离散数学
离散数学关系的性质

任取<x, y>
<x, y>R<y, x>R ………..………. x=y
前提
推理过程
结论
例6 证明若 R∩R1IA , 则 R 在 A 上反对称. 证 任取<x, y>
<x, y>R <y, x>R <x, y>R <x, y>R 1
<x, y>R∩R 1 <x, y>IA x=y 因此 R 在 A 上是反对称的.
有 R)
例(18) 不判自断反下也图不中反关自系反的;性对质称, 并, 不说反明对理称由;不传递. 注任因注<和只注列任证M对因f于反<W(于W对例例考当 R证考对其o3xx1r)aat意取此意证意的取于此等对等于23察检明察于中,,[M<rrj自和iyyss,x: <有 : : 元 <k于 称 于 k设 G查模 GkE>>hht(任R设RRj,反==RRR=aa]xx1,R1y是31的的ll在在M在素关:关A完 式000,,)则在123ll取A>y3,= =tR算算y,,,RR和====o>111和r= 每 每上上上记系恒系所>是M∪<,,,和A不{{=n证法法………,{{{{xR<<({一一述述述作,等,有MtAM<<<Rad3<<上[,<是aaa小小明∩:的,,,<,iaaao)上ynnnyy0,,,y+,条条等等等关的Mbbb,,,ayR,,同>是,,,,=abc反jE于于依,z>,,>]Rxx的MMM>>,ckI>边边式式式系顶>zc,A,阶反+>>}[,}<自<,关关据>}<在kkk<i传,<b,,中中中点I,a,M1[[[b的jb对ARy反,,如如系系iii]Rc,b,递,,,,RRA.Rbt1矩矩矩后c,jjj>>1单[称]]]z;>>果 果,,,i===},}上关>,R阵阵阵就整整}}空<,R111,位的k有有(2x当当当自系R]2的的的得除除1……关,,矩.,一一Ry且且且)R反,RR元元元到关关……系>M阵R32条条34仅仅仅和=2素素素图系系……是是t=,[不xxk当当当MIR{相相相,,G..AAA{ii,<是包包4<’jt在上在到到在上是a]加加加都a.,A含含,a的的b时时时是xx>上Mx>关关jj,反关=<,使使使A的的<的的ya系系上b对系,用用用单单b传,转a,,>的称,>逻逻逻真真向向递,其置<,关<关辑辑辑包包边 边b关中a矩,系,系ac加加加含含,,系>阵>ii,}≠≠}...关关.其jj.,, 系系则则中在在GG中中加加(2一一)条条
大学离散数学复习试题

离散数学练习题目一、选择题1.设A={{1,2,3},{4,5},{6,7,8}},下列各式中____D______是错的。
A、AΦ; B、{6,7,8}∈A;⊆C、{{4,5}}⊂A;D、{1,2,3}⊂A 。
2.已知集合A={a,b,c},B={b,c,e},则 A⊕B=___C___________A.{a,b} B={c} C={a,e} D=φ3.下列语句中,不是命题的是____A_________A.我说的这句话是真话;B. 理发师说“我说的这句话是真话”;C. 如果明天下雨,我就不去旅游;D. 有些煤是白的,所以这些煤不会燃烧;4.下面___D______命题公式是重言式。
A.R(R(Q)P∨∨;C.)∨;↔QP(→; B.)∧Q)P∨R(QP→D、))→P→Q→→。
R→→)))((P((QP(R5.公式(p∧q)∨(p∧~q)的主析取范式是____B_______∨∨∨m2 D. m1∨m36.设L(x):x是演员,J(x):x是老师,A(x , y):x钦佩y,命题“所有演员都钦佩某些老师”符号化为___D______。
A、))yAJ()(yx∀;→(∃x∧xLyx(yx(((,A)L)(,x→∀; B、)))C、))x(y((A)()∃∧,∀。
x→yJxLyL)(∀; D、))(),(x(yA∧∃yx∧yJx7.关于谓词公式(x)(y)(P(x,y)∧Q(y,z))∧(x)p(x,y),下面的描述中错误的是__B_____A.(x)的辖域是(y)(P(x,y)∧Q(y,z))B.z是该谓词公式的约束变元C .(x )的辖域是P (x,y )D .x 是该谓词公式的约束变元8. 设B A S ⨯⊆,下列各式中____B___________是正确的。
A 、domS ⊆B ; B 、domS ⊆A ;C 、ranS ⊆A ;D 、domS ⋃ ranS = S 。
9.设集合Φ≠X ,则空关系X Φ不具备的性质是____A________。
离散数学知识点整理

离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、数理逻辑等领域都有着广泛的应用。
下面我们来对离散数学中的一些重要知识点进行整理。
一、集合论集合是离散数学中最基本的概念之一。
集合是由一些确定的、互不相同的对象所组成的整体。
比如,{1, 2, 3}就是一个集合。
集合的运算包括并集、交集、差集和补集。
并集是将两个集合中的所有元素合并在一起组成的新集合;交集是两个集合中共同拥有的元素组成的集合;差集是从一个集合中去掉另一个集合中的元素所得到的集合;补集是在给定的全集范围内,某个集合的补集就是全集中不属于该集合的元素组成的集合。
集合的关系有包含、相等、真包含等。
二、数理逻辑数理逻辑是用数学方法来研究逻辑问题。
命题是具有真假值的陈述句。
比如,“今天是晴天”就是一个命题。
命题逻辑中的连接词有“非”“与”“或”“蕴含”“等价”等。
通过这些连接词,可以将简单命题组合成复合命题,并研究其真假性。
谓词逻辑则是对命题逻辑的扩展,它引入了量词“存在”和“任意”,能够更精确地表达命题。
三、关系关系是集合中元素之间的某种联系。
比如,在整数集合中,“大于”就是一种关系。
关系可以用矩阵和关系图来表示。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
等价关系是一种特殊的关系,满足自反性、对称性和传递性。
比如,在整数集合中,“模 n 同余”就是一种等价关系。
偏序关系则是满足自反性、反对称性和传递性的关系。
四、函数函数是一种特殊的关系,对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
函数的类型有单射、满射和双射。
单射是指不同的自变量对应不同的函数值;满射是指函数的值域等于整个目标集合;双射则是既单射又满射。
五、图论图由顶点和边组成。
可以分为无向图和有向图。
图的遍历算法有深度优先搜索和广度优先搜索。
最短路径问题是图论中的一个重要问题,比如迪杰斯特拉算法可以用来求解单源最短路径。
六、树树是一种特殊的图,没有回路且连通。
离散数学复习题

离散数学(本)模拟试题一、填空题(共20分)1.设全集E={1,2,3,4,5},A={1,5},B={1,2,3,4},C={2,5},求(A∩B)∪~C=,ρ(A)∩ρ(C)= .2.若关系R具有自反性,当且仅当在关系矩阵中,主对角线上元素;若关系只具有对称性,当且仅当关系矩阵是 .3.设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数.”符号化,其真值为 .4.表达式中谓词的定义域是{a,b,c},将其中的量词消除,写成与之等价的命题公式为 .二、单项选择题(选择一个正确答案的代号,填入括号中。
共14分)1.下面关于集合的表示中,正确的是( ).A.φ=0 B.φ∈{φ}C.φ∈φ D.φ∈{a,b}2.设R1,R2是集合A={1,2,3,4}上的两个关系,其中R1={(1,1),(2,2),(2,3),(4,4)},R2={(1,1),(2,2),(2,3),(3,2),(4,4)},则R2是R1的( )闭包.A.自反 B.反对称C.对称 D.以上都不是3.设半序集(A,≤)上关系只的哈斯图如下图所示,若A的子集B={2,3,4,5},则元素6为B的( ).A.下界 B.上界C.最小上界 D. 最大下界4.设命题公式则G是( ).A.恒假的 B.恒真的C.可满足的 D.以上都不对6.对于公式,下面的改名中,正确的是( )。
三、计算题(共50分)1.化简下式:((A∪B∪C)∩(A∪B))一((A∪(B—C))∩A) (9分)2.试画出集合A={1,2,3,4,5,6}在半序关系“整除”下的哈斯图,并分别求出:(1)集合A的最大元、最小元、极大元和极小元;(2)集合B={2,3,6}的上界、下界、最小上界、最大下界.(11分)3.设公式G的真值表如下,试求出G的主析取范式和主合取范式. (12分) P Q R G0 0 0 10 0 1 00 1 0 10 1 1 11 0 0 01 0 1 11 1 0 01 1 1 04.设解释I为:(1)定义域D={-2,3,6};(2)F(x):x≤3G(x):x>5在解释I下求公式的真值. (8分)一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
离散数学的概念总结

图论基本概念重要定义:有向图:每条边都是有向边的图。
无向图:每条边都是无向边的图。
混合图:既有有向边又有无向边的图。
自回路:一条边的两端重合。
重数:两顶点间若有几条边,称这些边为平行边,两顶点a,b间平行边的条数成为(a,b)的重数。
多重图:含有平行边的图。
简单图:不含平行边和自回路的图。
注意!一条无向边可以用一对方向相反的有向边代替,因此一个无向图可以用这种方法转化为一个有向图。
定向图:如果对无向图G的每条无向边指定一个方向由此得到的有向图D。
称为的G定向图. 底图:如果把一个有向图的每一条有向边的方向都去掉,得无向图G称为的D底图。
逆图:把一个有向图D的每条边都反向由此得到的图称为D的逆图。
赋权图:每条边都赋上了值。
出度:与顶点相连的边数称为该定点的度数,以该定点为始边的边数为出度。
入度:以该定点为终边的边数为入度。
特殊!度数为零的定点称为孤立点。
度数为一的点为悬挂点。
无向完全图:在阶无向图中如果任何两点都有一条边关连则称此图是无向完全图。
Kn完全有向图:在阶有向图中如果任意两点都有方向相反的有向边相连则称此图为完全有向图。
竟赛图:阶图中如果其底图是无向完全图,则程此有向完全图是竟塞图。
注意!n阶有向完全图的边数为n的平方;无向完全图的边数为n(n-1)/2。
下面介召图两种操作:①删边:删去图中的某一条边但仍保留边的端点。
②删点:删去图中某一点以及与这点相连的所有边。
子图:删去一条边或一点剩下的图。
生成子图:只删边不删点。
主子图:图中删去一点所得的子图称的主子图。
补图:设为阶间单无向图,在中添加一些边后,可使成为阶完全图;由这些添加边和的个顶点构成的图称为的补图。
重要定理:定理5.1.1 设图G是具有n个顶点m条边的有向图,其中点集V={v,v, (v)deg+(vi)=deg-(vi)=m定理5.1.2 设图G是具有n个顶点m条边的无向图,其中点集V={v,v,v, (v)deg(vi)=2m推论在无向图中,度数为积数的顶点个数为偶数。
离散数学中的数论及其应用

离散数学中的数论及其应用
离散数学是一门研究离散对象的数学,它主要研究集合、结构、函数和算法等离散对象的性质。
其中,数论是离散数学的一个重要分支,它主要研究自然数、整数、有理数和有理数的性质。
数论的研究内容主要包括:质数的分解、素数的分布、
整数的分解、有理数的分解、有理数的运算、有理数的分析等。
数论的研究结果可以用来解决许多实际问题,如编码理论、密码学、数值分析、计算机科学等。
编码理论是一门应用数论的学科,它主要研究如何将信
息编码成可以传输的数据,以及如何将编码的数据解码成原始信息。
编码理论的研究结果可以用来解决许多实际问题,如数据传输、数据存储、数据安全等。
密码学是一门应用数论的学科,它主要研究如何使用数
学方法来保护信息的安全性。
密码学的研究结果可以用来解决许多实际问题,如数据加密、数据认证、数据完整性等。
数值分析是一门应用数论的学科,它主要研究如何使用
数学方法来解决实际问题。
数值分析的研究结果可以用来解决许多实际问题,如科学计算、工程计算、统计分析等。
计算机科学是一门应用数论的学科,它主要研究如何使
用计算机来解决实际问题。
计算机科学的研究结果可以用来解决许多实际问题,如计算机程序设计、计算机网络、计算机图形学等。
总之,数论是离散数学的一个重要分支,它的研究结果
可以用来解决许多实际问题,如编码理论、密码学、数值分析、计算机科学等。
离散数学划分的定义
离散数学划分的定义
嘿,朋友们!今天咱来聊聊离散数学里一个挺重要的概念——划分。
这玩意儿可有意思啦!
你可以把划分想象成是给一堆东西进行分组。
比如说,咱有一堆不同颜色的球,红的、蓝的、绿的等等,那我们就可以按照颜色把它们分成不同的组,这就是一种划分。
在离散数学里,划分是对一个集合进行的操作哦。
它是把一个集合分成若干个互不相交的子集,而且这些子集合起来又能完全覆盖原来的集合。
这不就跟我们刚才分球是一个道理嘛!
比如说有个集合 A 包含了数字 1、2、3、4、5,那我们可以把它划分成{1,2}、{3,4}、{5}这几个子集。
你看,这些子集之间没有重复的元素,而且它们加起来就是集合 A 所有的元素啦。
划分可是有很多用处的哦!它能帮助我们更好地理解和处理一些复杂的问题呢。
就好像我们把一个大难题拆分成一个个小问题来解决,多轻松呀!
再举个例子吧,想象一个班级里的同学,我们可以按照性别来划分,分成男生组和女生组;也可以按照兴趣爱好来划分,比如喜欢音乐的一组,喜欢运动的一组等等。
这样是不是一下子就让班级的情况变得更清晰啦?
总之,划分在离散数学里真的是很重要的一个概念呀!它就像一把神奇的钥匙,能打开很多知识的大门呢!离散数学的世界丰富多彩,划分就是其中一颗闪亮的星星呀!。
离散数学PPT课件
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
离散数学符号大全
离散数学符号⼤全├断定符(公式在 L 中可证)╞满⾜符(公式在 E上有效,公式在 E上可满⾜)┐命题的 “⾮”运算∧命题的 “合取 ”(“与”)运算∨命题的 “析取 ”(“或”,“可兼或 ”)运算→命题的 “条件 ”运算A<=>B 命题 A 与 B 等价关系A=>B 命题 A 与 B 的蕴涵关系A* 公式 A 的对偶公式wff 合式公式iff 当且仅当↑命题的 “与⾮ ” 运算( “与⾮门 ” )↓命题的 “或⾮ ”运算( “或⾮门 ” )□模态词 “必然 ”◇模态词 “可能 ”φ空集∈属于( ??不属于)P(A)集合 A 的幂集|A| 集合 A 的点数R^2=R○R [R^n=R^(n-1)○R] 关系 R 的“复合 ”∪集合的并运算∩集合的交运算- (~)集合的差运算〡限制[X](右下⾓ R) 集合关于关系 R 的等价类A/ R 集合 A 上关于 R 的商集[a] 元素 a 产⽣的循环群I (i ⼤写 ) 环,理想Z/(n) 模 n 的同余类集合r(R) 关系 R 的⾃反闭包s(R) 关系的对称闭包CP 命题演绎的定理( CP 规则)EG 存在推⼴规则(存在量词引⼊规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推⼴规则(全称量词引⼊规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:X →Y f是 X 到 Y的函数GCD(x,y) x,y最⼤公约数LCM(x,y) x,y最⼩公倍数aH(Ha) H 关于 a 的左(右)陪集Ker(f) 同态映射 f 的核(或称 f 同态核)[1,n] 1 到 n 的整数集合d(u,v) 点 u 与点 v 间的距离d(v) 点 v 的度数G=(V,E) 点集为 V,边集为 E的图W(G) 图 G 的连通分⽀数k(G) 图 G 的点连通度△( G) 图 G 的最⼤点度A(G) 图 G 的邻接矩阵P(G) 图 G 的可达矩阵M(G) 图 G 的关联矩阵C 复数集N ⾃然数集(包含 0 在内)N* 正⾃然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环 R 的左模范畴mod-R 环 R 的右模范畴Field 域范畴Poset 偏序集范畴。
离散数学简介
授课教师:林旭平
学习离散数学需要弄清楚的两个问题
为什么要学习离散数学? 离散数学都学习什么内容?
为什么要学习离散数学?
离散数学在整个学科体系中的作用 离散数学的实际应用
离散数学在整个学科体系中的作用
基础数学的延伸 算法与数据结构 的理论基础
算法设计 与分析 编译技术 网络技术 软件工程 人工智能 概率
离散数学的实际应用-1
解 ① 设p:派赵去,q:派钱去,r:派孙去, :派赵去, :派钱去, :派孙去, s:派李去,u:派周去. :派李去, :派周去. ② (1) (p→q) → (2) (s∨u) ∨ (3) ((q∧¬ ∨(¬q∧r)) ∧¬r)∨ ¬ ∧ ∧¬ (4) ((r∧s)∨(¬r∧¬ ∧¬s)) ∧ ∨ ¬ ∧¬ (5) (u→(p∧q)) → ∧
离散数学的实际应用-6
历史背景:哈密顿周游世界问题 从正十二面体的一个顶点出发,沿着正十二面体的棱前 进,要把二十个顶点无一遗漏地全部通过,而且每个顶 点恰好只通过一次,最后回到出发点,这样,便是哈密 顿周游世界问题。
离散数学的实际应用-7
货郎担问题:有n个城市,给定城市之间道路的长度 (长度可以为∞,对应这两个城市间没有交通线)。 一个旅行商从某个城市出发,要经过每个城市一次且 仅一次,最后回到出发的城市,问如何走才能使他走 的路线最短?
离散数学的实际应用-4
从根到树叶的每条路表示 一种情况。 一种情况。 共有10片树叶, 共有 片树叶,所以共有 片树叶 10种比赛情况。如 种比赛情况。 种比赛情况 EE,EMM,EMEMM, EMEME
离散数学的实际应用-5
1736年瑞士数学家欧拉提出哥尼斯堡七桥问题
在图中从某点出发找一条通路, 在图中从某点出发找一条通路,通过每边一次 而且仅有一次,并回到原点。 而且仅有一次,并回到原点。