时间序列模型归纳总结复习
时间序列总结课件

时间序列的频率、偏移量
27
通过一张表来列举时 间序列的基础频率。
时间序列的频率、偏移量
28
每个基础频率还可以跟着一个被称为日期偏 移量的DateOffset对象。如果想要创建一个 DateOffset对象,则需要先导入pd.tseries. offsets模块后才行。
from pandas.tseries.offsets import * DateOffset(months=4, days=5)
创建时期对象
39
DatetimeIndex是用来指代一系列时间点 的一种索引结构,而PeriodIndex则是用 来指代一系列时间段的索引结构。
时期的频率转换
40
Pandas中提供了一个asfreq()方法来转换时 期的频率。
asfreq(freq,method = None,how = None,normalize = False,fill_value = None )
通过时间戳索引选取子集
17
除了使用索引的方式以外,还可以通过 truncate()方法截取 Series或DataFrame对象。
truncate(before = None,after = None, axis = None,copy = True)
➢ before -- 表示截断此索引值之前的所有行。 ➢ after -- 表示截断此索引值之后的所有行。 ➢ axis -- 表示截断的轴,默认为行索引方向
2018-08-20 11 2018-08-28 22 2018-09-08 33
创建时间序列
11
还可以将包含多个datetime对象的列表传给 index参数,同样能创建具有时间戳索引的 Series对象。
统计学原理 时间序列 知识点公式汇总

累计增长量=∑逐期增长量
年距增长量=报告期发展水平-上年同期发展水平
平均增长量
平均增长量=∑逐期增长量/逐期增长量个数
=累计增长量/(动态数列项数-1)
时间序列速度指标分析
发展速度
发展速度=报告期水平/基期水平
定基发展速度(总速度)=报告期水平/基期水平
定基增长速度=定基发展速度-1
=ห้องสมุดไป่ตู้计增长量/固定基期水平
环比增长速度=环比发展速度-1
=逐期增长量/前一期水平
同比增长速度=同比增长量/上年同期发展水平=同比发展速度-1
平均发展速度
几何平均法
方程法
平均增长速度
平均增长速度=平均发展速度-1
>1某种现象在一个较长的时期内逐期平均递增
平均递增速度平均递增率
<1某种现象在一个较长的时期内逐期平均递减
平均递减速度平均递减率
长期趋势分析
时距扩大法
同一数列前后时距长短应当一致,根据具体的性质和特点而定。但会使新序列的项数大大减少,丢失原时间序列所包含的大量信息,不利于进一步的深入分析。
移动平均法
修饰项数越多,趋势线越平滑;当移动平均的时期长度等于周期长度或其整倍数时,能把周期波动完全抹掉
项数值=原数列项数-移动平均项数+1
最小平方法
季节变动分析
折线图
散点图
3年↑资料
同期平均法
1、列表横:月/季,纵:年
2、∑各年同月/季及各年同月/季平均数
3、∑同年各月/季及同年各月/季平均数
4、求季节比率(季节指数)
S.I.=同月(季)平均数/全期各月平均数*100%
月资料,∑季节比例=1200%
第二十四章 时间序列模型

第二十四章 时间序列模型时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。
分析时间序列的方法构成数据分析的一个重要领域,即时间序列分析。
时间序列根据所研究的依据不同,可有不同的分类。
1.按所研究的对象的多少分,有一元时间序列和多元时间序列。
2.按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。
3.按序列的统计特性分,有平稳时间序列和非平稳时间序列。
如果一个时间序列的概率分布与时间t 无关,则称该序列为严格的(狭义的)平稳时间序列。
如果序列的一、二阶矩存在,而且对任意时刻t 满足:(1)均值为常数(2)协方差为时间间隔τ的函数。
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。
我们以后所研究的时间序列主要是宽平稳时间序列。
4.按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。
§1 确定性时间序列分析方法概述时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。
一个时间序列往往是以下几类变化形式的叠加或耦合。
(1)长期趋势变动。
它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。
(2)季节变动。
(3)循环变动。
通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。
(4)不规则变动。
通常它分为突然变动和随机变动。
通常用t T 表示长期趋势项,t S 表示季节变动趋势项,t C 表示循环变动趋势项,t R 表示随机干扰项。
常见的确定性时间序列模型有以下几种类型:(1)加法模型t t t t t R C S T y +++=(2)乘法模型t t t t t R C S T y ⋅⋅⋅= (3)混合模型t t t t R S T y +⋅= t t t t t R C T S y ⋅⋅+=其中t y 是观测目标的观测记录,0)(=t R E ,22)(σ=t R E 。
如果在预测时间范围以内,无突然变动且随机变动的方差2σ较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测,具体方法如下:1.1 移动平均法设观测序列为T y y ,,1 ,取移动平均的项数T N <。
【时间序列】时间序列回归相关知识的总结与梳理

【时间序列】时间序列回归相关知识的总结与梳理回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,是一种预测性的建模技术,它研究的是因变量(Y)和自变量(X)之间的关系,例如不同的施肥量对苗木高生长的关系、中国人的消费习惯对美国经济的影响等等。
回归分析衡量自变量对因变量Y的影响能力,进而可以用来预测因变量的发展趋势。
本文为大家描述时间序列的回归方法。
简单来说,时间序列的回归分析需要我们分析历史数据,找到历史数据演化中的特征与模式,其主要分为线性回归分析和非线性回归分析两种类型。
01模型构建与验证回归分析多采用机器学习方法,我们首先需要明确机器学习(或深度学习)模型构建与验证的主体思路:分析数据构建数据特征,将数据转化为特征样本集合;明确样本与标签(Label),划分训练集与测试集;比较不同模型在相同的训练集中的效果,或是相同模型的不同参数在同一个训练集中拟合的效果;在验证样本集中验证模型的准确度,通过相关的结果评估公式选择表现最好同时没有过拟合的模型。
02线性模型回归就是使用若干已知的样本对公式参数的估计。
,这里的回归函数可以是任意函数,其中线性回归的模型如下所示:其中,是训练样本集合中样本的各个维度,a,b,c,d是模型中的未知参数。
通过对线性模型的训练,可以较好的得到模型中各个变量之间的关系。
常用的线性模型有:线性回归、多项式回归、岭回归、套索回归等等,下面为大家简单介绍。
// 线性回归(Linear Regression)线性回归是最为人熟知的建模技术,是人们学习如何做预测时的首选方法之一。
在此技术中,因变量是连续的,自变量可以是连续的也可以是离散的。
回归的本质是线性的。
线性回归通过使用最佳的拟合直线(又被称为回归线),建立因变量(Y)和一个或多个自变量(X)之间的关系。
它的表达式为:,其中 w 直线斜率,e 为误差项。
如果给出了自变量 X,就能通过这个线性回归表达式计算出预测值,即因变量 Y。
计量经济学:时间序列模型习题与解析(1)复习课程

第九章 时间序列计量经济学模型的理论与方法练习题1、 请描述平稳时间序列的条件。
2、 单整变量的单位根检验为什么从DF 检验发展到ADF 检验?3、设,10,sin cos ≤≤+=t t t x t θηθξ其中ηξ,是相互独立的正态分布N(0, 2σ)随机变量,θ是实数。
试证:{10,≤≤t x t }为平稳过程。
4、 用图形及LB Q 法检验1978-2002年居民消费总额时间序列的平稳性,数据如下:5、 利用4中数据,用ADF 法对居民消费总额时间序列进行平稳性检验。
6、 利用4中数据,对居民消费总额时间序列进行单整性分析。
7、 根据6中的结论,对居民消费总额的差分平稳时间序列进行模型识别。
8、 用Yule Walker 法和最小二乘法对7中的居民消费总额的差分平稳时间序列进行时间序列模型估计,并比较估计结果。
9、 有如下AR(2)随机过程: t t t t X X X ε++=--2106.01.0 该过程是否是平稳过程?10、求MA(3)模型3213.05.08.01---+-++=t t t t t u u u u y 的自协方差和自相关函数。
11、设动态数据,92.0,82.0,74.0,9.0,7.0,8.0654321======x x x x x x ,78.07=x,84.0,72.0,86.01098===x x x 求样本均值x ,样本方差0ˆγ,样本自协方差1ˆγ、2ˆγ和样本自相关函数1ˆρ、2ˆρ。
12、判断如下ARMA 过程是否是平稳过程:12114.01.07.0----+-=t t t t t x x x εε13、以t Q 表示粮食产量,t A 表示播种面积,t C 表示化肥施用量,经检验,他们取对数后都是I (1)变量且相互之间存在CI (1,1)关系。
同时经过检验并剔除了不显著的变量(包括滞后变量),得到如下粮食生产模型:t t t t t t C C A Q Q μααααα+++++=--1432110ln ln ln ln ln推导误差修正模型的表达式,并指出误差修正模型中每个待估参数的经济意义。
时间序列模型讲义(PPT 184页)

ut 1 ut1 2 ut2 p ut p t
2020/8/27
(9.1.11)
26
其中:ut 是无条件误差项,它是回归方程(9.1.10)的
误差项,参数0,1, 2 , , k是回归模型的系数。式
(9.1.11)是误差项ut的 p阶自回归模型,参数 1, 2 ,
,
p是p阶回归模型的系数,
Q-statistics 。EViews将显示残差的自相关和偏自相关函
数以及对应于高阶序列相关的Ljung-Box Q统计量。如果
残差不存在序列相关,在各阶滞后的自相关和偏自相关
值都接近于零。所有的Q-统计量不显著,并且有大的P值。
2020/8/27
12
例9.1:利用相关图检验残差序列的相关性
下面是这些检验程序应用的例子,考虑用普通最小二乘估计 的简单消费函数的结果:
2020/8/27
14
2020/8/27
15
虚线之间的区域是自相关中正负两倍于估计 标准差所夹成的。如果自相关值在这个区域内, 则在显著水平为5%的情形下与零没有显著区别。
本例1~3阶的自相关系数都超出了虚线,说 明存在3阶序列相关。各阶滞后的Q-统计量的P 值都小于5%,说明在5%的显著性水平下,拒 绝原假设,残差序列存在序列相关。
2020/8/27
20
此检验拒绝 直至2阶的无序 列相关的假设。 Q-统计和LM检 验都表明:残差 是序列相关的, 因此方程在被用 于假设检验和预 测之前应该重新 定义。
2020/8/27
21
例9.3: 关于残差序列相关的LM检验(2)
考虑美国的一个投资方程。美国的GNP和国内私人 总 投 资 INV 是 单 位 为 10 亿 美 元 的 名 义 值 , 价 格 指 数 P 为 GNP的平减指数(1972=100),利息率R为半年期商业票 据利息。回归方程所采用的变量都是实际GNP和实际投 资;它们是通过将名义变量除以价格指数得到的,分别用 小写字母gnp,inv表示。实际利息率的近似值r则是通过 贴现率R减去价格指数变化率p得到的。样本区间:1963 年~1984年,应用最小二乘法得到的估计方程如下:
时间序列复习题

时间序列复习题时间序列复习题时间序列是指一组按照时间顺序排列的数据点的集合。
在许多领域中,时间序列分析被广泛应用于预测、趋势分析等方面。
下面我将给大家提供一些时间序列复习题,帮助大家巩固和加深对时间序列的理解。
1. 什么是时间序列?时间序列是按照时间顺序排列的一组数据点的集合。
这些数据点可以是等间隔的,也可以是不等间隔的。
2. 时间序列分析的主要目的是什么?时间序列分析的主要目的是通过对过去的数据进行分析,揭示出数据中的趋势、周期性和季节性等规律,以便进行预测和决策。
3. 请解释一下时间序列中的趋势。
趋势是时间序列中长期变化的总体方向。
趋势可以是上升的、下降的或者平稳的。
趋势可以通过绘制时间序列图或使用趋势线来观察和分析。
4. 什么是季节性?季节性是指时间序列中周期性的重复模式,这些模式在一年中的特定时间段内重复出现。
例如,零售业在圣诞节前后通常会出现销售高峰,这是一种季节性现象。
5. 请解释一下平稳时间序列。
平稳时间序列是指其统计特性在时间上保持不变的时间序列。
平稳时间序列的均值和方差不随时间变化而变化。
平稳时间序列的分析更容易进行预测和建模。
6. 如何检验时间序列的平稳性?常见的检验时间序列平稳性的方法包括绘制时间序列图观察趋势、周期性和季节性,以及进行单位根检验(例如ADF检验)等。
7. 请解释一下自相关和偏自相关函数。
自相关函数(ACF)是用来衡量时间序列与其自身在不同滞后期的相关性。
偏自相关函数(PACF)则是在消除其他滞后期的影响后,衡量时间序列与其自身在特定滞后期的相关性。
8. 时间序列预测的常用方法有哪些?常用的时间序列预测方法包括移动平均法、指数平滑法、ARIMA模型等。
这些方法根据时间序列的特点和需要进行选择和应用。
9. 请解释一下ARIMA模型。
ARIMA模型是一种常用的时间序列预测模型,它包括自回归(AR)、差分(I)和移动平均(MA)三个部分。
ARIMA模型可以用来描述时间序列的趋势、季节性和随机性。
时间序列分析基础知识

时间序列分析基础知识时间序列分析是一种重要的统计分析方法,用于研究随时间变化而变化的数据。
时间序列数据是按照时间顺序排列的数据序列,例如股票价格、气温、销售额等。
通过对时间序列数据的分析,可以揭示数据的趋势、季节性变化和周期性变化,从而帮助我们做出预测和决策。
本文将介绍时间序列分析的基础知识,包括时间序列的特点、常见模型和分析方法。
一、时间序列的特点时间序列数据具有以下几个特点:1. 趋势性:时间序列数据通常会呈现出长期的趋势变化,反映了数据随时间变化的总体方向。
2. 季节性:时间序列数据可能会呈现出周期性的波动,这种波动在一年内可能会重复出现,称为季节性变化。
3. 周期性:除了季节性变化外,时间序列数据还可能存在其他周期性的波动,这种波动的周期可能不是固定的。
4. 随机性:时间序列数据中可能存在随机的波动,这种波动是不规律的,难以预测的。
二、常见的时间序列模型在时间序列分析中,常用的模型包括平稳时间序列模型和非平稳时间序列模型。
1. 平稳时间序列模型平稳时间序列是指数据的均值和方差在时间上都是常数的时间序列。
常见的平稳时间序列模型包括:(1)自回归模型(AR):AR模型假设当前时刻的数值与过去若干时刻的数值相关。
(2)移动平均模型(MA):MA模型假设当前时刻的数值与过去若干时刻的随机误差相关。
(3)自回归移动平均模型(ARMA):ARMA模型将AR模型和MA模型结合起来,适用于既有自回归又有移动平均的情况。
(4)自回归积分移动平均模型(ARIMA):ARIMA模型在ARMA模型的基础上引入差分操作,适用于非平稳时间序列。
2. 非平稳时间序列模型非平稳时间序列是指数据的均值和方差在时间上存在趋势或周期性变化的时间序列。
常见的非平稳时间序列模型包括:(1)趋势模型:趋势模型用于描述数据呈现出的长期趋势变化。
(2)季节性模型:季节性模型用于描述数据呈现出的周期性变化。
(3)周期性模型:周期性模型用于描述数据呈现出的非固定周期的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列模型归纳总结复习 随机时间序列分析的几个基本概念一、随机过程(Stochastic Process)定义 设(Ω,F,P )是概率空间,T 是给定的参数集,如果对于任意t ∈T ,都有一定义在(Ω,F ,P )上的随机变量X(t,ω)与之对应,则称随机变量族{X(t,ω),t ∈T}为随机过程。
简记为{X(t,),t ∈T}或{X t ,t ∈T }或X T离散参数的随机过程也称为随机序列或(随机)时间序列。
上述定义可简单理解成:随机过程是一簇随机变量{X t ,t ∈T},其中T 表示时间t 的变动范围,对每个固定的时刻t 而言,X t 是一普通的随机变量,这些随机变量的全体就构成一个随机过程。
当t={0,±1,±2,…}时,即时刻t 只取整数时,随机过程{X t ,t ∈T}可写成如下形式,{X t ,t=0,±1,±2,…}。
此类随机过程X t 是离散时间t 的随机函数,称它为随机序列或时间序列。
对于一个连续时间的随机过程的等间隔采样序列,即{X t ,t=0,±1,±2,…}就是一个离散随机序列。
二、时间序列的概率分布和数值特征1、时间序列的概率分布一个时间序列便是一个无限维的随机向量。
一个无限维随机向量X=(…,X-1,X0,X1,…)/的概率分布应当用一个无限维概率分布描述。
根据柯尔莫哥夫定理,一个时间序列的概率分布可以用它有限维分布簇来描述。
时间序列所有的一维分布是:…,F-1(·),F0(·),F1(·),… 所有二维分布是:Fij(·,·), i ,j=0,±1,±2,…,(i ≠j)一个时间序列的所有有限维分布簇的全体,称为该序列的有限维分布簇。
2、时间序列的均值函数一个时间序列的均值函数是指:()t t t EX XdF X μ∞-∞==⎰其中EXt 表示在t 固定时对随机变量Xt 的求均值,它只一维分布簇中的分布函数Ft(·)有关。
3、时间序列的协方差函数与自相关函数与随机变量之间的协方差相似,时间序列的协方差函数定义为:()(),(,)()()(,)t t s s t s s t s t s E X X X Y dF X Y γμμμμ∞∞-∞-∞=--=--⎰⎰其中Ft,s(X,Y)为(Xt ,Xs )的二维联合分布。
类似可以定义时间序列的自相关函数,即:(,)(,)t s t s ργ=时间序列的自协方差函数有以下性质: (1) 对称性:(,)(,)t s s t γγ=(2) 非负定性:对任意正整数m 和任意m 个整数k 1, k 2,。
k m ,方阵()()()()()()()()()11121m 21222m m 1m 2m m k ,k k ,k k ,k k ,k k ,k k ,k k ,k k ,k k ,k m γγγγγγγγγ⎡⎤⎢⎥⎢⎥Γ=⎢⎥⎢⎥⎢⎥⎣⎦为对称非负定矩阵。
时间序列的自相关函数同样也具有上述性质且有ρ(t,t)=1。
三、平稳随机过程平稳时间序列是时间序列分析中一类重要而特殊的随机序列,时间序列分析的主要内容是关于平稳时间序列的统计分析。
(一)两种不同的平稳性定义:1、 严平稳:如果对于时间t 的任意n 个值12,,,n t t t 和任意实数ε,随机过程t X 的n 维分布满足关系式:()()12121212,,;,,,,;,,n n n n n n F x x x t t t F x x x t t t εεε=+++则称t X 为严平稳过程。
2、宽平稳:若随机过程{},t X t T ∈的均值(一阶矩)和协方差存在,且满足(1)[]t E X at T =∀∈ (2)[][](),t k t E X a X a k t t k T γ+--=∀+∈则称{},t X t T ∈为宽平稳随机过程。
通常说的平稳是指宽平稳。
二者的联系:(Ⅰ)严≠>宽:因为宽平稳要求期望和协方差存在,而严平稳要求概率分布存在,而不能断言一、二阶矩存在。
(Ⅱ)宽≠>严,这是不言而喻的。
(Ⅲ)严平稳+二阶矩存在⇒宽平稳。
但反过来一般不成立。
(Ⅳ)对于正态过程来说,有:严平稳⇔宽平稳 (二)平稳时间序列自协方差函数和自相关函数为了叙述方便,常假定平稳时间序列t X 的均值为零,即[]0t E X =。
用以下记号表示平稳序列t X 的自协方差函数,即[][]()0k t k t k t t t t t kE X EX X EX EX EX X γ+++=--==当时相应地,t X 的自相关函数用以下记号0k k ργ=平稳序列t X 的自协方差函数列和自相关函数列具有以下性质: (1) 对称性:,k k k k γγρρ--==; (2) 非负定性:对于任意正整数m ,01m-110m-2m-1m-20m γγγγγγγγγ⎡⎤⎢⎥⎢⎥Γ=⎢⎥⎢⎥⎣⎦,1m-11m-2m-1m-2111m R ρρρρρρ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 为非负定对称方阵; (3)0,1k k γγρ≤≤。
(三)平稳序列的样本统计量 (1) 样本均值时间序列无法获得多重实现,多数时间序列仅包含一次实现,对于一个平稳序列用时间均值代替总体均值。
即11nt t X X n ==∑上式的估计是无偏的。
(2) 样本自协方差函数()()11ˆn kk t t k t X X X X n γ-+==--∑()()11ˆn kk t t k t X X X X n k γ-+==---∑ 第一式是有偏估计,第二式是无偏估计,但有效性不如第一式。
其它概率性质和偏自相关函数的定义将在以后章节介绍。
四、几类特殊的随机过程(序列):1、纯随机过程:随机过程如果是由一个不相关的随机变量的序列构成的,则称其为纯随机过程。
2、白噪声序列(White noise ):如果时间序列t X 满足以下性质: (1)[]0t E X = (2)[]2,t s t s E X X σδ=式中,当t ≠s 时,,,0,1t s t t δδ==。
称此序列为白噪声序列,简称白噪声。
白噪声是一种最简单的平稳序列。
(3)独立同分布序列:如果时间序列{},t X t T ∈中的随机变量X t ,t=0,±1,±2,…,为相互独立的随机变量,而且X t 具有相同的分布,称这样的时间序列{},t X t T ∈为独立同分布序列。
独立同分布序列是一种最简单的严平稳序列。
一般说,白噪声序列与独立同分布序列是不同的两种序列,当白噪声序列为正态序列时,它也是独立同分布序列,此时称之为正态白噪声序列。
(4)独立增量随机过程:对于任意正整数n ,任意()121,2,,,i n t T i n t t t ∈=<<<,随机变量21321,,n n t t t t t t X X X X X X ----相互独立。
简单地讲,就是任意两相邻时刻上的随机变量之差(增量)是相互独立的。
(5)二阶矩过程:若随机过程{},t X t T ∈对每个,t T ∈t X 的均值和方差存在,则称之为二阶矩过程。
(6)正态过程:若{},t X t T ∈的有限维分布都是正态分布,则称{},t X t T ∈为正态随机过程。
主要介绍三种单变量模型:自回归(AR )模型、移动平均(MA )模型和自回归移动平均(ARMA )模型。
第一节 自回归模型一、一阶自回归模型AR(1)如果时间序列独立,就是说事物的后一时刻的行为主要与其前一时刻的行为毫无关系。
这样的资料所揭示甲统计规律就是事物独立地随机变动,系统无记忆能力。
如果情况不是这样,资料之间有一定的依存性。
后一时刻的行为主要与前一时刻的行为有关,而与其前一时刻以前的行为无直接关系,即已知Xt-1;X t 主要与X t-1相关。
用记忆性来说,就是最短的记忆,即一期记忆,也就是一阶动态性。
描述这种关系的数学模型就是一阶自回归模型。
即11t t t X X a ϕ-=+记作AR (1)。
其中X t 零均值平稳序列,αt 为随机扰动。
1、 一阶自回归模型的特点X t 对X t-1有线性相关关系 αt 为独立正态同分布序列()0,1,2,...t t j E a X j -==2、 AR (1)与普通一元线性回归的关系(0,N σ主要区别:(1) 普通线性回归模型需要一组确定性变量值和相应的观测值;AR(1)模型只需要一组随机变量的观测值。
(2) 普通一无线性回归表示的是一随机变量对另一个确定性变量的依存关系;而AR (1)表示的是一个随机变量对其自身过去值的依存关系。
(3) 普通线性回归是在静态的条件下研究的;AR (1)是在动态的条件下研究的。
(4) 二者的假定不同。
(5) 普通回归模型实质是一种条件回归,而AR (1)是无条件回归。
主要联系:固定时刻t-1,且观察值Xt-1已知时,AR (1)就是一个普通的一元线性回归。
二、AR (1)模型的特例-随机游动 1、随机游动模型1t t t X X a -=+ 2、模型的特性(1) 系统具有极强的一期记忆性,系统在t-1和t 时刻的响应,除随机扰动外,完全一致,差异完全是由扰动引起的。
(2) 在时刻t-1时,系统的一步超前预测就是系统在t-1时的响应X t-1,即(1)11ˆt t X X --=。
(3) 系统行为是一系列独立随机变量的和,即 0t t jj X a∞-==∑三、一般自回归模型AR(n)1122...t t t n t n t X X X X a ϕϕϕ---=++++其中:t a 为白噪声,()0,1,2,...t t j E a X j -==。
第二节 移动平均模型一、一阶移动平均模型MA (1)如果系统的响应X t 仅与其前一时刻进入系统的扰动αt 存在一定的相关关系,则有MA (1)模型: 11t t t X a a θ-=-其中:t a 为白噪声。
MA (1)模型的基本假设为:(1)系统的响应X t 仅与其前一时刻进入系统的扰动αt 有一定的依存关系;(2)t a 为白噪声。
二、一般移动模型MA (m )模型的形式:1112...t t t t m t m X a a a a θθθ---=----其中:(1)X t 仅与1t α-,2t α-,… ,t m α-有关,而与t j α-(j=m+1,m+2,…)无关;(2)t α为白噪声。
第三节 自回归移动平均(ARMA)模型一、ARMA (2,1)模型1、ARMA (2,1)模型的形式:112211t t t t t X X X ϕϕαθα-----=-其中:t X 与1t X -、2t X -和1t α-有相关关系,t α白噪声。