出下列命题的题设和结论,并判断它们是真命题还是假命题.如果是假命题,请举出一个反例.(1)两个角的和等于平角时,这两个角互为补角; (2)相等的角是对顶角; (3)两条平行线被第三条直线所截,内错角相等.ABCDE1342abcd1234ABCDA 'C 'D 'B '答:(1)题设是两个角的和等于平角,结论是这两个角互为补角.这是真命题.(2)题设是两个角相等,结论是这两个角是对顶角.这是假命题.反例:长方形的邻角相等,但它们不是对顶角.(3)题设是两条平行线被第三条直线所截,结论是内错角相等.这是真命题.8.如图,∠1+∠2=180,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?解:(1)答:AE∥FC理由:∵∠1+∠2=180,∠2+∠CDB=180(邻补角定义) ∴∠1=∠CDB∴AE∥FC(同位角相等,两直线平行)(2)答: AD∥BC理由:∵AE∥CF∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(3)答:BC平分∠DBE理由:∵DA平分∠BDF∴∠FDA=∠ADB∵AE∥CF∴∠FDA=∠A∴∠A=∠ADB∵AD∥BC∴∠EBC=∠A,∠CBD=∠ADB∴∠EBC=∠CBD即BC平分∠DBE A BC DEF1 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下册数学复习方法
(经典版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!
初一下册数学复习方法
初一下册数学复习方法(必备)
数学大题都是有一些技巧的;你是否在寻找“初一下册数学复习方法”?初一数学做题易错点有哪些?下面是本店铺精心整理的初一下册数学复习方法(必备),欢迎大家分享。
初一数学下册期末复习方法
一、多看课本,课后及时复习
期中考试考核的内容都是环绕课本的,把课本吃透,把该熟记的知识点、该掌控的公式都必须拿下。
每天在课后用半小时来复习,成效要比做两个小时的课后作业好很多,由于复习是为了检查自己是否已经坚固地掌控了所学知识,如果缺少了复习,不但会影响新知识的消化吸取,还会在写作业时感到很盲目。
不仅如此,课后复习还能够有效地帮助提高学习效率。
新课讲授后,花费2-5分钟采取“过电影”式回想法,趁热打铁,及时消化新学知识点。
由于在这个时候,同学们刚刚获取到新的知识,还未能够真正做到全面掌控,所以就需要依靠及时地回想复习来让自己充分知道并且加深记忆。
二、查漏补缺,相互提问
每天课间、晚上复习时,通过与书本对照、与同学相互提问,将学习内容与储备在大脑中的信息进行对照,找出偏差和失误,将知识点深深地记在头脑里。
三、“回炉”复习
给自己把学习计划制定好,规定每一步的复习进程。
大约在两周左右的时间将所有内容复习完,然后再“回炉”复习,便可保持已学知识点固若金汤,活学活用。
四、考试时,多审题,多检查
要养成好习惯,在做题时一定要把题看清楚,不要贸然下笔;不提早交卷,多检查几遍,组织答案需仔细,关键字眼、中心思想要抓准,运算进程、书写进程要谨慎,尽量避免因非智力因素而带来的不必要的失分。
初一数学应用题学法指导
1.图解分析法这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。
如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。
(例略)
2.亲身体验法如讲逆水行船与顺水行船问题。
有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。
为了让学生明白,我举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。
并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。
这样讲,学生就好理解。
总结归纳,对易错题型重点训练,强化知识点
这项工作,不仅仅是老师的事,更要求学生能够独立进行。
当学生会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了这门学科的窍门,才能真正做到“任它千变万化,我自岿然不动”。
初一数学做题易错点
1、找同位角,内错角,同旁内角,关键在于,找两个角的共线边,通常,共线边所在直线就是截线,那么剩下的两条边所在直线就是被截直线.平行四边形中找同旁内角,尤其要找准被截直线.
2、证明时,我们时常需由结论倒推,找到其中关键的中间角,一般与已知的相等二角,分别是同位角或内错角的关系.
3、计算等腰三角形的边时,要注意利用三边关系检验.
4、利用外角求解的基本模型:
(1)平行线拐角模型
(2)规形图
(3)八字形
(4)三角形内外角平分线夹角模型
(5)翻折模型
5、算多边形的边数,有时可从外角和考虑.
6、幂的运算,换底一般换偶次幂的,若要换奇次幂,前面需添负号.
7、幂的逆运算,牢记幂的运算比指数运算高一级.
8、1的任何次幂为1.-1的偶次幂为1.非零数的0次幂为1.
9、科学记数法
一个非零数能写成aX10的n次方形式,其中1≤a 若一个数的绝对值大于1.则n的值为原数的整数位减1.
若这个数的绝对值小于1.则n的值为原数左边第一个不是0的数字前的0的个数.
10、计算题,多乘多前为减号时,一定要加括号.
11、含参单项式,多项式的乘积中,不含某一项,这该项的系数为0.
12、两同或两反用完全平方公式,两反注意前面需添负号,展开是三项!
13、一同一反用平方差公式,同?-反?.
14、知二推二中,次数为1的多项式通常先平方,再运算,最后结果为一次的,注意两解.
15、完全平方公式缺项问题,要注意多解,中间项缺时,要注意正负.。